1============================== 2LLVM Language Reference Manual 3============================== 4 5.. contents:: 6 :local: 7 :depth: 4 8 9Abstract 10======== 11 12This document is a reference manual for the LLVM assembly language. LLVM 13is a Static Single Assignment (SSA) based representation that provides 14type safety, low-level operations, flexibility, and the capability of 15representing 'all' high-level languages cleanly. It is the common code 16representation used throughout all phases of the LLVM compilation 17strategy. 18 19Introduction 20============ 21 22The LLVM code representation is designed to be used in three different 23forms: as an in-memory compiler IR, as an on-disk bitcode representation 24(suitable for fast loading by a Just-In-Time compiler), and as a human 25readable assembly language representation. This allows LLVM to provide a 26powerful intermediate representation for efficient compiler 27transformations and analysis, while providing a natural means to debug 28and visualize the transformations. The three different forms of LLVM are 29all equivalent. This document describes the human readable 30representation and notation. 31 32The LLVM representation aims to be light-weight and low-level while 33being expressive, typed, and extensible at the same time. It aims to be 34a "universal IR" of sorts, by being at a low enough level that 35high-level ideas may be cleanly mapped to it (similar to how 36microprocessors are "universal IR's", allowing many source languages to 37be mapped to them). By providing type information, LLVM can be used as 38the target of optimizations: for example, through pointer analysis, it 39can be proven that a C automatic variable is never accessed outside of 40the current function, allowing it to be promoted to a simple SSA value 41instead of a memory location. 42 43.. _wellformed: 44 45Well-Formedness 46--------------- 47 48It is important to note that this document describes 'well formed' LLVM 49assembly language. There is a difference between what the parser accepts 50and what is considered 'well formed'. For example, the following 51instruction is syntactically okay, but not well formed: 52 53.. code-block:: llvm 54 55 %x = add i32 1, %x 56 57because the definition of ``%x`` does not dominate all of its uses. The 58LLVM infrastructure provides a verification pass that may be used to 59verify that an LLVM module is well formed. This pass is automatically 60run by the parser after parsing input assembly and by the optimizer 61before it outputs bitcode. The violations pointed out by the verifier 62pass indicate bugs in transformation passes or input to the parser. 63 64.. _identifiers: 65 66Identifiers 67=========== 68 69LLVM identifiers come in two basic types: global and local. Global 70identifiers (functions, global variables) begin with the ``'@'`` 71character. Local identifiers (register names, types) begin with the 72``'%'`` character. Additionally, there are three different formats for 73identifiers, for different purposes: 74 75#. Named values are represented as a string of characters with their 76 prefix. For example, ``%foo``, ``@DivisionByZero``, 77 ``%a.really.long.identifier``. The actual regular expression used is 78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other 79 characters in their names can be surrounded with quotes. Special 80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII 81 code for the character in hexadecimal. In this way, any character can 82 be used in a name value, even quotes themselves. 83#. Unnamed values are represented as an unsigned numeric value with 84 their prefix. For example, ``%12``, ``@2``, ``%44``. 85#. Constants, which are described in the section Constants_ below. 86 87LLVM requires that values start with a prefix for two reasons: Compilers 88don't need to worry about name clashes with reserved words, and the set 89of reserved words may be expanded in the future without penalty. 90Additionally, unnamed identifiers allow a compiler to quickly come up 91with a temporary variable without having to avoid symbol table 92conflicts. 93 94Reserved words in LLVM are very similar to reserved words in other 95languages. There are keywords for different opcodes ('``add``', 96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``', 97'``i32``', etc...), and others. These reserved words cannot conflict 98with variable names, because none of them start with a prefix character 99(``'%'`` or ``'@'``). 100 101Here is an example of LLVM code to multiply the integer variable 102'``%X``' by 8: 103 104The easy way: 105 106.. code-block:: llvm 107 108 %result = mul i32 %X, 8 109 110After strength reduction: 111 112.. code-block:: llvm 113 114 %result = shl i32 %X, 3 115 116And the hard way: 117 118.. code-block:: llvm 119 120 %0 = add i32 %X, %X ; yields i32:%0 121 %1 = add i32 %0, %0 ; yields i32:%1 122 %result = add i32 %1, %1 123 124This last way of multiplying ``%X`` by 8 illustrates several important 125lexical features of LLVM: 126 127#. Comments are delimited with a '``;``' and go until the end of line. 128#. Unnamed temporaries are created when the result of a computation is 129 not assigned to a named value. 130#. Unnamed temporaries are numbered sequentially (using a per-function 131 incrementing counter, starting with 0). Note that basic blocks are 132 included in this numbering. For example, if the entry basic block is not 133 given a label name, then it will get number 0. 134 135It also shows a convention that we follow in this document. When 136demonstrating instructions, we will follow an instruction with a comment 137that defines the type and name of value produced. 138 139High Level Structure 140==================== 141 142Module Structure 143---------------- 144 145LLVM programs are composed of ``Module``'s, each of which is a 146translation unit of the input programs. Each module consists of 147functions, global variables, and symbol table entries. Modules may be 148combined together with the LLVM linker, which merges function (and 149global variable) definitions, resolves forward declarations, and merges 150symbol table entries. Here is an example of the "hello world" module: 151 152.. code-block:: llvm 153 154 ; Declare the string constant as a global constant. 155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 156 157 ; External declaration of the puts function 158 declare i32 @puts(i8* nocapture) nounwind 159 160 ; Definition of main function 161 define i32 @main() { ; i32()* 162 ; Convert [13 x i8]* to i8 *... 163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0 164 165 ; Call puts function to write out the string to stdout. 166 call i32 @puts(i8* %cast210) 167 ret i32 0 168 } 169 170 ; Named metadata 171 !1 = metadata !{i32 42} 172 !foo = !{!1, null} 173 174This example is made up of a :ref:`global variable <globalvars>` named 175"``.str``", an external declaration of the "``puts``" function, a 176:ref:`function definition <functionstructure>` for "``main``" and 177:ref:`named metadata <namedmetadatastructure>` "``foo``". 178 179In general, a module is made up of a list of global values (where both 180functions and global variables are global values). Global values are 181represented by a pointer to a memory location (in this case, a pointer 182to an array of char, and a pointer to a function), and have one of the 183following :ref:`linkage types <linkage>`. 184 185.. _linkage: 186 187Linkage Types 188------------- 189 190All Global Variables and Functions have one of the following types of 191linkage: 192 193``private`` 194 Global values with "``private``" linkage are only directly 195 accessible by objects in the current module. In particular, linking 196 code into a module with an private global value may cause the 197 private to be renamed as necessary to avoid collisions. Because the 198 symbol is private to the module, all references can be updated. This 199 doesn't show up in any symbol table in the object file. 200``internal`` 201 Similar to private, but the value shows as a local symbol 202 (``STB_LOCAL`` in the case of ELF) in the object file. This 203 corresponds to the notion of the '``static``' keyword in C. 204``available_externally`` 205 Globals with "``available_externally``" linkage are never emitted 206 into the object file corresponding to the LLVM module. They exist to 207 allow inlining and other optimizations to take place given knowledge 208 of the definition of the global, which is known to be somewhere 209 outside the module. Globals with ``available_externally`` linkage 210 are allowed to be discarded at will, and are otherwise the same as 211 ``linkonce_odr``. This linkage type is only allowed on definitions, 212 not declarations. 213``linkonce`` 214 Globals with "``linkonce``" linkage are merged with other globals of 215 the same name when linkage occurs. This can be used to implement 216 some forms of inline functions, templates, or other code which must 217 be generated in each translation unit that uses it, but where the 218 body may be overridden with a more definitive definition later. 219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note 220 that ``linkonce`` linkage does not actually allow the optimizer to 221 inline the body of this function into callers because it doesn't 222 know if this definition of the function is the definitive definition 223 within the program or whether it will be overridden by a stronger 224 definition. To enable inlining and other optimizations, use 225 "``linkonce_odr``" linkage. 226``weak`` 227 "``weak``" linkage has the same merging semantics as ``linkonce`` 228 linkage, except that unreferenced globals with ``weak`` linkage may 229 not be discarded. This is used for globals that are declared "weak" 230 in C source code. 231``common`` 232 "``common``" linkage is most similar to "``weak``" linkage, but they 233 are used for tentative definitions in C, such as "``int X;``" at 234 global scope. Symbols with "``common``" linkage are merged in the 235 same way as ``weak symbols``, and they may not be deleted if 236 unreferenced. ``common`` symbols may not have an explicit section, 237 must have a zero initializer, and may not be marked 238 ':ref:`constant <globalvars>`'. Functions and aliases may not have 239 common linkage. 240 241.. _linkage_appending: 242 243``appending`` 244 "``appending``" linkage may only be applied to global variables of 245 pointer to array type. When two global variables with appending 246 linkage are linked together, the two global arrays are appended 247 together. This is the LLVM, typesafe, equivalent of having the 248 system linker append together "sections" with identical names when 249 .o files are linked. 250``extern_weak`` 251 The semantics of this linkage follow the ELF object file model: the 252 symbol is weak until linked, if not linked, the symbol becomes null 253 instead of being an undefined reference. 254``linkonce_odr``, ``weak_odr`` 255 Some languages allow differing globals to be merged, such as two 256 functions with different semantics. Other languages, such as 257 ``C++``, ensure that only equivalent globals are ever merged (the 258 "one definition rule" --- "ODR"). Such languages can use the 259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the 260 global will only be merged with equivalent globals. These linkage 261 types are otherwise the same as their non-``odr`` versions. 262``external`` 263 If none of the above identifiers are used, the global is externally 264 visible, meaning that it participates in linkage and can be used to 265 resolve external symbol references. 266 267It is illegal for a function *declaration* to have any linkage type 268other than ``external`` or ``extern_weak``. 269 270.. _callingconv: 271 272Calling Conventions 273------------------- 274 275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and 276:ref:`invokes <i_invoke>` can all have an optional calling convention 277specified for the call. The calling convention of any pair of dynamic 278caller/callee must match, or the behavior of the program is undefined. 279The following calling conventions are supported by LLVM, and more may be 280added in the future: 281 282"``ccc``" - The C calling convention 283 This calling convention (the default if no other calling convention 284 is specified) matches the target C calling conventions. This calling 285 convention supports varargs function calls and tolerates some 286 mismatch in the declared prototype and implemented declaration of 287 the function (as does normal C). 288"``fastcc``" - The fast calling convention 289 This calling convention attempts to make calls as fast as possible 290 (e.g. by passing things in registers). This calling convention 291 allows the target to use whatever tricks it wants to produce fast 292 code for the target, without having to conform to an externally 293 specified ABI (Application Binary Interface). `Tail calls can only 294 be optimized when this, the GHC or the HiPE convention is 295 used. <CodeGenerator.html#id80>`_ This calling convention does not 296 support varargs and requires the prototype of all callees to exactly 297 match the prototype of the function definition. 298"``coldcc``" - The cold calling convention 299 This calling convention attempts to make code in the caller as 300 efficient as possible under the assumption that the call is not 301 commonly executed. As such, these calls often preserve all registers 302 so that the call does not break any live ranges in the caller side. 303 This calling convention does not support varargs and requires the 304 prototype of all callees to exactly match the prototype of the 305 function definition. Furthermore the inliner doesn't consider such function 306 calls for inlining. 307"``cc 10``" - GHC convention 308 This calling convention has been implemented specifically for use by 309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_. 