1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35 unsigned long nr;
36 unsigned long pid;
37 char comm[COMM_LEN];
38
39 unsigned long nr_events;
40 unsigned long curr_event;
41 struct sched_atom **atoms;
42
43 pthread_t thread;
44 sem_t sleep_sem;
45
46 sem_t ready_for_work;
47 sem_t work_done_sem;
48
49 u64 cpu_usage;
50 };
51
52 enum sched_event_type {
53 SCHED_EVENT_RUN,
54 SCHED_EVENT_SLEEP,
55 SCHED_EVENT_WAKEUP,
56 SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60 enum sched_event_type type;
61 int specific_wait;
62 u64 timestamp;
63 u64 duration;
64 unsigned long nr;
65 sem_t *wait_sem;
66 struct task_desc *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71 enum thread_state {
72 THREAD_SLEEPING = 0,
73 THREAD_WAIT_CPU,
74 THREAD_SCHED_IN,
75 THREAD_IGNORE
76 };
77
78 struct work_atom {
79 struct list_head list;
80 enum thread_state state;
81 u64 sched_out_time;
82 u64 wake_up_time;
83 u64 sched_in_time;
84 u64 runtime;
85 };
86
87 struct work_atoms {
88 struct list_head work_list;
89 struct thread *thread;
90 struct rb_node node;
91 u64 max_lat;
92 u64 max_lat_at;
93 u64 total_lat;
94 u64 nb_atoms;
95 u64 total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104 struct perf_sample *sample, struct machine *machine);
105
106 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107 struct perf_sample *sample, struct machine *machine);
108
109 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114 struct machine *machine);
115
116 int (*migrate_task_event)(struct perf_sched *sched,
117 struct perf_evsel *evsel,
118 struct perf_sample *sample,
119 struct machine *machine);
120 };
121
122 struct perf_sched {
123 struct perf_tool tool;
124 const char *sort_order;
125 unsigned long nr_tasks;
126 struct task_desc *pid_to_task[MAX_PID];
127 struct task_desc **tasks;
128 const struct trace_sched_handler *tp_handler;
129 pthread_mutex_t start_work_mutex;
130 pthread_mutex_t work_done_wait_mutex;
131 int profile_cpu;
132 /*
133 * Track the current task - that way we can know whether there's any
134 * weird events, such as a task being switched away that is not current.
135 */
136 int max_cpu;
137 u32 curr_pid[MAX_CPUS];
138 struct thread *curr_thread[MAX_CPUS];
139 char next_shortname1;
140 char next_shortname2;
141 unsigned int replay_repeat;
142 unsigned long nr_run_events;
143 unsigned long nr_sleep_events;
144 unsigned long nr_wakeup_events;
145 unsigned long nr_sleep_corrections;
146 unsigned long nr_run_events_optimized;
147 unsigned long targetless_wakeups;
148 unsigned long multitarget_wakeups;
149 unsigned long nr_runs;
150 unsigned long nr_timestamps;
151 unsigned long nr_unordered_timestamps;
152 unsigned long nr_state_machine_bugs;
153 unsigned long nr_context_switch_bugs;
154 unsigned long nr_events;
155 unsigned long nr_lost_chunks;
156 unsigned long nr_lost_events;
157 u64 run_measurement_overhead;
158 u64 sleep_measurement_overhead;
159 u64 start_time;
160 u64 cpu_usage;
161 u64 runavg_cpu_usage;
162 u64 parent_cpu_usage;
163 u64 runavg_parent_cpu_usage;
164 u64 sum_runtime;
165 u64 sum_fluct;
166 u64 run_avg;
167 u64 all_runtime;
168 u64 all_count;
169 u64 cpu_last_switched[MAX_CPUS];
170 struct rb_root atom_root, sorted_atom_root;
171 struct list_head sort_list, cmp_pid;
172 };
173
get_nsecs(void)174 static u64 get_nsecs(void)
175 {
176 #ifndef __APPLE__
177 struct timespec ts;
178
179 clock_gettime(CLOCK_MONOTONIC, &ts);
180
181 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
182 #else
183 perror("get_nsecs not supported on MacOS");
184 return 0;
185 #endif
186 }
187
burn_nsecs(struct perf_sched * sched,u64 nsecs)188 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
189 {
190 u64 T0 = get_nsecs(), T1;
191
192 do {
193 T1 = get_nsecs();
194 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
195 }
196
sleep_nsecs(u64 nsecs)197 static void sleep_nsecs(u64 nsecs)
198 {
199 struct timespec ts;
200
201 ts.tv_nsec = nsecs % 999999999;
202 ts.tv_sec = nsecs / 999999999;
203
204 nanosleep(&ts, NULL);
205 }
206
calibrate_run_measurement_overhead(struct perf_sched * sched)207 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
208 {
209 u64 T0, T1, delta, min_delta = 1000000000ULL;
210 int i;
211
212 for (i = 0; i < 10; i++) {
213 T0 = get_nsecs();
214 burn_nsecs(sched, 0);
215 T1 = get_nsecs();
216 delta = T1-T0;
217 min_delta = min(min_delta, delta);
218 }
219 sched->run_measurement_overhead = min_delta;
220
221 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
222 }
223
calibrate_sleep_measurement_overhead(struct perf_sched * sched)224 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
225 {
226 u64 T0, T1, delta, min_delta = 1000000000ULL;
227 int i;
228
229 for (i = 0; i < 10; i++) {
230 T0 = get_nsecs();
231 sleep_nsecs(10000);
232 T1 = get_nsecs();
233 delta = T1-T0;
234 min_delta = min(min_delta, delta);
235 }
236 min_delta -= 10000;
237 sched->sleep_measurement_overhead = min_delta;
238
239 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
240 }
241
242 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)243 get_new_event(struct task_desc *task, u64 timestamp)
244 {
245 struct sched_atom *event = zalloc(sizeof(*event));
246 unsigned long idx = task->nr_events;
247 size_t size;
248
249 event->timestamp = timestamp;
250 event->nr = idx;
251
252 task->nr_events++;
253 size = sizeof(struct sched_atom *) * task->nr_events;
254 task->atoms = realloc(task->atoms, size);
255 BUG_ON(!task->atoms);
256
257 task->atoms[idx] = event;
258
259 return event;
260 }
261
last_event(struct task_desc * task)262 static struct sched_atom *last_event(struct task_desc *task)
263 {
264 if (!task->nr_events)
265 return NULL;
266
267 return task->atoms[task->nr_events - 1];
268 }
269
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)270 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
271 u64 timestamp, u64 duration)
272 {
273 struct sched_atom *event, *curr_event = last_event(task);
274
275 /*
276 * optimize an existing RUN event by merging this one
277 * to it:
278 */
279 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
