1 #ifdef HAVE_CONFIG_H
2 # include <config.h>
3 #endif
4
5 #include <stdlib.h> /* for malloc() */
6 #include <string.h> /* for memcpy() */
7
8 #include "private/md5.h"
9 #include "share/alloc.h"
10 #include "share/endswap.h"
11
12 /*
13 * This code implements the MD5 message-digest algorithm.
14 * The algorithm is due to Ron Rivest. This code was
15 * written by Colin Plumb in 1993, no copyright is claimed.
16 * This code is in the public domain; do with it what you wish.
17 *
18 * Equivalent code is available from RSA Data Security, Inc.
19 * This code has been tested against that, and is equivalent,
20 * except that you don't need to include two pages of legalese
21 * with every copy.
22 *
23 * To compute the message digest of a chunk of bytes, declare an
24 * MD5Context structure, pass it to MD5Init, call MD5Update as
25 * needed on buffers full of bytes, and then call MD5Final, which
26 * will fill a supplied 16-byte array with the digest.
27 *
28 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
29 * definitions; now uses stuff from dpkg's config.h.
30 * - Ian Jackson <ijackson@nyx.cs.du.edu>.
31 * Still in the public domain.
32 *
33 * Josh Coalson: made some changes to integrate with libFLAC.
34 * Still in the public domain.
35 */
36
37 /* The four core functions - F1 is optimized somewhat */
38
39 /* #define F1(x, y, z) (x & y | ~x & z) */
40 #define F1(x, y, z) (z ^ (x & (y ^ z)))
41 #define F2(x, y, z) F1(z, x, y)
42 #define F3(x, y, z) (x ^ y ^ z)
43 #define F4(x, y, z) (y ^ (x | ~z))
44
45 /* This is the central step in the MD5 algorithm. */
46 #define MD5STEP(f,w,x,y,z,in,s) \
47 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
48
49 /*
50 * The core of the MD5 algorithm, this alters an existing MD5 hash to
51 * reflect the addition of 16 longwords of new data. MD5Update blocks
52 * the data and converts bytes into longwords for this routine.
53 */
FLAC__MD5Transform(FLAC__uint32 buf[4],FLAC__uint32 const in[16])54 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
55 {
56 register FLAC__uint32 a, b, c, d;
57
58 a = buf[0];
59 b = buf[1];
60 c = buf[2];
61 d = buf[3];
62
63 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
64 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
65 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
66 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
67 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
68 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
69 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
70 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
71 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
72 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
73 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
74 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
75 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
76 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
77 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
78 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
79
80 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
81 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
82 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
83 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
84 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
85 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
86 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
87 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
88 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
89 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
90 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
91 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
92 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
93 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
94 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
95 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
96
97 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
98 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
99 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
100 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
101 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
102 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
103 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
104 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
105 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
106 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
107 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
108 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
109 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
110 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
111 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
112 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
113
114 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
115 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
116 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
117 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
118 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
119 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
120 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
121 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
122 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
123 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
124 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
125 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
126 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
127 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
128 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
129 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
130
131 buf[0] += a;
132 buf[1] += b;
133 buf[2] += c;
134 buf[3] += d;
135 }
136
137 #if WORDS_BIGENDIAN
138 //@@@@@@ OPT: use bswap/intrinsics
byteSwap(FLAC__uint32 * buf,unsigned words)139 static void byteSwap(FLAC__uint32 *buf, unsigned words)
140 {
141 register FLAC__uint32 x;
142 do {
143 x = *buf;
144 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
145 *buf++ = (x >> 16) | (x << 16);
146 } while (--words);
147 }
byteSwapX16(FLAC__uint32 * buf)148 static void byteSwapX16(FLAC__uint32 *buf)
149 {
150 register FLAC__uint32 x;
151
152 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
153 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
154 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
157 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
158 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
159 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
160 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
161 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
162 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
163 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
164 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
165 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
166 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
167 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16);
168 }
169 #else
170 #define byteSwap(buf, words)
171 #define byteSwapX16(buf)
172 #endif
173
174 /*
175 * Update context to reflect the concatenation of another buffer full
176 * of bytes.