310 It passes everything in registers, going to extremes to achieve this 311 by disabling callee save registers. This calling convention should 312 not be used lightly but only for specific situations such as an 313 alternative to the *register pinning* performance technique often 314 used when implementing functional programming languages. At the 315 moment only X86 supports this convention and it has the following 316 limitations: 317 318 - On *X86-32* only supports up to 4 bit type parameters. No 319 floating point types are supported. 320 - On *X86-64* only supports up to 10 bit type parameters and 6 321 floating point parameters. 322 323 This calling convention supports `tail call 324 optimization <CodeGenerator.html#id80>`_ but requires both the 325 caller and callee are using it. 326"``cc 11``" - The HiPE calling convention 327 This calling convention has been implemented specifically for use by 328 the `High-Performance Erlang 329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the* 330 native code compiler of the `Ericsson's Open Source Erlang/OTP 331 system <http://www.erlang.org/download.shtml>`_. It uses more 332 registers for argument passing than the ordinary C calling 333 convention and defines no callee-saved registers. The calling 334 convention properly supports `tail call 335 optimization <CodeGenerator.html#id80>`_ but requires that both the 336 caller and the callee use it. It uses a *register pinning* 337 mechanism, similar to GHC's convention, for keeping frequently 338 accessed runtime components pinned to specific hardware registers. 339 At the moment only X86 supports this convention (both 32 and 64 340 bit). 341"``webkit_jscc``" - WebKit's JavaScript calling convention 342 This calling convention has been implemented for `WebKit FTL JIT 343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the 344 stack right to left (as cdecl does), and returns a value in the 345 platform's customary return register. 346"``anyregcc``" - Dynamic calling convention for code patching 347 This is a special convention that supports patching an arbitrary code 348 sequence in place of a call site. This convention forces the call 349 arguments into registers but allows them to be dynamcially 350 allocated. This can currently only be used with calls to 351 llvm.experimental.patchpoint because only this intrinsic records 352 the location of its arguments in a side table. See :doc:`StackMaps`. 353"``preserve_mostcc``" - The `PreserveMost` calling convention 354 This calling convention attempts to make the code in the caller as little 355 intrusive as possible. This calling convention behaves identical to the `C` 356 calling convention on how arguments and return values are passed, but it 357 uses a different set of caller/callee-saved registers. This alleviates the 358 burden of saving and recovering a large register set before and after the 359 call in the caller. If the arguments are passed in callee-saved registers, 360 then they will be preserved by the callee across the call. This doesn't 361 apply for values returned in callee-saved registers. 362 363 - On X86-64 the callee preserves all general purpose registers, except for 364 R11. R11 can be used as a scratch register. Floating-point registers 365 (XMMs/YMMs) are not preserved and need to be saved by the caller. 366 367 The idea behind this convention is to support calls to runtime functions 368 that have a hot path and a cold path. The hot path is usually a small piece 369 of code that doesn't many registers. The cold path might need to call out to 370 another function and therefore only needs to preserve the caller-saved 371 registers, which haven't already been saved by the caller. The 372 `PreserveMost` calling convention is very similar to the `cold` calling 373 convention in terms of caller/callee-saved registers, but they are used for 374 different types of function calls. `coldcc` is for function calls that are 375 rarely executed, whereas `preserve_mostcc` function calls are intended to be 376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc` 377 doesn't prevent the inliner from inlining the function call. 378 379 This calling convention will be used by a future version of the ObjectiveC 380 runtime and should therefore still be considered experimental at this time. 381 Although this convention was created to optimize certain runtime calls to 382 the ObjectiveC runtime, it is not limited to this runtime and might be used 383 by other runtimes in the future too. The current implementation only 384 supports X86-64, but the intention is to support more architectures in the 385 future. 386"``preserve_allcc``" - The `PreserveAll` calling convention 387 This calling convention attempts to make the code in the caller even less 388 intrusive than the `PreserveMost` calling convention. This calling 389 convention also behaves identical to the `C` calling convention on how 390 arguments and return values are passed, but it uses a different set of 391 caller/callee-saved registers. This removes the burden of saving and 392 recovering a large register set before and after the call in the caller. If 393 the arguments are passed in callee-saved registers, then they will be 394 preserved by the callee across the call. This doesn't apply for values 395 returned in callee-saved registers. 396 397 - On X86-64 the callee preserves all general purpose registers, except for 398 R11. R11 can be used as a scratch register. Furthermore it also preserves 399 all floating-point registers (XMMs/YMMs). 400 401 The idea behind this convention is to support calls to runtime functions 402 that don't need to call out to any other functions. 403 404 This calling convention, like the `PreserveMost` calling convention, will be 405 used by a future version of the ObjectiveC runtime and should be considered 406 experimental at this time. 407"``cc <n>``" - Numbered convention 408 Any calling convention may be specified by number, allowing 409 target-specific calling conventions to be used. Target specific 410 calling conventions start at 64. 411 412More calling conventions can be added/defined on an as-needed basis, to 413support Pascal conventions or any other well-known target-independent 414convention. 415 416.. _visibilitystyles: 417 418Visibility Styles 419----------------- 420 421All Global Variables and Functions have one of the following visibility 422styles: 423 424"``default``" - Default style 425 On targets that use the ELF object file format, default visibility 426 means that the declaration is visible to other modules and, in 427 shared libraries, means that the declared entity may be overridden. 428 On Darwin, default visibility means that the declaration is visible 429 to other modules. Default visibility corresponds to "external 430 linkage" in the language. 431"``hidden``" - Hidden style 432 Two declarations of an object with hidden visibility refer to the 433 same object if they are in the same shared object. Usually, hidden 434 visibility indicates that the symbol will not be placed into the 435 dynamic symbol table, so no other module (executable or shared 436 library) can reference it directly. 437"``protected``" - Protected style 438 On ELF, protected visibility indicates that the symbol will be 439 placed in the dynamic symbol table, but that references within the 440 defining module will bind to the local symbol. That is, the symbol 441 cannot be overridden by another module. 442 443A symbol with ``internal`` or ``private`` linkage must have ``default`` 444visibility. 445 446.. _dllstorageclass: 447 448DLL Storage Classes 449------------------- 450 451All Global Variables, Functions and Aliases can have one of the following 452DLL storage class: 453 454``dllimport`` 455 "``dllimport``" causes the compiler to reference a function or variable via 456 a global pointer to a pointer that is set up by the DLL exporting the 457 symbol. On Microsoft Windows targets, the pointer name is formed by 458 combining ``__imp_`` and the function or variable name. 459``dllexport`` 460 "``dllexport``" causes the compiler to provide a global pointer to a pointer 461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On 462 Microsoft Windows targets, the pointer name is formed by combining 463 ``__imp_`` and the function or variable name. Since this storage class 464 exists for defining a dll interface, the compiler, assembler and linker know 465 it is externally referenced and must refrain from deleting the symbol. 466 467.. _tls_model: 468 469Thread Local Storage Models 470--------------------------- 471 472A variable may be defined as ``thread_local``, which means that it will 473not be shared by threads (each thread will have a separated copy of the 474variable). Not all targets support thread-local variables. Optionally, a 475TLS model may be specified: 476 477``localdynamic`` 478 For variables that are only used within the current shared library. 479``initialexec`` 480 For variables in modules that will not be loaded dynamically. 481``localexec`` 482 For variables defined in the executable and only used within it. 483 484If no explicit model is given, the "general dynamic" model is used. 485 486The models correspond to the ELF TLS models; see `ELF Handling For 487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for 488more information on under which circumstances the different models may 489be used. The target may choose a different TLS model if the specified 490model is not supported, or if a better choice of model can be made. 491 492A model can also be specified in a alias, but then it only governs how 493the alias is accessed. It will not have any effect in the aliasee. 494 495.. _namedtypes: 496 497Structure Types 498--------------- 499 500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure 501types <t_struct>`. Literal types are uniqued structurally, but identified types 502are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used 503to forward declare a type which is not yet available. 504 505An example of a identified structure specification is: 506 507.. code-block:: llvm 508 509 %mytype = type { %mytype*, i32 } 510 511Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only 512literal types are uniqued in recent versions of LLVM. 513 514.. _globalvars: 515 516Global Variables 517---------------- 518 519Global variables define regions of memory allocated at compilation time 520instead of run-time. 521 522Global variables definitions must be initialized. 523 524Global variables in other translation units can also be declared, in which 525case they don't have an initializer. 526 527Either global variable definitions or declarations may have an explicit section 528to be placed in and may have an optional explicit alignment specified. 529 530A variable may be defined as a global ``constant``, which indicates that 531the contents of the variable will **never** be modified (enabling better 532optimization, allowing the global data to be placed in the read-only 533section of an executable, etc). Note that variables that need runtime 534initialization cannot be marked ``constant`` as there is a store to the 535variable. 536 537LLVM explicitly allows *declarations* of global variables to be marked 538constant, even if the final definition of the global is not. This 539capability can be used to enable slightly better optimization of the 540program, but requires the language definition to guarantee that 541optimizations based on the 'constantness' are valid for the translation 542units that do not include the definition. 543 544As SSA values, global variables define pointer values that are in scope 545(i.e. they dominate) all basic blocks in the program. Global variables 546always define a pointer to their "content" type because they describe a 547region of memory, and all memory objects in LLVM are accessed through 548pointers. 549 550Global variables can be marked with ``unnamed_addr`` which indicates 551that the address is not significant, only the content. Constants marked 552like this can be merged with other constants if they have the same 553initializer. Note that a constant with significant address *can* be 554merged with a ``unnamed_addr`` constant, the result being a constant 555whose address is significant. 556 557A global variable may be declared to reside in a target-specific 558numbered address space. For targets that support them, address spaces 559may affect how optimizations are performed and/or what target 560instructions are used to access the variable. The default address space 561is zero. The address space qualifier must precede any other attributes. 562 563LLVM allows an explicit section to be specified for globals. If the 564target supports it, it will emit globals to the section specified. 565Additionally, the global can placed in a comdat if the target has the necessary 566support. 567 568By default, global initializers are optimized by assuming that global 569variables defined within the module are not modified from their 570initial values before the start of the global initializer. This is 571true even for variables potentially accessible from outside the 572module, including those with external linkage or appearing in 573``@llvm.used`` or dllexported variables. This assumption may be suppressed 574by marking the variable with ``externally_initialized``. 575 576An explicit alignment may be specified for a global, which must be a 577power of 2. If not present, or if the alignment is set to zero, the 578alignment of the global is set by the target to whatever it feels 579convenient. If an explicit alignment is specified, the global is forced 580to have exactly that alignment. Targets and optimizers are not allowed 581to over-align the global if the global has an assigned section. In this 582case, the extra alignment could be observable: for example, code could 583assume that the globals are densely packed in their section and try to 584iterate over them as an array, alignment padding would break this 585iteration. 