280 sched->nr_run_events_optimized++;
281 curr_event->duration += duration;
282 return;
283 }
284
285 event = get_new_event(task, timestamp);
286
287 event->type = SCHED_EVENT_RUN;
288 event->duration = duration;
289
290 sched->nr_run_events++;
291 }
292
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)293 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
294 u64 timestamp, struct task_desc *wakee)
295 {
296 struct sched_atom *event, *wakee_event;
297
298 event = get_new_event(task, timestamp);
299 event->type = SCHED_EVENT_WAKEUP;
300 event->wakee = wakee;
301
302 wakee_event = last_event(wakee);
303 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
304 sched->targetless_wakeups++;
305 return;
306 }
307 if (wakee_event->wait_sem) {
308 sched->multitarget_wakeups++;
309 return;
310 }
311
312 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
313 sem_init(wakee_event->wait_sem, 0, 0);
314 wakee_event->specific_wait = 1;
315 event->wait_sem = wakee_event->wait_sem;
316
317 sched->nr_wakeup_events++;
318 }
319
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 task_state __maybe_unused)320 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
321 u64 timestamp, u64 task_state __maybe_unused)
322 {
323 struct sched_atom *event = get_new_event(task, timestamp);
324
325 event->type = SCHED_EVENT_SLEEP;
326
327 sched->nr_sleep_events++;
328 }
329
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)330 static struct task_desc *register_pid(struct perf_sched *sched,
331 unsigned long pid, const char *comm)
332 {
333 struct task_desc *task;
334
335 BUG_ON(pid >= MAX_PID);
336
337 task = sched->pid_to_task[pid];
338
339 if (task)
340 return task;
341
342 task = zalloc(sizeof(*task));
343 task->pid = pid;
344 task->nr = sched->nr_tasks;
345 strcpy(task->comm, comm);
346 /*
347 * every task starts in sleeping state - this gets ignored
348 * if there's no wakeup pointing to this sleep state:
349 */
350 add_sched_event_sleep(sched, task, 0, 0);
351
352 sched->pid_to_task[pid] = task;
353 sched->nr_tasks++;
354 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
355 BUG_ON(!sched->tasks);
356 sched->tasks[task->nr] = task;
357
358 if (verbose)
359 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
360
361 return task;
362 }
363
364
print_task_traces(struct perf_sched * sched)365 static void print_task_traces(struct perf_sched *sched)
366 {
367 struct task_desc *task;
368 unsigned long i;
369
370 for (i = 0; i < sched->nr_tasks; i++) {
371 task = sched->tasks[i];
372 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
373 task->nr, task->comm, task->pid, task->nr_events);
374 }
375 }
376
add_cross_task_wakeups(struct perf_sched * sched)377 static void add_cross_task_wakeups(struct perf_sched *sched)
378 {
379 struct task_desc *task1, *task2;
380 unsigned long i, j;
381
382 for (i = 0; i < sched->nr_tasks; i++) {
383 task1 = sched->tasks[i];
384 j = i + 1;
385 if (j == sched->nr_tasks)
386 j = 0;
387 task2 = sched->tasks[j];
388 add_sched_event_wakeup(sched, task1, 0, task2);
389 }
390 }
391
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)392 static void perf_sched__process_event(struct perf_sched *sched,
393 struct sched_atom *atom)
394 {
395 int ret = 0;
396
397 switch (atom->type) {
398 case SCHED_EVENT_RUN:
399 burn_nsecs(sched, atom->duration);
400 break;
401 case SCHED_EVENT_SLEEP:
402 if (atom->wait_sem)
403 ret = sem_wait(atom->wait_sem);
404 BUG_ON(ret);
405 break;
406 case SCHED_EVENT_WAKEUP:
407 if (atom->wait_sem)
408 ret = sem_post(atom->wait_sem);
409 BUG_ON(ret);
410 break;
411 case SCHED_EVENT_MIGRATION:
412 break;
413 default:
414 BUG_ON(1);
415 }
416 }
417
get_cpu_usage_nsec_parent(void)418 static u64 get_cpu_usage_nsec_parent(void)
419 {
420 struct rusage ru;
421 u64 sum;
422 int err;
423
424 err = getrusage(RUSAGE_SELF, &ru);
425 BUG_ON(err);
426
427 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
428 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
429
430 return sum;
431 }
432
self_open_counters(void)433 static int self_open_counters(void)
434 {
435 struct perf_event_attr attr;
436 int fd;
437
438 memset(&attr, 0, sizeof(attr));
439
440 attr.type = PERF_TYPE_SOFTWARE;
441 attr.config = PERF_COUNT_SW_TASK_CLOCK;
442
443 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
444
445 if (fd < 0)
446 pr_err("Error: sys_perf_event_open() syscall returned "
447 "with %d (%s)\n", fd, strerror(errno));
448 return fd;
449 }
450
get_cpu_usage_nsec_self(int fd)451 static u64 get_cpu_usage_nsec_self(int fd)
452 {
453 u64 runtime;
454 int ret;
455
456 ret = read(fd, &runtime, sizeof(runtime));
457 BUG_ON(ret != sizeof(runtime));
458
459 return runtime;
460 }
461
462 struct sched_thread_parms {
463 struct task_desc *task;
464 struct perf_sched *sched;
465 };
466
thread_func(void * ctx)467 static void *thread_func(void *ctx)
468 {
469 #ifndef __APPLE__
470 struct sched_thread_parms *parms = ctx;
471 struct task_desc *this_task = parms->task;
472 struct perf_sched *sched = parms->sched;
473 u64 cpu_usage_0, cpu_usage_1;
474 unsigned long i, ret;
475 char comm2[22];
476 int fd;
477
478 free(parms);
479
480 sprintf(comm2, ":%s", this_task->comm);
481 prctl(PR_SET_NAME, comm2);
482 fd = self_open_counters();
483 if (fd < 0)
484 return NULL;
485 again:
486 ret = sem_post(&this_task->ready_for_work);
487 BUG_ON(ret);
488 ret = pthread_mutex_lock(&sched->start_work_mutex);
489 BUG_ON(ret);
490 ret = pthread_mutex_unlock(&sched->start_work_mutex);
491 BUG_ON(ret);
492
493 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
494
495 for (i = 0; i < this_task->nr_events; i++) {
496 this_task->curr_event = i;
497 perf_sched__process_event(sched, this_task->atoms[i]);
498 }
499
500 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
501 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
502 ret = sem_post(&this_task->work_done_sem);
503 BUG_ON(ret);
504
505 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
506 BUG_ON(ret);
507 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
508 BUG_ON(ret);
509
510 goto again;
511 #else
512 perror("thread_func not supported on MacOS");
