• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // <random>
11 
12 // template<class IntType = int>
13 // class negative_binomial_distribution
14 
15 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
16 
17 #include <random>
18 #include <numeric>
19 #include <vector>
20 #include <cassert>
21 
22 template <class T>
23 inline
24 T
sqr(T x)25 sqr(T x)
26 {
27     return x * x;
28 }
29 
main()30 int main()
31 {
32     {
33         typedef std::negative_binomial_distribution<> D;
34         typedef D::param_type P;
35         typedef std::minstd_rand G;
36         G g;
37         D d(16, .75);
38         P p(5, .75);
39         const int N = 1000000;
40         std::vector<D::result_type> u;
41         for (int i = 0; i < N; ++i)
42         {
43             D::result_type v = d(g, p);
44             assert(d.min() <= v && v <= d.max());
45             u.push_back(v);
46         }
47         double mean = std::accumulate(u.begin(), u.end(),
48                                               double(0)) / u.size();
49         double var = 0;
50         double skew = 0;
51         double kurtosis = 0;
52         for (int i = 0; i < u.size(); ++i)
53         {
54             double d = (u[i] - mean);
55             double d2 = sqr(d);
56             var += d2;
57             skew += d * d2;
58             kurtosis += d2 * d2;
59         }
60         var /= u.size();
61         double dev = std::sqrt(var);
62         skew /= u.size() * dev * var;
63         kurtosis /= u.size() * var * var;
64         kurtosis -= 3;
65         double x_mean = p.k() * (1 - p.p()) / p.p();
66         double x_var = x_mean / p.p();
67         double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
68         double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
69         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
70         assert(std::abs((var - x_var) / x_var) < 0.01);
71         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
72         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
73     }
74     {
75         typedef std::negative_binomial_distribution<> D;
76         typedef D::param_type P;
77         typedef std::mt19937 G;
78         G g;
79         D d(16, .75);
80         P p(30, .03125);
81         const int N = 1000000;
82         std::vector<D::result_type> u;
83         for (int i = 0; i < N; ++i)
84         {
85             D::result_type v = d(g, p);
86             assert(d.min() <= v && v <= d.max());
87             u.push_back(v);
88         }
89         double mean = std::accumulate(u.begin(), u.end(),
90                                               double(0)) / u.size();
91         double var = 0;
92         double skew = 0;
93         double kurtosis = 0;
94         for (int i = 0; i < u.size(); ++i)
95         {
96             double d = (u[i] - mean);
97             double d2 = sqr(d);
98             var += d2;
99             skew += d * d2;
100             kurtosis += d2 * d2;
101         }
102         var /= u.size();
103         double dev = std::sqrt(var);
104         skew /= u.size() * dev * var;
105         kurtosis /= u.size() * var * var;
106         kurtosis -= 3;
107         double x_mean = p.k() * (1 - p.p()) / p.p();
108         double x_var = x_mean / p.p();
109         double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
110         double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
111         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
112         assert(std::abs((var - x_var) / x_var) < 0.01);
113         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
114         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
115     }
116     {
117         typedef std::negative_binomial_distribution<> D;
118         typedef D::param_type P;
119         typedef std::mt19937 G;
120         G g;
121         D d(16, .75);
122         P p(40, .25);
123         const int N = 1000000;
124         std::vector<D::result_type> u;
125         for (int i = 0; i < N; ++i)
126         {
127             D::result_type v = d(g, p);
128             assert(d.min() <= v && v <= d.max());
129             u.push_back(v);
130         }
131         double mean = std::accumulate(u.begin(), u.end(),
132                                               double(0)) / u.size();
133         double var = 0;
134         double skew = 0;
135         double kurtosis = 0;
136         for (int i = 0; i < u.size(); ++i)
137         {
138             double d = (u[i] - mean);
139             double d2 = sqr(d);
140             var += d2;
141             skew += d * d2;
142             kurtosis += d2 * d2;
143         }
144         var /= u.size();
145         double dev = std::sqrt(var);
146         skew /= u.size() * dev * var;
147         kurtosis /= u.size() * var * var;
148         kurtosis -= 3;
149         double x_mean = p.k() * (1 - p.p()) / p.p();
150         double x_var = x_mean / p.p();
151         double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
152         double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
153         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
154         assert(std::abs((var - x_var) / x_var) < 0.01);
155         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
156         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
157     }
158 }
159