586 587Globals can also have a :ref:`DLL storage class <dllstorageclass>`. 588 589Variables and aliasaes can have a 590:ref:`Thread Local Storage Model <tls_model>`. 591 592Syntax:: 593 594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] 595 [unnamed_addr] [AddrSpace] [ExternallyInitialized] 596 <global | constant> <Type> [<InitializerConstant>] 597 [, section "name"] [, align <Alignment>] 598 599For example, the following defines a global in a numbered address space 600with an initializer, section, and alignment: 601 602.. code-block:: llvm 603 604 @G = addrspace(5) constant float 1.0, section "foo", align 4 605 606The following example just declares a global variable 607 608.. code-block:: llvm 609 610 @G = external global i32 611 612The following example defines a thread-local global with the 613``initialexec`` TLS model: 614 615.. code-block:: llvm 616 617 @G = thread_local(initialexec) global i32 0, align 4 618 619.. _functionstructure: 620 621Functions 622--------- 623 624LLVM function definitions consist of the "``define``" keyword, an 625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility 626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, 627an optional :ref:`calling convention <callingconv>`, 628an optional ``unnamed_addr`` attribute, a return type, an optional 629:ref:`parameter attribute <paramattrs>` for the return type, a function 630name, a (possibly empty) argument list (each with optional :ref:`parameter 631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`, 632an optional section, an optional alignment, 633an optional :ref:`comdat <langref_comdats>`, 634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening 635curly brace, a list of basic blocks, and a closing curly brace. 636 637LLVM function declarations consist of the "``declare``" keyword, an 638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility 639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, 640an optional :ref:`calling convention <callingconv>`, 641an optional ``unnamed_addr`` attribute, a return type, an optional 642:ref:`parameter attribute <paramattrs>` for the return type, a function 643name, a possibly empty list of arguments, an optional alignment, an optional 644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`. 645 646A function definition contains a list of basic blocks, forming the CFG (Control 647Flow Graph) for the function. Each basic block may optionally start with a label 648(giving the basic block a symbol table entry), contains a list of instructions, 649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or 650function return). If an explicit label is not provided, a block is assigned an 651implicit numbered label, using the next value from the same counter as used for 652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function 653entry block does not have an explicit label, it will be assigned label "%0", 654then the first unnamed temporary in that block will be "%1", etc. 655 656The first basic block in a function is special in two ways: it is 657immediately executed on entrance to the function, and it is not allowed 658to have predecessor basic blocks (i.e. there can not be any branches to 659the entry block of a function). Because the block can have no 660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`. 661 662LLVM allows an explicit section to be specified for functions. If the 663target supports it, it will emit functions to the section specified. 664Additionally, the function can placed in a COMDAT. 665 666An explicit alignment may be specified for a function. If not present, 667or if the alignment is set to zero, the alignment of the function is set 668by the target to whatever it feels convenient. If an explicit alignment 669is specified, the function is forced to have at least that much 670alignment. All alignments must be a power of 2. 671 672If the ``unnamed_addr`` attribute is given, the address is know to not 673be significant and two identical functions can be merged. 674 675Syntax:: 676 677 define [linkage] [visibility] [DLLStorageClass] 678 [cconv] [ret attrs] 679 <ResultType> @<FunctionName> ([argument list]) 680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>] 681 [align N] [gc] [prefix Constant] { ... } 682 683.. _langref_aliases: 684 685Aliases 686------- 687 688Aliases, unlike function or variables, don't create any new data. They 689are just a new symbol and metadata for an existing position. 690 691Aliases have a name and an aliasee that is either a global value or a 692constant expression. 693 694Aliases may have an optional :ref:`linkage type <linkage>`, an optional 695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class 696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`. 697 698Syntax:: 699 700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee> 701 702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``, 703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers 704might not correctly handle dropping a weak symbol that is aliased. 705 706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as 707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point 708to the same content. 709 710Since aliases are only a second name, some restrictions apply, of which 711some can only be checked when producing an object file: 712 713* The expression defining the aliasee must be computable at assembly 714 time. Since it is just a name, no relocations can be used. 715 716* No alias in the expression can be weak as the possibility of the 717 intermediate alias being overridden cannot be represented in an 718 object file. 719 720* No global value in the expression can be a declaration, since that 721 would require a relocation, which is not possible. 722 723.. _langref_comdats: 724 725Comdats 726------- 727 728Comdat IR provides access to COFF and ELF object file COMDAT functionality. 729 730Comdats have a name which represents the COMDAT key. All global objects which 731specify this key will only end up in the final object file if the linker chooses 732that key over some other key. Aliases are placed in the same COMDAT that their 733aliasee computes to, if any. 734 735Comdats have a selection kind to provide input on how the linker should 736choose between keys in two different object files. 737 738Syntax:: 739 740 $<Name> = comdat SelectionKind 741 742The selection kind must be one of the following: 743 744``any`` 745 The linker may choose any COMDAT key, the choice is arbitrary. 746``exactmatch`` 747 The linker may choose any COMDAT key but the sections must contain the 748 same data. 749``largest`` 750 The linker will choose the section containing the largest COMDAT key. 751``noduplicates`` 752 The linker requires that only section with this COMDAT key exist. 753``samesize`` 754 The linker may choose any COMDAT key but the sections must contain the 755 same amount of data. 756 757Note that the Mach-O platform doesn't support COMDATs and ELF only supports 758``any`` as a selection kind. 759 760Here is an example of a COMDAT group where a function will only be selected if 761the COMDAT key's section is the largest: 762 763.. code-block:: llvm 764 765 $foo = comdat largest 766 @foo = global i32 2, comdat $foo 767 768 define void @bar() comdat $foo { 769 ret void 770 } 771 772In a COFF object file, this will create a COMDAT section with selection kind 773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol 774and another COMDAT section with selection kind 775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT 776section and contains the contents of the ``@baz`` symbol. 777 778There are some restrictions on the properties of the global object. 779It, or an alias to it, must have the same name as the COMDAT group when 780targeting COFF. 781The contents and size of this object may be used during link-time to determine 782which COMDAT groups get selected depending on the selection kind. 783Because the name of the object must match the name of the COMDAT group, the 784linkage of the global object must not be local; local symbols can get renamed 785if a collision occurs in the symbol table. 786 787The combined use of COMDATS and section attributes may yield surprising results. 788For example: 789 790.. code-block:: llvm 791 792 $foo = comdat any 793 $bar = comdat any 794 @g1 = global i32 42, section "sec", comdat $foo 795 @g2 = global i32 42, section "sec", comdat $bar 796 797From the object file perspective, this requires the creation of two sections 798with the same name. This is necessary because both globals belong to different 799COMDAT groups and COMDATs, at the object file level, are represented by 800sections. 801 802Note that certain IR constructs like global variables and functions may create 803COMDATs in the object file in addition to any which are specified using COMDAT 804IR. This arises, for example, when a global variable has linkonce_odr linkage. 805 806.. _namedmetadatastructure: 807 808Named Metadata 809-------------- 810 811Named metadata is a collection of metadata. :ref:`Metadata 812nodes <metadata>` (but not metadata strings) are the only valid 813operands for a named metadata. 814 815Syntax:: 816 817 ; Some unnamed metadata nodes, which are referenced by the named metadata. 818 !0 = metadata !{metadata !"zero"} 819 !1 = metadata !{metadata !"one"} 820 !2 = metadata !{metadata !"two"} 821 ; A named metadata. 822 !name = !{!0, !1, !2} 823 824.. _paramattrs: 825 826Parameter Attributes 827-------------------- 828 829The return type and each parameter of a function type may have a set of 830*parameter attributes* associated with them. Parameter attributes are 831used to communicate additional information about the result or 832parameters of a function. Parameter attributes are considered to be part 833of the function, not of the function type, so functions with different 834parameter attributes can have the same function type. 835 836Parameter attributes are simple keywords that follow the type specified. 837If multiple parameter attributes are needed, they are space separated. 838For example: 839 840.. code-block:: llvm 841 842 declare i32 @printf(i8* noalias nocapture, ...) 843 declare i32 @atoi(i8 zeroext) 844 declare signext i8 @returns_signed_char() 845 846Note that any attributes for the function result (``nounwind``, 847``readonly``) come immediately after the argument list. 848 849Currently, only the following parameter attributes are defined: 850 851``zeroext`` 852 This indicates to the code generator that the parameter or return 853 value should be zero-extended to the extent required by the target's 854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by 855 the caller (for a parameter) or the callee (for a return value). 856``signext`` 857 This indicates to the code generator that the parameter or return 858 value should be sign-extended to the extent required by the target's 859 ABI (which is usually 32-bits) by the caller (for a parameter) or 860 the callee (for a return value). 861``inreg`` 862 This indicates that this parameter or return value should be treated 863 in a special target-dependent fashion during while emitting code for 864 a function call or return (usually, by putting it in a register as 865 opposed to memory, though some targets use it to distinguish between 866 two different kinds of registers). Use of this attribute is 867 target-specific. 868``byval`` 869 This indicates that the pointer parameter should really be passed by 870 value to the function. The attribute implies that a hidden copy of 871 the pointee is made between the caller and the callee, so the callee 872 is unable to modify the value in the caller. This attribute is only 873 valid on LLVM pointer arguments. It is generally used to pass 874 structs and arrays by value, but is also valid on pointers to 875 scalars. The copy is considered to belong to the caller not the 876 callee (for example, ``readonly`` functions should not write to 877 ``byval`` parameters). This is not a valid attribute for return 878 values. 879 880 The byval attribute also supports specifying an alignment with the 881 align attribute. It indicates the alignment of the stack slot to 882 form and the known alignment of the pointer specified to the call 883 site. If the alignment is not specified, then the code generator 884 makes a target-specific assumption. 885 886.. _attr_inalloca: 887 888``inalloca`` 889 890 The ``inalloca`` argument attribute allows the caller to take the 891 address of outgoing stack arguments. An ``inalloca`` argument must 892 be a pointer to stack memory produced by an ``alloca`` instruction. 893 The alloca, or argument allocation, must also be tagged with the 894 inalloca keyword. Only the past argument may have the ``inalloca`` 895 attribute, and that argument is guaranteed to be passed in memory. 896 897 An argument allocation may be used by a call at most once because 898 the call may deallocate it. The ``inalloca`` attribute cannot be 899 used in conjunction with other attributes that affect argument 900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The 901 ``inalloca`` attribute also disables LLVM's implicit lowering of 902 large aggregate return values, which means that frontend authors 903 must lower them with ``sret`` pointers. 904 905 When the call site is reached, the argument allocation must have 906 been the most recent stack allocation that is still live, or the 907 results are undefined. It is possible to allocate additional stack 908 space after an argument allocation and before its call site, but it 909 must be cleared off with :ref:`llvm.stackrestore 910 <int_stackrestore>`. 