513 return NULL;
514 #endif
515 }
516
create_tasks(struct perf_sched * sched)517 static void create_tasks(struct perf_sched *sched)
518 {
519 struct task_desc *task;
520 pthread_attr_t attr;
521 unsigned long i;
522 int err;
523
524 err = pthread_attr_init(&attr);
525 BUG_ON(err);
526 err = pthread_attr_setstacksize(&attr,
527 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
528 BUG_ON(err);
529 err = pthread_mutex_lock(&sched->start_work_mutex);
530 BUG_ON(err);
531 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
532 BUG_ON(err);
533 for (i = 0; i < sched->nr_tasks; i++) {
534 struct sched_thread_parms *parms = malloc(sizeof(*parms));
535 BUG_ON(parms == NULL);
536 parms->task = task = sched->tasks[i];
537 parms->sched = sched;
538 sem_init(&task->sleep_sem, 0, 0);
539 sem_init(&task->ready_for_work, 0, 0);
540 sem_init(&task->work_done_sem, 0, 0);
541 task->curr_event = 0;
542 err = pthread_create(&task->thread, &attr, thread_func, parms);
543 BUG_ON(err);
544 }
545 }
546
wait_for_tasks(struct perf_sched * sched)547 static void wait_for_tasks(struct perf_sched *sched)
548 {
549 u64 cpu_usage_0, cpu_usage_1;
550 struct task_desc *task;
551 unsigned long i, ret;
552
553 sched->start_time = get_nsecs();
554 sched->cpu_usage = 0;
555 pthread_mutex_unlock(&sched->work_done_wait_mutex);
556
557 for (i = 0; i < sched->nr_tasks; i++) {
558 task = sched->tasks[i];
559 ret = sem_wait(&task->ready_for_work);
560 BUG_ON(ret);
561 sem_init(&task->ready_for_work, 0, 0);
562 }
563 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
564 BUG_ON(ret);
565
566 cpu_usage_0 = get_cpu_usage_nsec_parent();
567
568 pthread_mutex_unlock(&sched->start_work_mutex);
569
570 for (i = 0; i < sched->nr_tasks; i++) {
571 task = sched->tasks[i];
572 ret = sem_wait(&task->work_done_sem);
573 BUG_ON(ret);
574 sem_init(&task->work_done_sem, 0, 0);
575 sched->cpu_usage += task->cpu_usage;
576 task->cpu_usage = 0;
577 }
578
579 cpu_usage_1 = get_cpu_usage_nsec_parent();
580 if (!sched->runavg_cpu_usage)
581 sched->runavg_cpu_usage = sched->cpu_usage;
582 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
583
584 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
585 if (!sched->runavg_parent_cpu_usage)
586 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
587 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
588 sched->parent_cpu_usage)/10;
589
590 ret = pthread_mutex_lock(&sched->start_work_mutex);
591 BUG_ON(ret);
592
593 for (i = 0; i < sched->nr_tasks; i++) {
594 task = sched->tasks[i];
595 sem_init(&task->sleep_sem, 0, 0);
596 task->curr_event = 0;
597 }
598 }
599
run_one_test(struct perf_sched * sched)600 static void run_one_test(struct perf_sched *sched)
601 {
602 u64 T0, T1, delta, avg_delta, fluct;
603
604 T0 = get_nsecs();
605 wait_for_tasks(sched);
606 T1 = get_nsecs();
607
608 delta = T1 - T0;
609 sched->sum_runtime += delta;
610 sched->nr_runs++;
611
612 avg_delta = sched->sum_runtime / sched->nr_runs;
613 if (delta < avg_delta)
614 fluct = avg_delta - delta;
615 else
616 fluct = delta - avg_delta;
617 sched->sum_fluct += fluct;
618 if (!sched->run_avg)
619 sched->run_avg = delta;
620 sched->run_avg = (sched->run_avg * 9 + delta) / 10;
621
622 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
623
624 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
625
626 printf("cpu: %0.2f / %0.2f",
627 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
628
629 #if 0
630 /*
631 * rusage statistics done by the parent, these are less
632 * accurate than the sched->sum_exec_runtime based statistics:
633 */
634 printf(" [%0.2f / %0.2f]",
635 (double)sched->parent_cpu_usage/1e6,
636 (double)sched->runavg_parent_cpu_usage/1e6);
637 #endif
638
639 printf("\n");
640
641 if (sched->nr_sleep_corrections)
642 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
643 sched->nr_sleep_corrections = 0;
644 }
645
test_calibrations(struct perf_sched * sched)646 static void test_calibrations(struct perf_sched *sched)
647 {
648 u64 T0, T1;
649
650 T0 = get_nsecs();
651 burn_nsecs(sched, 1e6);
652 T1 = get_nsecs();
653
654 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
655
656 T0 = get_nsecs();
657 sleep_nsecs(1e6);
658 T1 = get_nsecs();
659
660 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
661 }
662
663 static int
replay_wakeup_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)664 replay_wakeup_event(struct perf_sched *sched,
665 struct perf_evsel *evsel, struct perf_sample *sample,
666 struct machine *machine __maybe_unused)
667 {
668 const char *comm = perf_evsel__strval(evsel, sample, "comm");
669 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
670 struct task_desc *waker, *wakee;
671
672 if (verbose) {
673 printf("sched_wakeup event %p\n", evsel);
674
675 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
676 }
677
678 waker = register_pid(sched, sample->tid, "<unknown>");
679 wakee = register_pid(sched, pid, comm);
680
681 add_sched_event_wakeup(sched, waker, sample->time, wakee);
682 return 0;
683 }
684
replay_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)685 static int replay_switch_event(struct perf_sched *sched,
686 struct perf_evsel *evsel,
687 struct perf_sample *sample,
688 struct machine *machine __maybe_unused)
689 {
690 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
691 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
692 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
693 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
694 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
695 struct task_desc *prev, __maybe_unused *next;
696 u64 timestamp0, timestamp = sample->time;
697 int cpu = sample->cpu;
698 s64 delta;
699
700 if (verbose)
701 printf("sched_switch event %p\n", evsel);
702
703 if (cpu >= MAX_CPUS || cpu < 0)
704 return 0;
705
706 timestamp0 = sched->cpu_last_switched[cpu];
707 if (timestamp0)
708 delta = timestamp - timestamp0;
709 else
710 delta = 0;
711
712 if (delta < 0) {
713 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
714 return -1;
715 }
716
717 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
