• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // <random>
11 
12 // template<class RealType = double>
13 // class student_t_distribution
14 
15 // template<class _URNG> result_type operator()(_URNG& g);
16 
17 #include <random>
18 #include <cassert>
19 #include <vector>
20 #include <numeric>
21 
22 template <class T>
23 inline
24 T
sqr(T x)25 sqr(T x)
26 {
27     return x * x;
28 }
29 
main()30 int main()
31 {
32     {
33         typedef std::student_t_distribution<> D;
34         typedef D::param_type P;
35         typedef std::minstd_rand G;
36         G g;
37         D d(5.5);
38         const int N = 1000000;
39         std::vector<D::result_type> u;
40         for (int i = 0; i < N; ++i)
41             u.push_back(d(g));
42         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
43         double var = 0;
44         double skew = 0;
45         double kurtosis = 0;
46         for (int i = 0; i < u.size(); ++i)
47         {
48             double d = (u[i] - mean);
49             double d2 = sqr(d);
50             var += d2;
51             skew += d * d2;
52             kurtosis += d2 * d2;
53         }
54         var /= u.size();
55         double dev = std::sqrt(var);
56         skew /= u.size() * dev * var;
57         kurtosis /= u.size() * var * var;
58         kurtosis -= 3;
59         double x_mean = 0;
60         double x_var = d.n() / (d.n() - 2);
61         double x_skew = 0;
62         double x_kurtosis = 6 / (d.n() - 4);
63         assert(std::abs(mean - x_mean) < 0.01);
64         assert(std::abs((var - x_var) / x_var) < 0.01);
65         assert(std::abs(skew - x_skew) < 0.01);
66         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.2);
67     }
68     {
69         typedef std::student_t_distribution<> D;
70         typedef D::param_type P;
71         typedef std::minstd_rand G;
72         G g;
73         D d(10);
74         const int N = 1000000;
75         std::vector<D::result_type> u;
76         for (int i = 0; i < N; ++i)
77             u.push_back(d(g));
78         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
79         double var = 0;
80         double skew = 0;
81         double kurtosis = 0;
82         for (int i = 0; i < u.size(); ++i)
83         {
84             double d = (u[i] - mean);
85             double d2 = sqr(d);
86             var += d2;
87             skew += d * d2;
88             kurtosis += d2 * d2;
89         }
90         var /= u.size();
91         double dev = std::sqrt(var);
92         skew /= u.size() * dev * var;
93         kurtosis /= u.size() * var * var;
94         kurtosis -= 3;
95         double x_mean = 0;
96         double x_var = d.n() / (d.n() - 2);
97         double x_skew = 0;
98         double x_kurtosis = 6 / (d.n() - 4);
99         assert(std::abs(mean - x_mean) < 0.01);
100         assert(std::abs((var - x_var) / x_var) < 0.01);
101         assert(std::abs(skew - x_skew) < 0.01);
102         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
103     }
104     {
105         typedef std::student_t_distribution<> D;
106         typedef D::param_type P;
107         typedef std::minstd_rand G;
108         G g;
109         D d(100);
110         const int N = 1000000;
111         std::vector<D::result_type> u;
112         for (int i = 0; i < N; ++i)
113             u.push_back(d(g));
114         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
115         double var = 0;
116         double skew = 0;
117         double kurtosis = 0;
118         for (int i = 0; i < u.size(); ++i)
119         {
120             double d = (u[i] - mean);
121             double d2 = sqr(d);
122             var += d2;
123             skew += d * d2;
124             kurtosis += d2 * d2;
125         }
126         var /= u.size();
127         double dev = std::sqrt(var);
128         skew /= u.size() * dev * var;
129         kurtosis /= u.size() * var * var;
130         kurtosis -= 3;
131         double x_mean = 0;
132         double x_var = d.n() / (d.n() - 2);
133         double x_skew = 0;
134         double x_kurtosis = 6 / (d.n() - 4);
135         assert(std::abs(mean - x_mean) < 0.01);
136         assert(std::abs((var - x_var) / x_var) < 0.01);
137         assert(std::abs(skew - x_skew) < 0.01);
138         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
139     }
140 }
141