911 912 See :doc:`InAlloca` for more information on how to use this 913 attribute. 914 915``sret`` 916 This indicates that the pointer parameter specifies the address of a 917 structure that is the return value of the function in the source 918 program. This pointer must be guaranteed by the caller to be valid: 919 loads and stores to the structure may be assumed by the callee 920 not to trap and to be properly aligned. This may only be applied to 921 the first parameter. This is not a valid attribute for return 922 values. 923 924.. _noalias: 925 926``noalias`` 927 This indicates that pointer values :ref:`based <pointeraliasing>` on 928 the argument or return value do not alias pointer values which are 929 not *based* on it, ignoring certain "irrelevant" dependencies. For a 930 call to the parent function, dependencies between memory references 931 from before or after the call and from those during the call are 932 "irrelevant" to the ``noalias`` keyword for the arguments and return 933 value used in that call. The caller shares the responsibility with 934 the callee for ensuring that these requirements are met. For further 935 details, please see the discussion of the NoAlias response in :ref:`alias 936 analysis <Must, May, or No>`. 937 938 Note that this definition of ``noalias`` is intentionally similar 939 to the definition of ``restrict`` in C99 for function arguments, 940 though it is slightly weaker. 941 942 For function return values, C99's ``restrict`` is not meaningful, 943 while LLVM's ``noalias`` is. 944``nocapture`` 945 This indicates that the callee does not make any copies of the 946 pointer that outlive the callee itself. This is not a valid 947 attribute for return values. 948 949.. _nest: 950 951``nest`` 952 This indicates that the pointer parameter can be excised using the 953 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid 954 attribute for return values and can only be applied to one parameter. 955 956``returned`` 957 This indicates that the function always returns the argument as its return 958 value. This is an optimization hint to the code generator when generating 959 the caller, allowing tail call optimization and omission of register saves 960 and restores in some cases; it is not checked or enforced when generating 961 the callee. The parameter and the function return type must be valid 962 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a 963 valid attribute for return values and can only be applied to one parameter. 964 965``nonnull`` 966 This indicates that the parameter or return pointer is not null. This 967 attribute may only be applied to pointer typed parameters. This is not 968 checked or enforced by LLVM, the caller must ensure that the pointer 969 passed in is non-null, or the callee must ensure that the returned pointer 970 is non-null. 971 972.. _gc: 973 974Garbage Collector Names 975----------------------- 976 977Each function may specify a garbage collector name, which is simply a 978string: 979 980.. code-block:: llvm 981 982 define void @f() gc "name" { ... } 983 984The compiler declares the supported values of *name*. Specifying a 985collector which will cause the compiler to alter its output in order to 986support the named garbage collection algorithm. 987 988.. _prefixdata: 989 990Prefix Data 991----------- 992 993Prefix data is data associated with a function which the code generator 994will emit immediately before the function body. The purpose of this feature 995is to allow frontends to associate language-specific runtime metadata with 996specific functions and make it available through the function pointer while 997still allowing the function pointer to be called. To access the data for a 998given function, a program may bitcast the function pointer to a pointer to 999the constant's type. This implies that the IR symbol points to the start 1000of the prefix data. 1001 1002To maintain the semantics of ordinary function calls, the prefix data must 1003have a particular format. Specifically, it must begin with a sequence of 1004bytes which decode to a sequence of machine instructions, valid for the 1005module's target, which transfer control to the point immediately succeeding 1006the prefix data, without performing any other visible action. This allows 1007the inliner and other passes to reason about the semantics of the function 1008definition without needing to reason about the prefix data. Obviously this 1009makes the format of the prefix data highly target dependent. 1010 1011Prefix data is laid out as if it were an initializer for a global variable 1012of the prefix data's type. No padding is automatically placed between the 1013prefix data and the function body. If padding is required, it must be part 1014of the prefix data. 1015 1016A trivial example of valid prefix data for the x86 architecture is ``i8 144``, 1017which encodes the ``nop`` instruction: 1018 1019.. code-block:: llvm 1020 1021 define void @f() prefix i8 144 { ... } 1022 1023Generally prefix data can be formed by encoding a relative branch instruction 1024which skips the metadata, as in this example of valid prefix data for the 1025x86_64 architecture, where the first two bytes encode ``jmp .+10``: 1026 1027.. code-block:: llvm 1028 1029 %0 = type <{ i8, i8, i8* }> 1030 1031 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... } 1032 1033A function may have prefix data but no body. This has similar semantics 1034to the ``available_externally`` linkage in that the data may be used by the 1035optimizers but will not be emitted in the object file. 1036 1037.. _attrgrp: 1038 1039Attribute Groups 1040---------------- 1041 1042Attribute groups are groups of attributes that are referenced by objects within 1043the IR. They are important for keeping ``.ll`` files readable, because a lot of 1044functions will use the same set of attributes. In the degenerative case of a 1045``.ll`` file that corresponds to a single ``.c`` file, the single attribute 1046group will capture the important command line flags used to build that file. 1047 1048An attribute group is a module-level object. To use an attribute group, an 1049object references the attribute group's ID (e.g. ``#37``). An object may refer 1050to more than one attribute group. In that situation, the attributes from the 1051different groups are merged. 1052 1053Here is an example of attribute groups for a function that should always be 1054inlined, has a stack alignment of 4, and which shouldn't use SSE instructions: 1055 1056.. code-block:: llvm 1057 1058 ; Target-independent attributes: 1059 attributes #0 = { alwaysinline alignstack=4 } 1060 1061 ; Target-dependent attributes: 1062 attributes #1 = { "no-sse" } 1063 1064 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse". 1065 define void @f() #0 #1 { ... } 1066 1067.. _fnattrs: 1068 1069Function Attributes 1070------------------- 1071 1072Function attributes are set to communicate additional information about 1073a function. Function attributes are considered to be part of the 1074function, not of the function type, so functions with different function 1075attributes can have the same function type. 1076 1077Function attributes are simple keywords that follow the type specified. 1078If multiple attributes are needed, they are space separated. For 1079example: 1080 1081.. code-block:: llvm 1082 1083 define void @f() noinline { ... } 1084 define void @f() alwaysinline { ... } 1085 define void @f() alwaysinline optsize { ... } 1086 define void @f() optsize { ... } 1087 1088``alignstack(<n>)`` 1089 This attribute indicates that, when emitting the prologue and 1090 epilogue, the backend should forcibly align the stack pointer. 1091 Specify the desired alignment, which must be a power of two, in 1092 parentheses. 1093``alwaysinline`` 1094 This attribute indicates that the inliner should attempt to inline 1095 this function into callers whenever possible, ignoring any active 1096 inlining size threshold for this caller. 1097``builtin`` 1098 This indicates that the callee function at a call site should be 1099 recognized as a built-in function, even though the function's declaration 1100 uses the ``nobuiltin`` attribute. This is only valid at call sites for 1101 direct calls to functions which are declared with the ``nobuiltin`` 1102 attribute. 1103``cold`` 1104 This attribute indicates that this function is rarely called. When 1105 computing edge weights, basic blocks post-dominated by a cold 1106 function call are also considered to be cold; and, thus, given low 1107 weight. 1108``inlinehint`` 1109 This attribute indicates that the source code contained a hint that 1110 inlining this function is desirable (such as the "inline" keyword in 1111 C/C++). It is just a hint; it imposes no requirements on the 1112 inliner. 1113``jumptable`` 1114 This attribute indicates that the function should be added to a 1115 jump-instruction table at code-generation time, and that all address-taken 1116 references to this function should be replaced with a reference to the 1117 appropriate jump-instruction-table function pointer. Note that this creates 1118 a new pointer for the original function, which means that code that depends 1119 on function-pointer identity can break. So, any function annotated with 1120 ``jumptable`` must also be ``unnamed_addr``. 1121``minsize`` 1122 This attribute suggests that optimization passes and code generator 1123 passes make choices that keep the code size of this function as small 1124 as possible and perform optimizations that may sacrifice runtime 1125 performance in order to minimize the size of the generated code. 1126``naked`` 1127 This attribute disables prologue / epilogue emission for the 1128 function. This can have very system-specific consequences. 1129``nobuiltin`` 1130 This indicates that the callee function at a call site is not recognized as 1131 a built-in function. LLVM will retain the original call and not replace it 1132 with equivalent code based on the semantics of the built-in function, unless 1133 the call site uses the ``builtin`` attribute. This is valid at call sites 1134 and on function declarations and definitions. 1135``noduplicate`` 1136 This attribute indicates that calls to the function cannot be 1137 duplicated. A call to a ``noduplicate`` function may be moved 1138 within its parent function, but may not be duplicated within 1139 its parent function. 1140 1141 A function containing a ``noduplicate`` call may still 1142 be an inlining candidate, provided that the call is not 1143 duplicated by inlining. That implies that the function has 1144 internal linkage and only has one call site, so the original 1145 call is dead after inlining. 1146``noimplicitfloat`` 1147 This attributes disables implicit floating point instructions. 1148``noinline`` 1149 This attribute indicates that the inliner should never inline this 1150 function in any situation. This attribute may not be used together 1151 with the ``alwaysinline`` attribute. 1152``nonlazybind`` 1153 This attribute suppresses lazy symbol binding for the function. This 1154 may make calls to the function faster, at the cost of extra program 1155 startup time if the function is not called during program startup. 1156``noredzone`` 1157 This attribute indicates that the code generator should not use a 1158 red zone, even if the target-specific ABI normally permits it. 1159``noreturn`` 1160 This function attribute indicates that the function never returns 1161 normally. This produces undefined behavior at runtime if the 1162 function ever does dynamically return. 1163``nounwind`` 1164 This function attribute indicates that the function never returns 1165 with an unwind or exceptional control flow. If the function does 1166 unwind, its runtime behavior is undefined. 1167``optnone`` 1168 This function attribute indicates that the function is not optimized 1169 by any optimization or code generator passes with the 1170 exception of interprocedural optimization passes. 1171 This attribute cannot be used together with the ``alwaysinline`` 1172 attribute; this attribute is also incompatible 1173 with the ``minsize`` attribute and the ``optsize`` attribute. 1174 1175 This attribute requires the ``noinline`` attribute to be specified on 1176 the function as well, so the function is never inlined into any caller. 1177 Only functions with the ``alwaysinline`` attribute are valid 1178 candidates for inlining into the body of this function. 1179``optsize`` 1180 This attribute suggests that optimization passes and code generator 1181 passes make choices that keep the code size of this function low, 1182 and otherwise do optimizations specifically to reduce code size as 1183 long as they do not significantly impact runtime performance. 1184``readnone`` 1185 On a function, this attribute indicates that the function computes its 1186 result (or decides to unwind an exception) based strictly on its arguments, 1187 without dereferencing any pointer arguments or otherwise accessing 1188 any mutable state (e.g. memory, control registers, etc) visible to 1189 caller functions. It does not write through any pointer arguments 1190 (including ``byval`` arguments) and never changes any state visible 1191 to callers. This means that it cannot unwind exceptions by calling 1192 the ``C++`` exception throwing methods. 1193 1194 On an argument, this attribute indicates that the function does not 1195 dereference that pointer argument, even though it may read or write the 1196 memory that the pointer points to if accessed through other pointers. 