718 prev_comm, prev_pid, next_comm, next_pid, delta);
719
720 prev = register_pid(sched, prev_pid, prev_comm);
721 next = register_pid(sched, next_pid, next_comm);
722
723 sched->cpu_last_switched[cpu] = timestamp;
724
725 add_sched_event_run(sched, prev, timestamp, delta);
726 add_sched_event_sleep(sched, prev, timestamp, prev_state);
727
728 return 0;
729 }
730
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)731 static int replay_fork_event(struct perf_sched *sched,
732 union perf_event *event,
733 struct machine *machine)
734 {
735 struct thread *child, *parent;
736
737 child = machine__findnew_thread(machine, event->fork.pid,
738 event->fork.tid);
739 parent = machine__findnew_thread(machine, event->fork.ppid,
740 event->fork.ptid);
741
742 if (child == NULL || parent == NULL) {
743 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
744 child, parent);
745 return 0;
746 }
747
748 if (verbose) {
749 printf("fork event\n");
750 printf("... parent: %s/%d\n", parent->comm, parent->tid);
751 printf("... child: %s/%d\n", child->comm, child->tid);
752 }
753
754 register_pid(sched, parent->tid, parent->comm);
755 register_pid(sched, child->tid, child->comm);
756 return 0;
757 }
758
759 struct sort_dimension {
760 const char *name;
761 sort_fn_t cmp;
762 struct list_head list;
763 };
764
765 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)766 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
767 {
768 struct sort_dimension *sort;
769 int ret = 0;
770
771 BUG_ON(list_empty(list));
772
773 list_for_each_entry(sort, list, list) {
774 ret = sort->cmp(l, r);
775 if (ret)
776 return ret;
777 }
778
779 return ret;
780 }
781
782 static struct work_atoms *
thread_atoms_search(struct rb_root * root,struct thread * thread,struct list_head * sort_list)783 thread_atoms_search(struct rb_root *root, struct thread *thread,
784 struct list_head *sort_list)
785 {
786 struct rb_node *node = root->rb_node;
787 struct work_atoms key = { .thread = thread };
788
789 while (node) {
790 struct work_atoms *atoms;
791 int cmp;
792
793 atoms = container_of(node, struct work_atoms, node);
794
795 cmp = thread_lat_cmp(sort_list, &key, atoms);
796 if (cmp > 0)
797 node = node->rb_left;
798 else if (cmp < 0)
799 node = node->rb_right;
800 else {
801 BUG_ON(thread != atoms->thread);
802 return atoms;
803 }
804 }
805 return NULL;
806 }
807
808 static void
__thread_latency_insert(struct rb_root * root,struct work_atoms * data,struct list_head * sort_list)809 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
810 struct list_head *sort_list)
811 {
812 struct rb_node **new = &(root->rb_node), *parent = NULL;
813
814 while (*new) {
815 struct work_atoms *this;
816 int cmp;
817
818 this = container_of(*new, struct work_atoms, node);
819 parent = *new;
820
821 cmp = thread_lat_cmp(sort_list, data, this);
822
823 if (cmp > 0)
824 new = &((*new)->rb_left);
825 else
826 new = &((*new)->rb_right);
827 }
828
829 rb_link_node(&data->node, parent, new);
830 rb_insert_color(&data->node, root);
831 }
832
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)833 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
834 {
835 struct work_atoms *atoms = zalloc(sizeof(*atoms));
836 if (!atoms) {
837 pr_err("No memory at %s\n", __func__);
838 return -1;
839 }
840
841 atoms->thread = thread;
842 INIT_LIST_HEAD(&atoms->work_list);
843 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
844 return 0;
845 }
846
sched_out_state(u64 prev_state)847 static char sched_out_state(u64 prev_state)
848 {
849 const char *str = TASK_STATE_TO_CHAR_STR;
850
851 return str[prev_state];
852 }
853
854 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)855 add_sched_out_event(struct work_atoms *atoms,
856 char run_state,
857 u64 timestamp)
858 {
859 struct work_atom *atom = zalloc(sizeof(*atom));
860 if (!atom) {
861 pr_err("Non memory at %s", __func__);
862 return -1;
863 }
864
865 atom->sched_out_time = timestamp;
866
867 if (run_state == 'R') {
868 atom->state = THREAD_WAIT_CPU;
869 atom->wake_up_time = atom->sched_out_time;
870 }
871
872 list_add_tail(&atom->list, &atoms->work_list);
873 return 0;
874 }
875
876 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)877 add_runtime_event(struct work_atoms *atoms, u64 delta,
878 u64 timestamp __maybe_unused)
879 {
880 struct work_atom *atom;
881
882 BUG_ON(list_empty(&atoms->work_list));
883
884 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
885
886 atom->runtime += delta;
887 atoms->total_runtime += delta;
888 }
889
890 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)891 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
892 {
893 struct work_atom *atom;
894 u64 delta;
895
896 if (list_empty(&atoms->work_list))
897 return;
898
899 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
900
901 if (atom->state != THREAD_WAIT_CPU)
902 return;
903
904 if (timestamp < atom->wake_up_time) {
905 atom->state = THREAD_IGNORE;
906 return;
907 }
908
909 atom->state = THREAD_SCHED_IN;
910 atom->sched_in_time = timestamp;
911
912 delta = atom->sched_in_time - atom->wake_up_time;
913 atoms->total_lat += delta;
914 if (delta > atoms->max_lat) {
915 atoms->max_lat = delta;
916 atoms->max_lat_at = timestamp;
917 }
918 atoms->nb_atoms++;
919 }
920
latency_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)921 static int latency_switch_event(struct perf_sched *sched,
922 struct perf_evsel *evsel,
923 struct perf_sample *sample,
924 struct machine *machine)
925 {
926 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
927 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
928 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
929 struct work_atoms *out_events, *in_events;
930 struct thread *sched_out, *sched_in;
931 u64 timestamp0, timestamp = sample->time;
932 int cpu = sample->cpu;
933 s64 delta;
934
935 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
936
937 timestamp0 = sched->cpu_last_switched[cpu];
938 sched->cpu_last_switched[cpu] = timestamp;
939 if (timestamp0)
940 delta = timestamp - timestamp0;
941 else
942 delta = 0;
943
944 if (delta < 0) {
945 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