177 */
FLAC__MD5Update(FLAC__MD5Context * ctx,FLAC__byte const * buf,unsigned len)178 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
179 {
180 FLAC__uint32 t;
181
182 /* Update byte count */
183
184 t = ctx->bytes[0];
185 if ((ctx->bytes[0] = t + len) < t)
186 ctx->bytes[1]++; /* Carry from low to high */
187
188 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
189 if (t > len) {
190 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
191 return;
192 }
193 /* First chunk is an odd size */
194 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
195 byteSwapX16(ctx->in);
196 FLAC__MD5Transform(ctx->buf, ctx->in);
197 buf += t;
198 len -= t;
199
200 /* Process data in 64-byte chunks */
201 while (len >= 64) {
202 memcpy(ctx->in, buf, 64);
203 byteSwapX16(ctx->in);
204 FLAC__MD5Transform(ctx->buf, ctx->in);
205 buf += 64;
206 len -= 64;
207 }
208
209 /* Handle any remaining bytes of data. */
210 memcpy(ctx->in, buf, len);
211 }
212
213 /*
214 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
215 * initialization constants.
216 */
FLAC__MD5Init(FLAC__MD5Context * ctx)217 void FLAC__MD5Init(FLAC__MD5Context *ctx)
218 {
219 ctx->buf[0] = 0x67452301;
220 ctx->buf[1] = 0xefcdab89;
221 ctx->buf[2] = 0x98badcfe;
222 ctx->buf[3] = 0x10325476;
223
224 ctx->bytes[0] = 0;
225 ctx->bytes[1] = 0;
226
227 ctx->internal_buf.p8= 0;
228 ctx->capacity = 0;
229 }
230
231 /*
232 * Final wrapup - pad to 64-byte boundary with the bit pattern
233 * 1 0* (64-bit count of bits processed, MSB-first)
234 */
FLAC__MD5Final(FLAC__byte digest[16],FLAC__MD5Context * ctx)235 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
236 {
237 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
238 FLAC__byte *p = (FLAC__byte *)ctx->in + count;
239
240 /* Set the first char of padding to 0x80. There is always room. */
241 *p++ = 0x80;
242
243 /* Bytes of padding needed to make 56 bytes (-8..55) */
244 count = 56 - 1 - count;
245
246 if (count < 0) { /* Padding forces an extra block */
247 memset(p, 0, count + 8);
248 byteSwapX16(ctx->in);
249 FLAC__MD5Transform(ctx->buf, ctx->in);
250 p = (FLAC__byte *)ctx->in;
251 count = 56;
252 }
253 memset(p, 0, count);
254 byteSwap(ctx->in, 14);
255
256 /* Append length in bits and transform */
257 ctx->in[14] = ctx->bytes[0] << 3;
258 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
259 FLAC__MD5Transform(ctx->buf, ctx->in);
260
261 byteSwap(ctx->buf, 4);
262 memcpy(digest, ctx->buf, 16);
263 if (0 != ctx->internal_buf.p8) {
264 free(ctx->internal_buf.p8);
265 ctx->internal_buf.p8= 0;
266 ctx->capacity = 0;
267 }
268 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
269 }
270
271 /*
272 * Convert the incoming audio signal to a byte stream
273 */
format_input_(FLAC__multibyte * mbuf,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)274 static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
275 {
276 FLAC__byte *buf_ = mbuf->p8;
277 FLAC__int16 *buf16 = mbuf->p16;
278 FLAC__int32 *buf32 = mbuf->p32;
279 FLAC__int32 a_word;
280 unsigned channel, sample;
281
282 /* Storage in the output buffer, buf, is little endian. */
283
284 #define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels)
285
286 /* First do the most commonly used combinations. */
287 switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) {
288 /* One byte per sample. */
289 case (BYTES_CHANNEL_SELECTOR (1, 1)):
290 for (sample = 0; sample < samples; sample++)
291 *buf_++ = signal[0][sample];