1197``readonly`` 1198 On a function, this attribute indicates that the function does not write 1199 through any pointer arguments (including ``byval`` arguments) or otherwise 1200 modify any state (e.g. memory, control registers, etc) visible to 1201 caller functions. It may dereference pointer arguments and read 1202 state that may be set in the caller. A readonly function always 1203 returns the same value (or unwinds an exception identically) when 1204 called with the same set of arguments and global state. It cannot 1205 unwind an exception by calling the ``C++`` exception throwing 1206 methods. 1207 1208 On an argument, this attribute indicates that the function does not write 1209 through this pointer argument, even though it may write to the memory that 1210 the pointer points to. 1211``returns_twice`` 1212 This attribute indicates that this function can return twice. The C 1213 ``setjmp`` is an example of such a function. The compiler disables 1214 some optimizations (like tail calls) in the caller of these 1215 functions. 1216``sanitize_address`` 1217 This attribute indicates that AddressSanitizer checks 1218 (dynamic address safety analysis) are enabled for this function. 1219``sanitize_memory`` 1220 This attribute indicates that MemorySanitizer checks (dynamic detection 1221 of accesses to uninitialized memory) are enabled for this function. 1222``sanitize_thread`` 1223 This attribute indicates that ThreadSanitizer checks 1224 (dynamic thread safety analysis) are enabled for this function. 1225``ssp`` 1226 This attribute indicates that the function should emit a stack 1227 smashing protector. It is in the form of a "canary" --- a random value 1228 placed on the stack before the local variables that's checked upon 1229 return from the function to see if it has been overwritten. A 1230 heuristic is used to determine if a function needs stack protectors 1231 or not. The heuristic used will enable protectors for functions with: 1232 1233 - Character arrays larger than ``ssp-buffer-size`` (default 8). 1234 - Aggregates containing character arrays larger than ``ssp-buffer-size``. 1235 - Calls to alloca() with variable sizes or constant sizes greater than 1236 ``ssp-buffer-size``. 1237 1238 Variables that are identified as requiring a protector will be arranged 1239 on the stack such that they are adjacent to the stack protector guard. 1240 1241 If a function that has an ``ssp`` attribute is inlined into a 1242 function that doesn't have an ``ssp`` attribute, then the resulting 1243 function will have an ``ssp`` attribute. 1244``sspreq`` 1245 This attribute indicates that the function should *always* emit a 1246 stack smashing protector. This overrides the ``ssp`` function 1247 attribute. 1248 1249 Variables that are identified as requiring a protector will be arranged 1250 on the stack such that they are adjacent to the stack protector guard. 1251 The specific layout rules are: 1252 1253 #. Large arrays and structures containing large arrays 1254 (``>= ssp-buffer-size``) are closest to the stack protector. 1255 #. Small arrays and structures containing small arrays 1256 (``< ssp-buffer-size``) are 2nd closest to the protector. 1257 #. Variables that have had their address taken are 3rd closest to the 1258 protector. 1259 1260 If a function that has an ``sspreq`` attribute is inlined into a 1261 function that doesn't have an ``sspreq`` attribute or which has an 1262 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have 1263 an ``sspreq`` attribute. 1264``sspstrong`` 1265 This attribute indicates that the function should emit a stack smashing 1266 protector. This attribute causes a strong heuristic to be used when 1267 determining if a function needs stack protectors. The strong heuristic 1268 will enable protectors for functions with: 1269 1270 - Arrays of any size and type 1271 - Aggregates containing an array of any size and type. 1272 - Calls to alloca(). 1273 - Local variables that have had their address taken. 1274 1275 Variables that are identified as requiring a protector will be arranged 1276 on the stack such that they are adjacent to the stack protector guard. 1277 The specific layout rules are: 1278 1279 #. Large arrays and structures containing large arrays 1280 (``>= ssp-buffer-size``) are closest to the stack protector. 1281 #. Small arrays and structures containing small arrays 1282 (``< ssp-buffer-size``) are 2nd closest to the protector. 1283 #. Variables that have had their address taken are 3rd closest to the 1284 protector. 1285 1286 This overrides the ``ssp`` function attribute. 1287 1288 If a function that has an ``sspstrong`` attribute is inlined into a 1289 function that doesn't have an ``sspstrong`` attribute, then the 1290 resulting function will have an ``sspstrong`` attribute. 1291``uwtable`` 1292 This attribute indicates that the ABI being targeted requires that 1293 an unwind table entry be produce for this function even if we can 1294 show that no exceptions passes by it. This is normally the case for 1295 the ELF x86-64 abi, but it can be disabled for some compilation 1296 units. 1297 1298.. _moduleasm: 1299 1300Module-Level Inline Assembly 1301---------------------------- 1302 1303Modules may contain "module-level inline asm" blocks, which corresponds 1304to the GCC "file scope inline asm" blocks. These blocks are internally 1305concatenated by LLVM and treated as a single unit, but may be separated 1306in the ``.ll`` file if desired. The syntax is very simple: 1307 1308.. code-block:: llvm 1309 1310 module asm "inline asm code goes here" 1311 module asm "more can go here" 1312 1313The strings can contain any character by escaping non-printable 1314characters. The escape sequence used is simply "\\xx" where "xx" is the 1315two digit hex code for the number. 1316 1317The inline asm code is simply printed to the machine code .s file when 1318assembly code is generated. 1319 1320.. _langref_datalayout: 1321 1322Data Layout 1323----------- 1324 1325A module may specify a target specific data layout string that specifies 1326how data is to be laid out in memory. The syntax for the data layout is 1327simply: 1328 1329.. code-block:: llvm 1330 1331 target datalayout = "layout specification" 1332 1333The *layout specification* consists of a list of specifications 1334separated by the minus sign character ('-'). Each specification starts 1335with a letter and may include other information after the letter to 1336define some aspect of the data layout. The specifications accepted are 1337as follows: 1338 1339``E`` 1340 Specifies that the target lays out data in big-endian form. That is, 1341 the bits with the most significance have the lowest address 1342 location. 1343``e`` 1344 Specifies that the target lays out data in little-endian form. That 1345 is, the bits with the least significance have the lowest address 1346 location. 1347``S<size>`` 1348 Specifies the natural alignment of the stack in bits. Alignment 1349 promotion of stack variables is limited to the natural stack 1350 alignment to avoid dynamic stack realignment. The stack alignment 1351 must be a multiple of 8-bits. If omitted, the natural stack 1352 alignment defaults to "unspecified", which does not prevent any 1353 alignment promotions. 1354``p[n]:<size>:<abi>:<pref>`` 1355 This specifies the *size* of a pointer and its ``<abi>`` and 1356 ``<pref>``\erred alignments for address space ``n``. All sizes are in 1357 bits. The address space, ``n`` is optional, and if not specified, 1358 denotes the default address space 0. The value of ``n`` must be 1359 in the range [1,2^23). 1360``i<size>:<abi>:<pref>`` 1361 This specifies the alignment for an integer type of a given bit 1362 ``<size>``. The value of ``<size>`` must be in the range [1,2^23). 1363``v<size>:<abi>:<pref>`` 1364 This specifies the alignment for a vector type of a given bit 1365 ``<size>``. 1366``f<size>:<abi>:<pref>`` 1367 This specifies the alignment for a floating point type of a given bit 1368 ``<size>``. Only values of ``<size>`` that are supported by the target 1369 will work. 32 (float) and 64 (double) are supported on all targets; 80 1370 or 128 (different flavors of long double) are also supported on some 1371 targets. 1372``a:<abi>:<pref>`` 1373 This specifies the alignment for an object of aggregate type. 1374``m:<mangling>`` 1375 If present, specifies that llvm names are mangled in the output. The 1376 options are 1377 1378 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix. 1379 * ``m``: Mips mangling: Private symbols get a ``$`` prefix. 1380 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other 1381 symbols get a ``_`` prefix. 1382 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall 1383 functions also get a suffix based on the frame size. 1384``n<size1>:<size2>:<size3>...`` 1385 This specifies a set of native integer widths for the target CPU in 1386 bits. For example, it might contain ``n32`` for 32-bit PowerPC, 1387 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of 1388 this set are considered to support most general arithmetic operations 1389 efficiently. 1390 1391On every specification that takes a ``<abi>:<pref>``, specifying the 1392``<pref>`` alignment is optional. If omitted, the preceding ``:`` 1393should be omitted too and ``<pref>`` will be equal to ``<abi>``. 1394 1395When constructing the data layout for a given target, LLVM starts with a 1396default set of specifications which are then (possibly) overridden by 1397the specifications in the ``datalayout`` keyword. The default 1398specifications are given in this list: 1399 1400- ``E`` - big endian 1401- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment. 1402- ``p[n]:64:64:64`` - Other address spaces are assumed to be the 1403 same as the default address space. 1404- ``S0`` - natural stack alignment is unspecified 1405- ``i1:8:8`` - i1 is 8-bit (byte) aligned 1406- ``i8:8:8`` - i8 is 8-bit (byte) aligned 1407- ``i16:16:16`` - i16 is 16-bit aligned 1408- ``i32:32:32`` - i32 is 32-bit aligned 1409- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred 1410 alignment of 64-bits 1411- ``f16:16:16`` - half is 16-bit aligned 1412- ``f32:32:32`` - float is 32-bit aligned 1413- ``f64:64:64`` - double is 64-bit aligned 1414- ``f128:128:128`` - quad is 128-bit aligned 1415- ``v64:64:64`` - 64-bit vector is 64-bit aligned 1416- ``v128:128:128`` - 128-bit vector is 128-bit aligned 1417- ``a:0:64`` - aggregates are 64-bit aligned 1418 1419When LLVM is determining the alignment for a given type, it uses the 1420following rules: 1421 1422#. If the type sought is an exact match for one of the specifications, 1423 that specification is used. 1424#. If no match is found, and the type sought is an integer type, then 1425 the smallest integer type that is larger than the bitwidth of the 1426 sought type is used. If none of the specifications are larger than 1427 the bitwidth then the largest integer type is used. For example, 1428 given the default specifications above, the i7 type will use the 1429 alignment of i8 (next largest) while both i65 and i256 will use the 1430 alignment of i64 (largest specified). 1431#. If no match is found, and the type sought is a vector type, then the 1432 largest vector type that is smaller than the sought vector type will 1433 be used as a fall back. This happens because <128 x double> can be 1434 implemented in terms of 64 <2 x double>, for example. 1435 1436The function of the data layout string may not be what you expect. 1437Notably, this is not a specification from the frontend of what alignment 1438the code generator should use. 1439 1440Instead, if specified, the target data layout is required to match what 1441the ultimate *code generator* expects. This string is used by the 1442mid-level optimizers to improve code, and this only works if it matches 1443what the ultimate code generator uses. If you would like to generate IR 1444that does not embed this target-specific detail into the IR, then you 1445don't have to specify the string. This will disable some optimizations 1446that require precise layout information, but this also prevents those 1447optimizations from introducing target specificity into the IR. 1448 1449.. _langref_triple: 1450 1451Target Triple 1452------------- 1453 1454A module may specify a target triple string that describes the target 1455host. The syntax for the target triple is simply: 1456 1457.. code-block:: llvm 1458 1459 target triple = "x86_64-apple-macosx10.7.0" 1460 1461The *target triple* string consists of a series of identifiers delimited 1462by the minus sign character ('-'). The canonical forms are: 1463 1464:: 1465 1466 ARCHITECTURE-VENDOR-OPERATING_SYSTEM 1467 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT 1468 1469This information is passed along to the backend so that it generates 1470code for the proper architecture. It's possible to override this on the 1471command line with the ``-mtriple`` command line option. 1472 1473.. _pointeraliasing: 1474 1475Pointer Aliasing Rules 1476---------------------- 1477 1478Any memory access must be done through a pointer value associated with 1479an address range of the memory access, otherwise the behavior is 1480undefined. Pointer values are associated with address ranges according 1481to the following rules: 1482 1483- A pointer value is associated with the addresses associated with any 1484 value it is *based* on. 1485- An address of a global variable is associated with the address range 1486 of the variable's storage. 1487- The result value of an allocation instruction is associated with the 1488 address range of the allocated storage. 1489- A null pointer in the default address-space is associated with no 1490 address. 1491- An integer constant other than zero or a pointer value returned from 1492 a function not defined within LLVM may be associated with address 1493 ranges allocated through mechanisms other than those provided by 1494 LLVM. Such ranges shall not overlap with any ranges of addresses 1495 allocated by mechanisms provided by LLVM. 1496 1497A pointer value is *based* on another pointer value according to the 1498following rules: 1499 1500- A pointer value formed from a ``getelementptr`` operation is *based* 1501 on the first operand of the ``getelementptr``. 