946 return -1;
947 }
948
949 sched_out = machine__findnew_thread(machine, 0, prev_pid);
950 sched_in = machine__findnew_thread(machine, 0, next_pid);
951
952 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
953 if (!out_events) {
954 if (thread_atoms_insert(sched, sched_out))
955 return -1;
956 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
957 if (!out_events) {
958 pr_err("out-event: Internal tree error");
959 return -1;
960 }
961 }
962 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
963 return -1;
964
965 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
966 if (!in_events) {
967 if (thread_atoms_insert(sched, sched_in))
968 return -1;
969 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
970 if (!in_events) {
971 pr_err("in-event: Internal tree error");
972 return -1;
973 }
974 /*
975 * Take came in we have not heard about yet,
976 * add in an initial atom in runnable state:
977 */
978 if (add_sched_out_event(in_events, 'R', timestamp))
979 return -1;
980 }
981 add_sched_in_event(in_events, timestamp);
982
983 return 0;
984 }
985
latency_runtime_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)986 static int latency_runtime_event(struct perf_sched *sched,
987 struct perf_evsel *evsel,
988 struct perf_sample *sample,
989 struct machine *machine)
990 {
991 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
992 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
993 struct thread *thread = machine__findnew_thread(machine, 0, pid);
994 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
995 u64 timestamp = sample->time;
996 int cpu = sample->cpu;
997
998 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
999 if (!atoms) {
1000 if (thread_atoms_insert(sched, thread))
1001 return -1;
1002 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1003 if (!atoms) {
1004 pr_err("in-event: Internal tree error");
1005 return -1;
1006 }
1007 if (add_sched_out_event(atoms, 'R', timestamp))
1008 return -1;
1009 }
1010
1011 add_runtime_event(atoms, runtime, timestamp);
1012 return 0;
1013 }
1014
latency_wakeup_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1015 static int latency_wakeup_event(struct perf_sched *sched,
1016 struct perf_evsel *evsel,
1017 struct perf_sample *sample,
1018 struct machine *machine)
1019 {
1020 const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1021 success = perf_evsel__intval(evsel, sample, "success");
1022 struct work_atoms *atoms;
1023 struct work_atom *atom;
1024 struct thread *wakee;
1025 u64 timestamp = sample->time;
1026
1027 /* Note for later, it may be interesting to observe the failing cases */
1028 if (!success)
1029 return 0;
1030
1031 wakee = machine__findnew_thread(machine, 0, pid);
1032 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1033 if (!atoms) {
1034 if (thread_atoms_insert(sched, wakee))
1035 return -1;
1036 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1037 if (!atoms) {
1038 pr_err("wakeup-event: Internal tree error");
1039 return -1;
1040 }
1041 if (add_sched_out_event(atoms, 'S', timestamp))
1042 return -1;
1043 }
1044
1045 BUG_ON(list_empty(&atoms->work_list));
1046
1047 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1048
1049 /*
1050 * You WILL be missing events if you've recorded only
1051 * one CPU, or are only looking at only one, so don't
1052 * make useless noise.
1053 */
1054 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1055 sched->nr_state_machine_bugs++;
1056
1057 sched->nr_timestamps++;
1058 if (atom->sched_out_time > timestamp) {
1059 sched->nr_unordered_timestamps++;
1060 return 0;
1061 }
1062
1063 atom->state = THREAD_WAIT_CPU;
1064 atom->wake_up_time = timestamp;
1065 return 0;
1066 }
1067
latency_migrate_task_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1068 static int latency_migrate_task_event(struct perf_sched *sched,
1069 struct perf_evsel *evsel,
1070 struct perf_sample *sample,
1071 struct machine *machine)
1072 {
1073 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1074 u64 timestamp = sample->time;
1075 struct work_atoms *atoms;
1076 struct work_atom *atom;
1077 struct thread *migrant;
1078
1079 /*
1080 * Only need to worry about migration when profiling one CPU.
1081 */
1082 if (sched->profile_cpu == -1)
1083 return 0;
1084
1085 migrant = machine__findnew_thread(machine, 0, pid);
1086 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1087 if (!atoms) {
1088 if (thread_atoms_insert(sched, migrant))
1089 return -1;
1090 register_pid(sched, migrant->tid, migrant->comm);
1091 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1092 if (!atoms) {
1093 pr_err("migration-event: Internal tree error");
1094 return -1;
1095 }
1096 if (add_sched_out_event(atoms, 'R', timestamp))
1097 return -1;
1098 }
1099
1100 BUG_ON(list_empty(&atoms->work_list));
1101
1102 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1103 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1104
1105 sched->nr_timestamps++;
1106
1107 if (atom->sched_out_time > timestamp)
1108 sched->nr_unordered_timestamps++;
1109
1110 return 0;
1111 }
1112
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1113 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1114 {
1115 int i;
1116 int ret;
1117 u64 avg;
1118
1119 if (!work_list->nb_atoms)
1120 return;
1121 /*
1122 * Ignore idle threads:
1123 */
1124 if (!strcmp(work_list->thread->comm, "swapper"))
1125 return;
1126
1127 sched->all_runtime += work_list->total_runtime;
1128 sched->all_count += work_list->nb_atoms;
1129
1130 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->tid);
1131
1132 for (i = 0; i < 24 - ret; i++)
1133 printf(" ");
1134
1135 avg = work_list->total_lat / work_list->nb_atoms;
1136
1137 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1138 (double)work_list->total_runtime / 1e6,
1139 work_list->nb_atoms, (double)avg / 1e6,
1140 (double)work_list->max_lat / 1e6,
1141 (double)work_list->max_lat_at / 1e9);
1142 }
1143
pid_cmp(struct work_atoms * l,struct work_atoms * r)1144 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1145 {
1146 if (l->thread->tid < r->thread->tid)
1147 return -1;