292 return;
293
294 case (BYTES_CHANNEL_SELECTOR (1, 2)):
295 for (sample = 0; sample < samples; sample++) {
296 *buf_++ = signal[0][sample];
297 *buf_++ = signal[1][sample];
298 }
299 return;
300
301 case (BYTES_CHANNEL_SELECTOR (1, 4)):
302 for (sample = 0; sample < samples; sample++) {
303 *buf_++ = signal[0][sample];
304 *buf_++ = signal[1][sample];
305 *buf_++ = signal[2][sample];
306 *buf_++ = signal[3][sample];
307 }
308 return;
309
310 case (BYTES_CHANNEL_SELECTOR (1, 6)):
311 for (sample = 0; sample < samples; sample++) {
312 *buf_++ = signal[0][sample];
313 *buf_++ = signal[1][sample];
314 *buf_++ = signal[2][sample];
315 *buf_++ = signal[3][sample];
316 *buf_++ = signal[4][sample];
317 *buf_++ = signal[5][sample];
318 }
319 return;
320
321 case (BYTES_CHANNEL_SELECTOR (1, 8)):
322 for (sample = 0; sample < samples; sample++) {
323 *buf_++ = signal[0][sample];
324 *buf_++ = signal[1][sample];
325 *buf_++ = signal[2][sample];
326 *buf_++ = signal[3][sample];
327 *buf_++ = signal[4][sample];
328 *buf_++ = signal[5][sample];
329 *buf_++ = signal[6][sample];
330 *buf_++ = signal[7][sample];
331 }
332 return;
333
334 /* Two bytes per sample. */
335 case (BYTES_CHANNEL_SELECTOR (2, 1)):
336 for (sample = 0; sample < samples; sample++)
337 *buf16++ = H2LE_16(signal[0][sample]);
338 return;
339
340 case (BYTES_CHANNEL_SELECTOR (2, 2)):
341 for (sample = 0; sample < samples; sample++) {
342 *buf16++ = H2LE_16(signal[0][sample]);
343 *buf16++ = H2LE_16(signal[1][sample]);
344 }
345 return;
346
347 case (BYTES_CHANNEL_SELECTOR (2, 4)):
348 for (sample = 0; sample < samples; sample++) {
349 *buf16++ = H2LE_16(signal[0][sample]);
350 *buf16++ = H2LE_16(signal[1][sample]);
351 *buf16++ = H2LE_16(signal[2][sample]);
352 *buf16++ = H2LE_16(signal[3][sample]);
353 }
354 return;
355
356 case (BYTES_CHANNEL_SELECTOR (2, 6)):
357 for (sample = 0; sample < samples; sample++) {
358 *buf16++ = H2LE_16(signal[0][sample]);
359 *buf16++ = H2LE_16(signal[1][sample]);
360 *buf16++ = H2LE_16(signal[2][sample]);
361 *buf16++ = H2LE_16(signal[3][sample]);
362 *buf16++ = H2LE_16(signal[4][sample]);
363 *buf16++ = H2LE_16(signal[5][sample]);
364 }
365 return;
366
367 case (BYTES_CHANNEL_SELECTOR (2, 8)):
368 for (sample = 0; sample < samples; sample++) {
369 *buf16++ = H2LE_16(signal[0][sample]);
370 *buf16++ = H2LE_16(signal[1][sample]);
371 *buf16++ = H2LE_16(signal[2][sample]);
372 *buf16++ = H2LE_16(signal[3][sample]);
373 *buf16++ = H2LE_16(signal[4][sample]);
374 *buf16++ = H2LE_16(signal[5][sample]);
375 *buf16++ = H2LE_16(signal[6][sample]);
376 *buf16++ = H2LE_16(signal[7][sample]);
377 }
378 return;
379
380 /* Three bytes per sample. */
381 case (BYTES_CHANNEL_SELECTOR (3, 1)):
382 for (sample = 0; sample < samples; sample++) {
383 a_word = signal[0][sample];
384 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
385 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
386 *buf_++ = (FLAC__byte)a_word;
387 }
388 return;
389
390 case (BYTES_CHANNEL_SELECTOR (3, 2)):
391 for (sample = 0; sample < samples; sample++) {
392 a_word = signal[0][sample];
393 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
394 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
395 *buf_++ = (FLAC__byte)a_word;
396 a_word = signal[1][sample];
397 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
398 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
399 *buf_++ = (FLAC__byte)a_word;
400 }
401 return;
402