1502- The result value of a ``bitcast`` is *based* on the operand of the 1503 ``bitcast``. 1504- A pointer value formed by an ``inttoptr`` is *based* on all pointer 1505 values that contribute (directly or indirectly) to the computation of 1506 the pointer's value. 1507- The "*based* on" relationship is transitive. 1508 1509Note that this definition of *"based"* is intentionally similar to the 1510definition of *"based"* in C99, though it is slightly weaker. 1511 1512LLVM IR does not associate types with memory. The result type of a 1513``load`` merely indicates the size and alignment of the memory from 1514which to load, as well as the interpretation of the value. The first 1515operand type of a ``store`` similarly only indicates the size and 1516alignment of the store. 1517 1518Consequently, type-based alias analysis, aka TBAA, aka 1519``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR. 1520:ref:`Metadata <metadata>` may be used to encode additional information 1521which specialized optimization passes may use to implement type-based 1522alias analysis. 1523 1524.. _volatile: 1525 1526Volatile Memory Accesses 1527------------------------ 1528 1529Certain memory accesses, such as :ref:`load <i_load>`'s, 1530:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be 1531marked ``volatile``. The optimizers must not change the number of 1532volatile operations or change their order of execution relative to other 1533volatile operations. The optimizers *may* change the order of volatile 1534operations relative to non-volatile operations. This is not Java's 1535"volatile" and has no cross-thread synchronization behavior. 1536 1537IR-level volatile loads and stores cannot safely be optimized into 1538llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are 1539flagged volatile. Likewise, the backend should never split or merge 1540target-legal volatile load/store instructions. 1541 1542.. admonition:: Rationale 1543 1544 Platforms may rely on volatile loads and stores of natively supported 1545 data width to be executed as single instruction. For example, in C 1546 this holds for an l-value of volatile primitive type with native 1547 hardware support, but not necessarily for aggregate types. The 1548 frontend upholds these expectations, which are intentionally 1549 unspecified in the IR. The rules above ensure that IR transformation 1550 do not violate the frontend's contract with the language. 1551 1552.. _memmodel: 1553 1554Memory Model for Concurrent Operations 1555-------------------------------------- 1556 1557The LLVM IR does not define any way to start parallel threads of 1558execution or to register signal handlers. Nonetheless, there are 1559platform-specific ways to create them, and we define LLVM IR's behavior 1560in their presence. This model is inspired by the C++0x memory model. 1561 1562For a more informal introduction to this model, see the :doc:`Atomics`. 1563 1564We define a *happens-before* partial order as the least partial order 1565that 1566 1567- Is a superset of single-thread program order, and 1568- When a *synchronizes-with* ``b``, includes an edge from ``a`` to 1569 ``b``. *Synchronizes-with* pairs are introduced by platform-specific 1570 techniques, like pthread locks, thread creation, thread joining, 1571 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering 1572 Constraints <ordering>`). 1573 1574Note that program order does not introduce *happens-before* edges 1575between a thread and signals executing inside that thread. 1576 1577Every (defined) read operation (load instructions, memcpy, atomic 1578loads/read-modify-writes, etc.) R reads a series of bytes written by 1579(defined) write operations (store instructions, atomic 1580stores/read-modify-writes, memcpy, etc.). For the purposes of this 1581section, initialized globals are considered to have a write of the 1582initializer which is atomic and happens before any other read or write 1583of the memory in question. For each byte of a read R, R\ :sub:`byte` 1584may see any write to the same byte, except: 1585 1586- If write\ :sub:`1` happens before write\ :sub:`2`, and 1587 write\ :sub:`2` happens before R\ :sub:`byte`, then 1588 R\ :sub:`byte` does not see write\ :sub:`1`. 1589- If R\ :sub:`byte` happens before write\ :sub:`3`, then 1590 R\ :sub:`byte` does not see write\ :sub:`3`. 1591 1592Given that definition, R\ :sub:`byte` is defined as follows: 1593 1594- If R is volatile, the result is target-dependent. (Volatile is 1595 supposed to give guarantees which can support ``sig_atomic_t`` in 1596 C/C++, and may be used for accesses to addresses which do not behave 1597 like normal memory. It does not generally provide cross-thread 1598 synchronization.) 1599- Otherwise, if there is no write to the same byte that happens before 1600 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte. 1601- Otherwise, if R\ :sub:`byte` may see exactly one write, 1602 R\ :sub:`byte` returns the value written by that write. 1603- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may 1604 see are atomic, it chooses one of the values written. See the :ref:`Atomic 1605 Memory Ordering Constraints <ordering>` section for additional 1606 constraints on how the choice is made. 1607- Otherwise R\ :sub:`byte` returns ``undef``. 1608 1609R returns the value composed of the series of bytes it read. This 1610implies that some bytes within the value may be ``undef`` **without** 1611the entire value being ``undef``. Note that this only defines the 1612semantics of the operation; it doesn't mean that targets will emit more 1613than one instruction to read the series of bytes. 1614 1615Note that in cases where none of the atomic intrinsics are used, this 1616model places only one restriction on IR transformations on top of what 1617is required for single-threaded execution: introducing a store to a byte 1618which might not otherwise be stored is not allowed in general. 1619(Specifically, in the case where another thread might write to and read 1620from an address, introducing a store can change a load that may see 1621exactly one write into a load that may see multiple writes.) 1622 1623.. _ordering: 1624 1625Atomic Memory Ordering Constraints 1626---------------------------------- 1627 1628Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`, 1629:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`, 1630:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take 1631ordering parameters that determine which other atomic instructions on 1632the same address they *synchronize with*. These semantics are borrowed 1633from Java and C++0x, but are somewhat more colloquial. If these 1634descriptions aren't precise enough, check those specs (see spec 1635references in the :doc:`atomics guide <Atomics>`). 1636:ref:`fence <i_fence>` instructions treat these orderings somewhat 1637differently since they don't take an address. See that instruction's 1638documentation for details. 1639 1640For a simpler introduction to the ordering constraints, see the 1641:doc:`Atomics`. 1642 1643``unordered`` 1644 The set of values that can be read is governed by the happens-before 1645 partial order. A value cannot be read unless some operation wrote 1646 it. This is intended to provide a guarantee strong enough to model 1647 Java's non-volatile shared variables. This ordering cannot be 1648 specified for read-modify-write operations; it is not strong enough 1649 to make them atomic in any interesting way. 1650``monotonic`` 1651 In addition to the guarantees of ``unordered``, there is a single 1652 total order for modifications by ``monotonic`` operations on each 1653 address. All modification orders must be compatible with the 1654 happens-before order. There is no guarantee that the modification 1655 orders can be combined to a global total order for the whole program 1656 (and this often will not be possible). The read in an atomic 1657 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and 1658 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification 1659 order immediately before the value it writes. If one atomic read 1660 happens before another atomic read of the same address, the later 1661 read must see the same value or a later value in the address's 1662 modification order. This disallows reordering of ``monotonic`` (or 1663 stronger) operations on the same address. If an address is written 1664 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally 1665 read that address repeatedly, the other threads must eventually see 1666 the write. This corresponds to the C++0x/C1x 1667 ``memory_order_relaxed``. 1668``acquire`` 1669 In addition to the guarantees of ``monotonic``, a 1670 *synchronizes-with* edge may be formed with a ``release`` operation. 1671 This is intended to model C++'s ``memory_order_acquire``. 1672``release`` 1673 In addition to the guarantees of ``monotonic``, if this operation 1674 writes a value which is subsequently read by an ``acquire`` 1675 operation, it *synchronizes-with* that operation. (This isn't a 1676 complete description; see the C++0x definition of a release 1677 sequence.) This corresponds to the C++0x/C1x 1678 ``memory_order_release``. 1679``acq_rel`` (acquire+release) 1680 Acts as both an ``acquire`` and ``release`` operation on its 1681 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``. 1682``seq_cst`` (sequentially consistent) 1683 In addition to the guarantees of ``acq_rel`` (``acquire`` for an 1684 operation which only reads, ``release`` for an operation which only 1685 writes), there is a global total order on all 1686 sequentially-consistent operations on all addresses, which is 1687 consistent with the *happens-before* partial order and with the 1688 modification orders of all the affected addresses. Each 1689 sequentially-consistent read sees the last preceding write to the 1690 same address in this global order. This corresponds to the C++0x/C1x 1691 ``memory_order_seq_cst`` and Java volatile. 1692 1693.. _singlethread: 1694 1695If an atomic operation is marked ``singlethread``, it only *synchronizes 1696with* or participates in modification and seq\_cst total orderings with 1697other operations running in the same thread (for example, in signal 1698handlers). 1699 1700.. _fastmath: 1701 1702Fast-Math Flags 1703--------------- 1704 1705LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`, 1706:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`, 1707:ref:`frem <i_frem>`) have the following flags that can set to enable 1708otherwise unsafe floating point operations 1709 1710``nnan`` 1711 No NaNs - Allow optimizations to assume the arguments and result are not 1712 NaN. Such optimizations are required to retain defined behavior over 1713 NaNs, but the value of the result is undefined. 1714 1715``ninf`` 1716 No Infs - Allow optimizations to assume the arguments and result are not 1717 +/-Inf. Such optimizations are required to retain defined behavior over 1718 +/-Inf, but the value of the result is undefined. 1719 1720``nsz`` 1721 No Signed Zeros - Allow optimizations to treat the sign of a zero 1722 argument or result as insignificant. 1723 1724``arcp`` 1725 Allow Reciprocal - Allow optimizations to use the reciprocal of an 1726 argument rather than perform division. 1727 1728``fast`` 1729 Fast - Allow algebraically equivalent transformations that may 1730 dramatically change results in floating point (e.g. reassociate). This 1731 flag implies all the others. 1732 1733.. _typesystem: 1734 1735Type System 1736=========== 1737 1738The LLVM type system is one of the most important features of the 1739intermediate representation. Being typed enables a number of 1740optimizations to be performed on the intermediate representation 1741directly, without having to do extra analyses on the side before the 1742transformation. A strong type system makes it easier to read the 1743generated code and enables novel analyses and transformations that are 1744not feasible to perform on normal three address code representations. 1745 1746.. _t_void: 1747 1748Void Type 1749--------- 1750 1751:Overview: 1752 1753 1754The void type does not represent any value and has no size. 1755 1756:Syntax: 1757 1758 1759:: 1760 1761 void 1762 1763 1764.. _t_function: 1765 1766Function Type 1767------------- 1768 1769:Overview: 1770 1771 1772The function type can be thought of as a function signature. It consists of a 1773return type and a list of formal parameter types. The return type of a function 1774type is a void type or first class type --- except for :ref:`label <t_label>` 1775and :ref:`metadata <t_metadata>` types. 1776 1777:Syntax: 1778 1779:: 1780 1781 <returntype> (<parameter list>) 1782 1783...where '``<parameter list>``' is a comma-separated list of type 1784specifiers. Optionally, the parameter list may include a type ``...``, which 1785indicates that the function takes a variable number of arguments. Variable 1786argument functions can access their arguments with the :ref:`variable argument 1787handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type 1788except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`. 1789 1790:Examples: 1791 1792+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1793| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` | 1794+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1795| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. | 1796+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1797| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. | 1798+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1799| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values | 1800+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1801 1802.. _t_firstclass: 1803 1804First Class Types 1805----------------- 1806 1807The :ref:`first class <t_firstclass>` types are perhaps the most important. 