1148 if (l->thread->tid > r->thread->tid)
1149 return 1;
1150
1151 return 0;
1152 }
1153
avg_cmp(struct work_atoms * l,struct work_atoms * r)1154 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1155 {
1156 u64 avgl, avgr;
1157
1158 if (!l->nb_atoms)
1159 return -1;
1160
1161 if (!r->nb_atoms)
1162 return 1;
1163
1164 avgl = l->total_lat / l->nb_atoms;
1165 avgr = r->total_lat / r->nb_atoms;
1166
1167 if (avgl < avgr)
1168 return -1;
1169 if (avgl > avgr)
1170 return 1;
1171
1172 return 0;
1173 }
1174
max_cmp(struct work_atoms * l,struct work_atoms * r)1175 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1176 {
1177 if (l->max_lat < r->max_lat)
1178 return -1;
1179 if (l->max_lat > r->max_lat)
1180 return 1;
1181
1182 return 0;
1183 }
1184
switch_cmp(struct work_atoms * l,struct work_atoms * r)1185 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1186 {
1187 if (l->nb_atoms < r->nb_atoms)
1188 return -1;
1189 if (l->nb_atoms > r->nb_atoms)
1190 return 1;
1191
1192 return 0;
1193 }
1194
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1195 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1196 {
1197 if (l->total_runtime < r->total_runtime)
1198 return -1;
1199 if (l->total_runtime > r->total_runtime)
1200 return 1;
1201
1202 return 0;
1203 }
1204
sort_dimension__add(const char * tok,struct list_head * list)1205 static int sort_dimension__add(const char *tok, struct list_head *list)
1206 {
1207 size_t i;
1208 static struct sort_dimension avg_sort_dimension = {
1209 .name = "avg",
1210 .cmp = avg_cmp,
1211 };
1212 static struct sort_dimension max_sort_dimension = {
1213 .name = "max",
1214 .cmp = max_cmp,
1215 };
1216 static struct sort_dimension pid_sort_dimension = {
1217 .name = "pid",
1218 .cmp = pid_cmp,
1219 };
1220 static struct sort_dimension runtime_sort_dimension = {
1221 .name = "runtime",
1222 .cmp = runtime_cmp,
1223 };
1224 static struct sort_dimension switch_sort_dimension = {
1225 .name = "switch",
1226 .cmp = switch_cmp,
1227 };
1228 struct sort_dimension *available_sorts[] = {
1229 &pid_sort_dimension,
1230 &avg_sort_dimension,
1231 &max_sort_dimension,
1232 &switch_sort_dimension,
1233 &runtime_sort_dimension,
1234 };
1235
1236 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1237 if (!strcmp(available_sorts[i]->name, tok)) {
1238 list_add_tail(&available_sorts[i]->list, list);
1239
1240 return 0;
1241 }
1242 }
1243
1244 return -1;
1245 }
1246
perf_sched__sort_lat(struct perf_sched * sched)1247 static void perf_sched__sort_lat(struct perf_sched *sched)
1248 {
1249 struct rb_node *node;
1250
1251 for (;;) {
1252 struct work_atoms *data;
1253 node = rb_first(&sched->atom_root);
1254 if (!node)
1255 break;
1256
1257 rb_erase(node, &sched->atom_root);
1258 data = rb_entry(node, struct work_atoms, node);
1259 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1260 }
1261 }
1262
process_sched_wakeup_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1263 static int process_sched_wakeup_event(struct perf_tool *tool,
1264 struct perf_evsel *evsel,
1265 struct perf_sample *sample,
1266 struct machine *machine)
1267 {
1268 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1269
1270 if (sched->tp_handler->wakeup_event)
1271 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1272
1273 return 0;
1274 }
1275
map_switch_event(struct perf_sched * sched,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1276 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1277 struct perf_sample *sample, struct machine *machine)
1278 {
1279 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1280 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1281 struct thread *sched_out __maybe_unused, *sched_in;
1282 int new_shortname;
1283 u64 timestamp0, timestamp = sample->time;
1284 s64 delta;
1285 int cpu, this_cpu = sample->cpu;
1286
1287 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1288
1289 if (this_cpu > sched->max_cpu)
1290 sched->max_cpu = this_cpu;
1291
1292 timestamp0 = sched->cpu_last_switched[this_cpu];
1293 sched->cpu_last_switched[this_cpu] = timestamp;
1294 if (timestamp0)
1295 delta = timestamp - timestamp0;
1296 else
1297 delta = 0;
1298
1299 if (delta < 0) {
1300 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1301 return -1;
1302 }
1303
1304 sched_out = machine__findnew_thread(machine, 0, prev_pid);
1305 sched_in = machine__findnew_thread(machine, 0, next_pid);
1306
1307 sched->curr_thread[this_cpu] = sched_in;
1308
1309 printf(" ");
1310
1311 new_shortname = 0;
1312 if (!sched_in->shortname[0]) {
1313 sched_in->shortname[0] = sched->next_shortname1;
1314 sched_in->shortname[1] = sched->next_shortname2;
1315
1316 if (sched->next_shortname1 < 'Z') {
1317 sched->next_shortname1++;
1318 } else {
1319 sched->next_shortname1='A';
1320 if (sched->next_shortname2 < '9') {
1321 sched->next_shortname2++;
1322 } else {
1323 sched->next_shortname2='0';
1324 }
1325 }
1326 new_shortname = 1;
1327 }
1328
1329 for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1330 if (cpu != this_cpu)
1331 printf(" ");
1332 else
1333 printf("*");
1334
1335 if (sched->curr_thread[cpu]) {
1336 if (sched->curr_thread[cpu]->tid)
1337 printf("%2s ", sched->curr_thread[cpu]->shortname);
1338 else
1339 printf(". ");
1340 } else
1341 printf(" ");
1342 }
1343
1344 printf(" %12.6f secs ", (double)timestamp/1e9);
1345 if (new_shortname) {
1346 printf("%s => %s:%d\n",
1347 sched_in->shortname, sched_in->comm, sched_in->tid);
1348 } else {
1349 printf("\n");
1350 }
1351
1352 return 0;
1353 }
1354
process_sched_switch_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1355 static int process_sched_switch_event(struct perf_tool *tool,
1356 struct perf_evsel *evsel,
1357 struct perf_sample *sample,
1358 struct machine *machine)
1359 {
1360 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1361 int this_cpu = sample->cpu, err = 0;
1362 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1363 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1364
1365 if (sched->curr_pid[this_cpu] != (u32)-1) {
1366 /*
1367 * Are we trying to switch away a PID that is
1368 * not current?