403 /* Four bytes per sample. */
404 case (BYTES_CHANNEL_SELECTOR (4, 1)):
405 for (sample = 0; sample < samples; sample++)
406 *buf32++ = H2LE_32(signal[0][sample]);
407 return;
408
409 case (BYTES_CHANNEL_SELECTOR (4, 2)):
410 for (sample = 0; sample < samples; sample++) {
411 *buf32++ = H2LE_32(signal[0][sample]);
412 *buf32++ = H2LE_32(signal[1][sample]);
413 }
414 return;
415
416 case (BYTES_CHANNEL_SELECTOR (4, 4)):
417 for (sample = 0; sample < samples; sample++) {
418 *buf32++ = H2LE_32(signal[0][sample]);
419 *buf32++ = H2LE_32(signal[1][sample]);
420 *buf32++ = H2LE_32(signal[2][sample]);
421 *buf32++ = H2LE_32(signal[3][sample]);
422 }
423 return;
424
425 case (BYTES_CHANNEL_SELECTOR (4, 6)):
426 for (sample = 0; sample < samples; sample++) {
427 *buf32++ = H2LE_32(signal[0][sample]);
428 *buf32++ = H2LE_32(signal[1][sample]);
429 *buf32++ = H2LE_32(signal[2][sample]);
430 *buf32++ = H2LE_32(signal[3][sample]);
431 *buf32++ = H2LE_32(signal[4][sample]);
432 *buf32++ = H2LE_32(signal[5][sample]);
433 }
434 return;
435
436 case (BYTES_CHANNEL_SELECTOR (4, 8)):
437 for (sample = 0; sample < samples; sample++) {
438 *buf32++ = H2LE_32(signal[0][sample]);
439 *buf32++ = H2LE_32(signal[1][sample]);
440 *buf32++ = H2LE_32(signal[2][sample]);
441 *buf32++ = H2LE_32(signal[3][sample]);
442 *buf32++ = H2LE_32(signal[4][sample]);
443 *buf32++ = H2LE_32(signal[5][sample]);
444 *buf32++ = H2LE_32(signal[6][sample]);
445 *buf32++ = H2LE_32(signal[7][sample]);
446 }
447 return;
448
449 default:
450 break;
451 }
452
453 /* General version. */
454 switch (bytes_per_sample) {
455 case 1:
456 for (sample = 0; sample < samples; sample++)
457 for (channel = 0; channel < channels; channel++)
458 *buf_++ = signal[channel][sample];
459 return;
460
461 case 2:
462 for (sample = 0; sample < samples; sample++)
463 for (channel = 0; channel < channels; channel++)
464 *buf16++ = H2LE_16(signal[channel][sample]);
465 return;
466
467 case 3:
468 for (sample = 0; sample < samples; sample++)
469 for (channel = 0; channel < channels; channel++) {
470 a_word = signal[channel][sample];
471 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
472 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
473 *buf_++ = (FLAC__byte)a_word;
474 }
475 return;
476
477 case 4:
478 for (sample = 0; sample < samples; sample++)
479 for (channel = 0; channel < channels; channel++)
480 *buf32++ = H2LE_32(signal[channel][sample]);
481 return;
482
483 default:
484 break;
485 }
486 }
487
488 /*
489 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
490 */
FLAC__MD5Accumulate(FLAC__MD5Context * ctx,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)491 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
492 {
493 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
494
495 /* overflow check */
496 if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
497 return false;
498 if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
499 return false;
500
501 if (ctx->capacity < bytes_needed) {
502 FLAC__byte *tmp = realloc(ctx->internal_buf.p8, bytes_needed);
503 if (0 == tmp) {
504 free(ctx->internal_buf.p8);
505 if (0 == (ctx->internal_buf.p8= safe_malloc_(bytes_needed)))
506 return false;
507 }
508 else
509 ctx->internal_buf.p8= tmp;
510 ctx->capacity = bytes_needed;
511 }
512
513 format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample);
514
515 FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed);
516
517 return true;
518 }
519