1808Values of these types are the only ones which can be produced by 1809instructions. 1810 1811.. _t_single_value: 1812 1813Single Value Types 1814^^^^^^^^^^^^^^^^^^ 1815 1816These are the types that are valid in registers from CodeGen's perspective. 1817 1818.. _t_integer: 1819 1820Integer Type 1821"""""""""""" 1822 1823:Overview: 1824 1825The integer type is a very simple type that simply specifies an 1826arbitrary bit width for the integer type desired. Any bit width from 1 1827bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified. 1828 1829:Syntax: 1830 1831:: 1832 1833 iN 1834 1835The number of bits the integer will occupy is specified by the ``N`` 1836value. 1837 1838Examples: 1839********* 1840 1841+----------------+------------------------------------------------+ 1842| ``i1`` | a single-bit integer. | 1843+----------------+------------------------------------------------+ 1844| ``i32`` | a 32-bit integer. | 1845+----------------+------------------------------------------------+ 1846| ``i1942652`` | a really big integer of over 1 million bits. | 1847+----------------+------------------------------------------------+ 1848 1849.. _t_floating: 1850 1851Floating Point Types 1852"""""""""""""""""""" 1853 1854.. list-table:: 1855 :header-rows: 1 1856 1857 * - Type 1858 - Description 1859 1860 * - ``half`` 1861 - 16-bit floating point value 1862 1863 * - ``float`` 1864 - 32-bit floating point value 1865 1866 * - ``double`` 1867 - 64-bit floating point value 1868 1869 * - ``fp128`` 1870 - 128-bit floating point value (112-bit mantissa) 1871 1872 * - ``x86_fp80`` 1873 - 80-bit floating point value (X87) 1874 1875 * - ``ppc_fp128`` 1876 - 128-bit floating point value (two 64-bits) 1877 1878X86_mmx Type 1879"""""""""""" 1880 1881:Overview: 1882 1883The x86_mmx type represents a value held in an MMX register on an x86 1884machine. The operations allowed on it are quite limited: parameters and 1885return values, load and store, and bitcast. User-specified MMX 1886instructions are represented as intrinsic or asm calls with arguments 1887and/or results of this type. There are no arrays, vectors or constants 1888of this type. 1889 1890:Syntax: 1891 1892:: 1893 1894 x86_mmx 1895 1896 1897.. _t_pointer: 1898 1899Pointer Type 1900"""""""""""" 1901 1902:Overview: 1903 1904The pointer type is used to specify memory locations. Pointers are 1905commonly used to reference objects in memory. 1906 1907Pointer types may have an optional address space attribute defining the 1908numbered address space where the pointed-to object resides. The default 1909address space is number zero. The semantics of non-zero address spaces 1910are target-specific. 1911 1912Note that LLVM does not permit pointers to void (``void*``) nor does it 1913permit pointers to labels (``label*``). Use ``i8*`` instead. 1914 1915:Syntax: 1916 1917:: 1918 1919 <type> * 1920 1921:Examples: 1922 1923+-------------------------+--------------------------------------------------------------------------------------------------------------+ 1924| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. | 1925+-------------------------+--------------------------------------------------------------------------------------------------------------+ 1926| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. | 1927+-------------------------+--------------------------------------------------------------------------------------------------------------+ 1928| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. | 1929+-------------------------+--------------------------------------------------------------------------------------------------------------+ 1930 1931.. _t_vector: 1932 1933Vector Type 1934""""""""""" 1935 1936:Overview: 1937 1938A vector type is a simple derived type that represents a vector of 1939elements. Vector types are used when multiple primitive data are 1940operated in parallel using a single instruction (SIMD). A vector type 1941requires a size (number of elements) and an underlying primitive data 1942type. Vector types are considered :ref:`first class <t_firstclass>`. 1943 1944:Syntax: 1945 1946:: 1947 1948 < <# elements> x <elementtype> > 1949 1950The number of elements is a constant integer value larger than 0; 1951elementtype may be any integer or floating point type, or a pointer to 1952these types. Vectors of size zero are not allowed. 1953 1954:Examples: 1955 1956+-------------------+--------------------------------------------------+ 1957| ``<4 x i32>`` | Vector of 4 32-bit integer values. | 1958+-------------------+--------------------------------------------------+ 1959| ``<8 x float>`` | Vector of 8 32-bit floating-point values. | 1960+-------------------+--------------------------------------------------+ 1961| ``<2 x i64>`` | Vector of 2 64-bit integer values. | 1962+-------------------+--------------------------------------------------+ 1963| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. | 1964+-------------------+--------------------------------------------------+ 1965 1966.. _t_label: 1967 1968Label Type 1969^^^^^^^^^^ 1970 1971:Overview: 1972 1973The label type represents code labels. 1974 1975:Syntax: 1976 1977:: 1978 1979 label 1980 1981.. _t_metadata: 1982 1983Metadata Type 1984^^^^^^^^^^^^^ 1985 1986:Overview: 1987 1988The metadata type represents embedded metadata. No derived types may be 1989created from metadata except for :ref:`function <t_function>` arguments. 1990 1991:Syntax: 1992 1993:: 1994 1995 metadata 1996 1997.. _t_aggregate: 1998 1999Aggregate Types 2000^^^^^^^^^^^^^^^ 2001 2002Aggregate Types are a subset of derived types that can contain multiple 2003member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are 2004aggregate types. :ref:`Vectors <t_vector>` are not considered to be 2005aggregate types. 2006 2007.. _t_array: 2008 2009Array Type 2010"""""""""" 2011 2012:Overview: 2013 2014The array type is a very simple derived type that arranges elements 2015sequentially in memory. The array type requires a size (number of 2016elements) and an underlying data type. 2017 2018:Syntax: 2019 2020:: 2021 2022 [<# elements> x <elementtype>] 2023 2024The number of elements is a constant integer value; ``elementtype`` may 2025be any type with a size. 2026 2027:Examples: 2028 2029+------------------+--------------------------------------+ 2030| ``[40 x i32]`` | Array of 40 32-bit integer values. | 2031+------------------+--------------------------------------+ 2032| ``[41 x i32]`` | Array of 41 32-bit integer values. | 2033+------------------+--------------------------------------+ 2034| ``[4 x i8]`` | Array of 4 8-bit integer values. | 2035+------------------+--------------------------------------+ 2036 2037Here are some examples of multidimensional arrays: 2038 2039+-----------------------------+----------------------------------------------------------+ 2040| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. | 2041+-----------------------------+----------------------------------------------------------+ 2042| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. | 2043+-----------------------------+----------------------------------------------------------+ 2044| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. | 2045+-----------------------------+----------------------------------------------------------+ 2046 2047There is no restriction on indexing beyond the end of the array implied 2048by a static type (though there are restrictions on indexing beyond the 2049bounds of an allocated object in some cases). This means that 2050single-dimension 'variable sized array' addressing can be implemented in 2051LLVM with a zero length array type. An implementation of 'pascal style 2052arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for 2053example. 2054 2055.. _t_struct: 2056 2057Structure Type 2058"""""""""""""" 2059 2060:Overview: 2061 2062The structure type is used to represent a collection of data members 2063together in memory. The elements of a structure may be any type that has 2064a size. 2065 2066Structures in memory are accessed using '``load``' and '``store``' by 2067getting a pointer to a field with the '``getelementptr``' instruction. 2068Structures in registers are accessed using the '``extractvalue``' and 2069'``insertvalue``' instructions. 2070 2071Structures may optionally be "packed" structures, which indicate that 2072the alignment of the struct is one byte, and that there is no padding 2073between the elements. In non-packed structs, padding between field types 2074is inserted as defined by the DataLayout string in the module, which is 2075required to match what the underlying code generator expects. 2076 2077Structures can either be "literal" or "identified". A literal structure 2078is defined inline with other types (e.g. ``{i32, i32}*``) whereas 2079identified types are always defined at the top level with a name. 2080Literal types are uniqued by their contents and can never be recursive 2081or opaque since there is no way to write one. Identified types can be 2082recursive, can be opaqued, and are never uniqued. 2083 2084:Syntax: 2085 2086:: 2087 2088 %T1 = type { <type list> } ; Identified normal struct type 2089 %T2 = type <{ <type list> }> ; Identified packed struct type 2090 2091:Examples: 2092 2093+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2094| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values | 2095+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2096| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. | 2097+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2098| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. | 2099+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2100 2101.. _t_opaque: 2102 2103Opaque Structure Types 2104"""""""""""""""""""""" 2105 2106:Overview: 2107 2108Opaque structure types are used to represent named structure types that 2109do not have a body specified. This corresponds (for example) to the C 2110notion of a forward declared structure. 2111 2112:Syntax: 2113 2114:: 2115 2116 %X = type opaque 2117 %52 = type opaque 2118 2119:Examples: 2120 2121+--------------+-------------------+ 2122| ``opaque`` | An opaque type. | 2123+--------------+-------------------+ 2124 2125.. _constants: 2126 2127Constants 2128========= 2129 2130LLVM has several different basic types of constants. This section 2131describes them all and their syntax. 2132 2133Simple Constants 2134---------------- 2135 2136**Boolean constants** 2137 The two strings '``true``' and '``false``' are both valid constants 2138 of the ``i1`` type. 2139**Integer constants** 2140 Standard integers (such as '4') are constants of the 2141 :ref:`integer <t_integer>` type. Negative numbers may be used with 2142 integer types. 2143**Floating point constants** 2144 Floating point constants use standard decimal notation (e.g. 2145 123.421), exponential notation (e.g. 1.23421e+2), or a more precise 2146 hexadecimal notation (see below). The assembler requires the exact 2147 decimal value of a floating-point constant. For example, the 2148 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating 2149 decimal in binary. Floating point constants must have a :ref:`floating 2150 point <t_floating>` type. 2151**Null pointer constants** 2152 The identifier '``null``' is recognized as a null pointer constant 2153 and must be of :ref:`pointer type <t_pointer>`. 2154 2155The one non-intuitive notation for constants is the hexadecimal form of 2156floating point constants. For example, the form 2157'``double 0x432ff973cafa8000``' is equivalent to (but harder to read 2158than) '``double 4.5e+15``'. The only time hexadecimal floating point 2159constants are required (and the only time that they are generated by the 2160disassembler) is when a floating point constant must be emitted but it 2161cannot be represented as a decimal floating point number in a reasonable 2162number of digits. For example, NaN's, infinities, and other special 2163values are represented in their IEEE hexadecimal format so that assembly 2164and disassembly do not cause any bits to change in the constants. 2165 2166When using the hexadecimal form, constants of types half, float, and 2167double are represented using the 16-digit form shown above (which 2168matches the IEEE754 representation for double); half and float values 2169must, however, be exactly representable as IEEE 754 half and single 2170precision, respectively. Hexadecimal format is always used for long 2171double, and there are three forms of long double. The 80-bit format used 2172by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The 2173128-bit format used by PowerPC (two adjacent doubles) is represented by 2174``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is 2175represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles 2176will only work if they match the long double format on your target. 2177The IEEE 16-bit format (half precision) is represented by ``0xH`` 2178followed by 4 hexadecimal digits. All hexadecimal formats are big-endian 2179(sign bit at the left). 2180 2181There are no constants of type x86_mmx. 2182 2183.. _complexconstants: 2184 2185Complex Constants 2186----------------- 2187 2188Complex constants are a (potentially recursive) combination of simple 2189constants and smaller complex constants. 