1369 */
1370 if (sched->curr_pid[this_cpu] != prev_pid)
1371 sched->nr_context_switch_bugs++;
1372 }
1373
1374 if (sched->tp_handler->switch_event)
1375 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1376
1377 sched->curr_pid[this_cpu] = next_pid;
1378 return err;
1379 }
1380
process_sched_runtime_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1381 static int process_sched_runtime_event(struct perf_tool *tool,
1382 struct perf_evsel *evsel,
1383 struct perf_sample *sample,
1384 struct machine *machine)
1385 {
1386 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1387
1388 if (sched->tp_handler->runtime_event)
1389 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1390
1391 return 0;
1392 }
1393
perf_sched__process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1394 static int perf_sched__process_fork_event(struct perf_tool *tool,
1395 union perf_event *event,
1396 struct perf_sample *sample,
1397 struct machine *machine)
1398 {
1399 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1400
1401 /* run the fork event through the perf machineruy */
1402 perf_event__process_fork(tool, event, sample, machine);
1403
1404 /* and then run additional processing needed for this command */
1405 if (sched->tp_handler->fork_event)
1406 return sched->tp_handler->fork_event(sched, event, machine);
1407
1408 return 0;
1409 }
1410
process_sched_migrate_task_event(struct perf_tool * tool,struct perf_evsel * evsel,struct perf_sample * sample,struct machine * machine)1411 static int process_sched_migrate_task_event(struct perf_tool *tool,
1412 struct perf_evsel *evsel,
1413 struct perf_sample *sample,
1414 struct machine *machine)
1415 {
1416 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1417
1418 if (sched->tp_handler->migrate_task_event)
1419 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1420
1421 return 0;
1422 }
1423
1424 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1425 struct perf_evsel *evsel,
1426 struct perf_sample *sample,
1427 struct machine *machine);
1428
perf_sched__process_tracepoint_sample(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct perf_evsel * evsel,struct machine * machine)1429 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1430 union perf_event *event __maybe_unused,
1431 struct perf_sample *sample,
1432 struct perf_evsel *evsel,
1433 struct machine *machine)
1434 {
1435 int err = 0;
1436
1437 evsel->hists.stats.total_period += sample->period;
1438 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1439
1440 if (evsel->handler.func != NULL) {
1441 tracepoint_handler f = evsel->handler.func;
1442 err = f(tool, evsel, sample, machine);
1443 }
1444
1445 return err;
1446 }
1447
perf_sched__read_events(struct perf_sched * sched,struct perf_session ** psession)1448 static int perf_sched__read_events(struct perf_sched *sched,
1449 struct perf_session **psession)
1450 {
1451 const struct perf_evsel_str_handler handlers[] = {
1452 { "sched:sched_switch", process_sched_switch_event, },
1453 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1454 { "sched:sched_wakeup", process_sched_wakeup_event, },
1455 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1456 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1457 };
1458 struct perf_session *session;
1459
1460 session = perf_session__new(input_name, O_RDONLY, 0, false, &sched->tool);
1461 if (session == NULL) {
1462 pr_debug("No Memory for session\n");
1463 return -1;
1464 }
1465
1466 if (perf_session__set_tracepoints_handlers(session, handlers))
1467 goto out_delete;
1468
1469 if (perf_session__has_traces(session, "record -R")) {
1470 int err = perf_session__process_events(session, &sched->tool);
1471 if (err) {
1472 pr_err("Failed to process events, error %d", err);
1473 goto out_delete;
1474 }
1475
1476 sched->nr_events = session->stats.nr_events[0];
1477 sched->nr_lost_events = session->stats.total_lost;
1478 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1479 }
1480
1481 if (psession)
1482 *psession = session;
1483 else
1484 perf_session__delete(session);
1485
1486 return 0;
1487
1488 out_delete:
1489 perf_session__delete(session);
1490 return -1;
1491 }
1492
print_bad_events(struct perf_sched * sched)1493 static void print_bad_events(struct perf_sched *sched)
1494 {
1495 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1496 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1497 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1498 sched->nr_unordered_timestamps, sched->nr_timestamps);
1499 }
1500 if (sched->nr_lost_events && sched->nr_events) {
1501 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1502 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1503 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1504 }
1505 if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1506 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1507 (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1508 sched->nr_state_machine_bugs, sched->nr_timestamps);
1509 if (sched->nr_lost_events)
1510 printf(" (due to lost events?)");
1511 printf("\n");
1512 }
1513 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1514 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1515 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1516 sched->nr_context_switch_bugs, sched->nr_timestamps);
1517 if (sched->nr_lost_events)
1518 printf(" (due to lost events?)");
1519 printf("\n");
1520 }
1521 }
1522
perf_sched__lat(struct perf_sched * sched)1523 static int perf_sched__lat(struct perf_sched *sched)
1524 {
1525 struct rb_node *next;
1526 struct perf_session *session;
1527
1528 setup_pager();
1529
1530 /* save session -- references to threads are held in work_list */
1531 if (perf_sched__read_events(sched, &session))
1532 return -1;
1533
1534 perf_sched__sort_lat(sched);
1535
1536 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1537 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1538 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1539
1540 next = rb_first(&sched->sorted_atom_root);
1541
1542 while (next) {
1543 struct work_atoms *work_list;
1544
1545 work_list = rb_entry(next, struct work_atoms, node);
1546 output_lat_thread(sched, work_list);
1547 next = rb_next(next);
1548 }
1549
1550 printf(" -----------------------------------------------------------------------------------------\n");
1551 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1552 (double)sched->all_runtime / 1e6, sched->all_count);
1553
1554 printf(" ---------------------------------------------------\n");
1555
1556 print_bad_events(sched);
1557 printf("\n");
1558
1559 perf_session__delete(session);
1560 return 0;
1561 }
1562
perf_sched__map(struct perf_sched * sched)1563 static int perf_sched__map(struct perf_sched *sched)
1564 {
1565 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1566
1567 setup_pager();
1568 if (perf_sched__read_events(sched, NULL))
1569 return -1;
1570 print_bad_events(sched);
1571 return 0;
1572 }
1573
perf_sched__replay(struct perf_sched * sched)1574 static int perf_sched__replay(struct perf_sched *sched)
1575 {
1576 unsigned long i;
1577
1578 calibrate_run_measurement_overhead(sched);
1579 calibrate_sleep_measurement_overhead(sched);
1580
1581 test_calibrations(sched);
1582
1583 if (perf_sched__read_events(sched, NULL))
1584 return -1;
1585
1586 printf("nr_run_events: %ld\n", sched->nr_run_events);
1587 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1588 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1589
1590 if (sched->targetless_wakeups)
1591 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1592 if (sched->multitarget_wakeups)
1593 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1594 if (sched->nr_run_events_optimized)
1595 printf("run atoms optimized: %ld\n",
1596 sched->nr_run_events_optimized);
1597
1598 print_task_traces(sched);
1599 add_cross_task_wakeups(sched);
1600
1601 create_tasks(sched);
1602 printf("------------------------------------------------------------\n");
1603 for (i = 0; i < sched->replay_repeat; i++)
1604 run_one_test(sched);
1605
1606 return 0;
1607 }
1608
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])1609 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1610 const char * const usage_msg[])
1611 {
1612 char *tmp, *tok, *str = strdup(sched->sort_order);
1613
1614 for (tok = strtok_r(str, ", ", &tmp);
1615 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1616 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1617 error("Unknown --sort key: `%s'", tok);
1618 usage_with_options(usage_msg, options);
1619 }
1620 }
1621
1622 free(str);
1623
1624 sort_dimension__add("pid", &sched->cmp_pid);
1625 }
1626
__cmd_record(int argc,const char ** argv)1627 static int __cmd_record(int argc, const char **argv)
1628 {
1629 unsigned int rec_argc, i, j;
1630 const char **rec_argv;
1631 const char * const record_args[] = {
1632 "record",
1633 "-a",
1634 "-R",
1635 "-m", "1024",
1636 "-c", "1",
1637 "-e", "sched:sched_switch",
1638 "-e", "sched:sched_stat_wait",
1639 "-e", "sched:sched_stat_sleep",
1640 "-e", "sched:sched_stat_iowait",
1641 "-e", "sched:sched_stat_runtime",
1642 "-e", "sched:sched_process_fork",
1643 "-e", "sched:sched_wakeup",
1644 "-e", "sched:sched_migrate_task",
1645 };
1646
1647 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1648 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1649
1650 if (rec_argv == NULL)
1651 return -ENOMEM;
1652
1653 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1654 rec_argv[i] = strdup(record_args[i]);
1655
1656 for (j = 1; j < (unsigned int)argc; j++, i++)
1657 rec_argv[i] = argv[j];
1658
1659 BUG_ON(i != rec_argc);
1660
1661 return cmd_record(i, rec_argv, NULL);
1662 }
1663
1664 static const char default_sort_order[] = "avg, max, switch, runtime";
1665 static struct perf_sched sched = {
1666 .tool = {
1667 .sample = perf_sched__process_tracepoint_sample,
1668 .comm = perf_event__process_comm,
1669 .lost = perf_event__process_lost,
1670 .fork = perf_sched__process_fork_event,
1671 .ordered_samples = true,
1672 },
1673 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1674 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1675 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1676 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1677 .curr_pid = { [0 ... MAX_CPUS - 1] = -1 },
1678 .sort_order = default_sort_order,
1679 .replay_repeat = 10,
1680 .profile_cpu = -1,
1681 .next_shortname1 = 'A',
1682 .next_shortname2 = '0',
1683 };
1684
cmd_sched(int argc,const char ** argv,const char * prefix __maybe_unused)1685 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1686 {
1687 const struct option latency_options[] = {
1688 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1689 "sort by key(s): runtime, switch, avg, max"),
1690 OPT_INCR('v', "verbose", &verbose,
1691 "be more verbose (show symbol address, etc)"),
1692 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1693 "CPU to profile on"),
1694 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1695 "dump raw trace in ASCII"),
1696 OPT_END()
1697 };
1698 const struct option replay_options[] = {
1699 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1700 "repeat the workload replay N times (-1: infinite)"),
1701 OPT_INCR('v', "verbose", &verbose,
1702 "be more verbose (show symbol address, etc)"),
1703 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1704 "dump raw trace in ASCII"),
1705 OPT_END()
1706 };
1707 const struct option sched_options[] = {
1708 OPT_STRING('i', "input", &input_name, "file",
1709 "input file name"),
1710 OPT_INCR('v', "verbose", &verbose,
1711 "be more verbose (show symbol address, etc)"),
1712 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1713 "dump raw trace in ASCII"),
1714 OPT_END()
1715 };
1716 const char * const latency_usage[] = {
1717 "perf sched latency [<options>]",
1718 NULL
1719 };
1720 const char * const replay_usage[] = {
1721 "perf sched replay [<options>]",
1722 NULL
1723 };
1724 const char * const sched_usage[] = {
1725 "perf sched [<options>] {record|latency|map|replay|script}",
1726 NULL
1727 };
1728 struct trace_sched_handler lat_ops = {
1729 .wakeup_event = latency_wakeup_event,
1730 .switch_event = latency_switch_event,
1731 .runtime_event = latency_runtime_event,
1732 .migrate_task_event = latency_migrate_task_event,
1733 };
1734 struct trace_sched_handler map_ops = {
1735 .switch_event = map_switch_event,
1736 };
1737 struct trace_sched_handler replay_ops = {
1738 .wakeup_event = replay_wakeup_event,
1739 .switch_event = replay_switch_event,
1740 .fork_event = replay_fork_event,
1741 };
1742
1743 argc = parse_options(argc, argv, sched_options, sched_usage,
1744 PARSE_OPT_STOP_AT_NON_OPTION);
1745 if (!argc)
1746 usage_with_options(sched_usage, sched_options);
1747
1748 /*
1749 * Aliased to 'perf script' for now:
1750 */
1751 if (!strcmp(argv[0], "script"))
1752 return cmd_script(argc, argv, prefix);
1753
1754 symbol__init();
1755 if (!strncmp(argv[0], "rec", 3)) {
1756 return __cmd_record(argc, argv);
1757 } else if (!strncmp(argv[0], "lat", 3)) {
1758 sched.tp_handler = &lat_ops;
1759 if (argc > 1) {
1760 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1761 if (argc)
1762 usage_with_options(latency_usage, latency_options);
1763 }
1764 setup_sorting(&sched, latency_options, latency_usage);
1765 return perf_sched__lat(&sched);
1766 } else if (!strcmp(argv[0], "map")) {
1767 sched.tp_handler = &map_ops;
1768 setup_sorting(&sched, latency_options, latency_usage);
1769 return perf_sched__map(&sched);
1770 } else if (!strncmp(argv[0], "rep", 3)) {
1771 sched.tp_handler = &replay_ops;
1772 if (argc) {
1773 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1774 if (argc)
1775 usage_with_options(replay_usage, replay_options);
1776 }
1777 return perf_sched__replay(&sched);
1778 } else {
1779 usage_with_options(sched_usage, sched_options);
1780 }
1781
1782 return 0;
1783 }
1784