2190 2191**Structure constants** 2192 Structure constants are represented with notation similar to 2193 structure type definitions (a comma separated list of elements, 2194 surrounded by braces (``{}``)). For example: 2195 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as 2196 "``@G = external global i32``". Structure constants must have 2197 :ref:`structure type <t_struct>`, and the number and types of elements 2198 must match those specified by the type. 2199**Array constants** 2200 Array constants are represented with notation similar to array type 2201 definitions (a comma separated list of elements, surrounded by 2202 square brackets (``[]``)). For example: 2203 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have 2204 :ref:`array type <t_array>`, and the number and types of elements must 2205 match those specified by the type. 2206**Vector constants** 2207 Vector constants are represented with notation similar to vector 2208 type definitions (a comma separated list of elements, surrounded by 2209 less-than/greater-than's (``<>``)). For example: 2210 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants 2211 must have :ref:`vector type <t_vector>`, and the number and types of 2212 elements must match those specified by the type. 2213**Zero initialization** 2214 The string '``zeroinitializer``' can be used to zero initialize a 2215 value to zero of *any* type, including scalar and 2216 :ref:`aggregate <t_aggregate>` types. This is often used to avoid 2217 having to print large zero initializers (e.g. for large arrays) and 2218 is always exactly equivalent to using explicit zero initializers. 2219**Metadata node** 2220 A metadata node is a structure-like constant with :ref:`metadata 2221 type <t_metadata>`. For example: 2222 "``metadata !{ i32 0, metadata !"test" }``". Unlike other 2223 constants that are meant to be interpreted as part of the 2224 instruction stream, metadata is a place to attach additional 2225 information such as debug info. 2226 2227Global Variable and Function Addresses 2228-------------------------------------- 2229 2230The addresses of :ref:`global variables <globalvars>` and 2231:ref:`functions <functionstructure>` are always implicitly valid 2232(link-time) constants. These constants are explicitly referenced when 2233the :ref:`identifier for the global <identifiers>` is used and always have 2234:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM 2235file: 2236 2237.. code-block:: llvm 2238 2239 @X = global i32 17 2240 @Y = global i32 42 2241 @Z = global [2 x i32*] [ i32* @X, i32* @Y ] 2242 2243.. _undefvalues: 2244 2245Undefined Values 2246---------------- 2247 2248The string '``undef``' can be used anywhere a constant is expected, and 2249indicates that the user of the value may receive an unspecified 2250bit-pattern. Undefined values may be of any type (other than '``label``' 2251or '``void``') and be used anywhere a constant is permitted. 2252 2253Undefined values are useful because they indicate to the compiler that 2254the program is well defined no matter what value is used. This gives the 2255compiler more freedom to optimize. Here are some examples of 2256(potentially surprising) transformations that are valid (in pseudo IR): 2257 2258.. code-block:: llvm 2259 2260 %A = add %X, undef 2261 %B = sub %X, undef 2262 %C = xor %X, undef 2263 Safe: 2264 %A = undef 2265 %B = undef 2266 %C = undef 2267 2268This is safe because all of the output bits are affected by the undef 2269bits. Any output bit can have a zero or one depending on the input bits. 2270 2271.. code-block:: llvm 2272 2273 %A = or %X, undef 2274 %B = and %X, undef 2275 Safe: 2276 %A = -1 2277 %B = 0 2278 Unsafe: 2279 %A = undef 2280 %B = undef 2281 2282These logical operations have bits that are not always affected by the 2283input. For example, if ``%X`` has a zero bit, then the output of the 2284'``and``' operation will always be a zero for that bit, no matter what 2285the corresponding bit from the '``undef``' is. As such, it is unsafe to 2286optimize or assume that the result of the '``and``' is '``undef``'. 2287However, it is safe to assume that all bits of the '``undef``' could be 22880, and optimize the '``and``' to 0. Likewise, it is safe to assume that 2289all the bits of the '``undef``' operand to the '``or``' could be set, 2290allowing the '``or``' to be folded to -1. 2291 2292.. code-block:: llvm 2293 2294 %A = select undef, %X, %Y 2295 %B = select undef, 42, %Y 2296 %C = select %X, %Y, undef 2297 Safe: 2298 %A = %X (or %Y) 2299 %B = 42 (or %Y) 2300 %C = %Y 2301 Unsafe: 2302 %A = undef 2303 %B = undef 2304 %C = undef 2305 2306This set of examples shows that undefined '``select``' (and conditional 2307branch) conditions can go *either way*, but they have to come from one 2308of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were 2309both known to have a clear low bit, then ``%A`` would have to have a 2310cleared low bit. However, in the ``%C`` example, the optimizer is 2311allowed to assume that the '``undef``' operand could be the same as 2312``%Y``, allowing the whole '``select``' to be eliminated. 2313 2314.. code-block:: llvm 2315 2316 %A = xor undef, undef 2317 2318 %B = undef 2319 %C = xor %B, %B 2320 2321 %D = undef 2322 %E = icmp lt %D, 4 2323 %F = icmp gte %D, 4 2324 2325 Safe: 2326 %A = undef 2327 %B = undef 2328 %C = undef 2329 %D = undef 2330 %E = undef 2331 %F = undef 2332 2333This example points out that two '``undef``' operands are not 2334necessarily the same. This can be surprising to people (and also matches 2335C semantics) where they assume that "``X^X``" is always zero, even if 2336``X`` is undefined. This isn't true for a number of reasons, but the 2337short answer is that an '``undef``' "variable" can arbitrarily change 2338its value over its "live range". This is true because the variable 2339doesn't actually *have a live range*. Instead, the value is logically 2340read from arbitrary registers that happen to be around when needed, so 2341the value is not necessarily consistent over time. In fact, ``%A`` and 2342``%C`` need to have the same semantics or the core LLVM "replace all 2343uses with" concept would not hold. 2344 2345.. code-block:: llvm 2346 2347 %A = fdiv undef, %X 2348 %B = fdiv %X, undef 2349 Safe: 2350 %A = undef 2351 b: unreachable 2352 2353These examples show the crucial difference between an *undefined value* 2354and *undefined behavior*. An undefined value (like '``undef``') is 2355allowed to have an arbitrary bit-pattern. This means that the ``%A`` 2356operation can be constant folded to '``undef``', because the '``undef``' 2357could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's. 2358However, in the second example, we can make a more aggressive 2359assumption: because the ``undef`` is allowed to be an arbitrary value, 2360we are allowed to assume that it could be zero. Since a divide by zero 2361has *undefined behavior*, we are allowed to assume that the operation 2362does not execute at all. This allows us to delete the divide and all 2363code after it. Because the undefined operation "can't happen", the 2364optimizer can assume that it occurs in dead code. 2365 2366.. code-block:: llvm 2367 2368 a: store undef -> %X 2369 b: store %X -> undef 2370 Safe: 2371 a: <deleted> 2372 b: unreachable 2373 2374These examples reiterate the ``fdiv`` example: a store *of* an undefined 2375value can be assumed to not have any effect; we can assume that the 2376value is overwritten with bits that happen to match what was already 2377there. However, a store *to* an undefined location could clobber 2378arbitrary memory, therefore, it has undefined behavior. 2379 2380.. _poisonvalues: 2381 2382Poison Values 2383------------- 2384 2385Poison values are similar to :ref:`undef values <undefvalues>`, however 2386they also represent the fact that an instruction or constant expression 2387which cannot evoke side effects has nevertheless detected a condition 2388which results in undefined behavior. 2389 2390There is currently no way of representing a poison value in the IR; they 2391only exist when produced by operations such as :ref:`add <i_add>` with 2392the ``nsw`` flag. 2393 2394Poison value behavior is defined in terms of value *dependence*: 2395 2396- Values other than :ref:`phi <i_phi>` nodes depend on their operands. 2397- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to 2398 their dynamic predecessor basic block. 2399- Function arguments depend on the corresponding actual argument values 2400 in the dynamic callers of their functions. 2401- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>` 2402 instructions that dynamically transfer control back to them. 2403- :ref:`Invoke <i_invoke>` instructions depend on the 2404 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing 2405 call instructions that dynamically transfer control back to them. 2406- Non-volatile loads and stores depend on the most recent stores to all 2407 of the referenced memory addresses, following the order in the IR 2408 (including loads and stores implied by intrinsics such as 2409 :ref:`@llvm.memcpy <int_memcpy>`.) 2410- An instruction with externally visible side effects depends on the 2411 most recent preceding instruction with externally visible side 2412 effects, following the order in the IR. (This includes :ref:`volatile 2413 operations <volatile>`.) 2414- An instruction *control-depends* on a :ref:`terminator 2415 instruction <terminators>` if the terminator instruction has 2416 multiple successors and the instruction is always executed when 2417 control transfers to one of the successors, and may not be executed 2418 when control is transferred to another. 2419- Additionally, an instruction also *control-depends* on a terminator 2420 instruction if the set of instructions it otherwise depends on would 2421 be different if the terminator had transferred control to a different 2422 successor. 2423- Dependence is transitive. 2424 2425Poison Values have the same behavior as :ref:`undef values <undefvalues>`, 2426with the additional affect that any instruction which has a *dependence* 2427on a poison value has undefined behavior. 2428 2429Here are some examples: 2430 2431.. code-block:: llvm 2432 2433 entry: 2434 %poison = sub nuw i32 0, 1 ; Results in a poison value. 2435 %still_poison = and i32 %poison, 0 ; 0, but also poison. 2436 %poison_yet_again = getelementptr i32* @h, i32 %still_poison 2437 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned 2438 2439 store i32 %poison, i32* @g ; Poison value stored to memory. 2440 %poison2 = load i32* @g ; Poison value loaded back from memory. 2441 2442 store volatile i32 %poison, i32* @g ; External observation; undefined behavior. 2443 2444 %narrowaddr = bitcast i32* @g to i16* 2445 %wideaddr = bitcast i32* @g to i64* 2446 %poison3 = load i16* %narrowaddr ; Returns a poison value. 2447 %poison4 = load i64* %wideaddr ; Returns a poison value. 2448 2449 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value. 2450 br i1 %cmp, label %true, label %end ; Branch to either destination. 2451 2452 true: 2453 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so 2454 ; it has undefined behavior. 2455 br label %end 2456 2457 end: 2458 %p = phi i32 [ 0, %entry ], [ 1, %true ] 2459 ; Both edges into this PHI are 2460 ; control-dependent on %cmp, so this 2461 ; always results in a poison value. 2462 2463 store volatile i32 0, i32* @g ; This would depend on the store in %true 2464 ; if %cmp is true, or the store in %entry 2465 ; otherwise, so this is undefined behavior. 2466 2467 br i1 %cmp, label %second_true, label %second_end 2468 ; The same branch again, but this time the 2469 ; true block doesn't have side effects. 2470 2471 second_true: 2472 ; No side effects! 2473 ret void 2474 2475 second_end: 2476 store volatile i32 0, i32* @g ; This time, the instruction always depends 2477 ; on the store in %end. Also, it is 2478 ; control-equivalent to %end, so this is 2479 ; well-defined (ignoring earlier undefined 2480 ; behavior in this example). 2481 2482.. _blockaddress: 2483 2484Addresses of Basic Blocks 2485------------------------- 2486 2487``blockaddress(@function, %block)`` 2488 2489The '``blockaddress``' constant computes the address of the specified 2490basic block in the specified function, and always has an ``i8*`` type. 2491Taking the address of the entry block is illegal. 2492 2493This value only has defined behavior when used as an operand to the 2494':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons 2495against null. Pointer equality tests between labels addresses results in 2496undefined behavior --- though, again, comparison against null is ok, and 2497no label is equal to the null pointer. This may be passed around as an 2498opaque pointer sized value as long as the bits are not inspected. This 2499allows ``ptrtoint`` and arithmetic to be performed on these values so 2500long as the original value is reconstituted before the ``indirectbr`` 2501instruction. 2502 2503Finally, some targets may provide defined semantics when using the value 2504as the operand to an inline assembly, but that is target specific. 2505 2506.. _constantexprs: 2507 2508Constant Expressions 2509-------------------- 2510 2511Constant expressions are used to allow expressions involving other 2512constants to be used as constants. Constant expressions may be of any 2513:ref:`first class <t_firstclass>` type and may involve any LLVM operation 2514that does not have side effects (e.g. load and call are not supported). 2515The following is the syntax for constant expressions: 2516 2517``trunc (CST to TYPE)`` 2518 Truncate a constant to another type. The bit size of CST must be 2519 larger than the bit size of TYPE. Both types must be integers. 2520``zext (CST to TYPE)`` 2521 Zero extend a constant to another type. The bit size of CST must be 2522 smaller than the bit size of TYPE. Both types must be integers. 2523``sext (CST to TYPE)`` 2524 Sign extend a constant to another type. The bit size of CST must be 2525 smaller than the bit size of TYPE. Both types must be integers. 2526``fptrunc (CST to TYPE)`` 2527 Truncate a floating point constant to another floating point type. 2528 The size of CST must be larger than the size of TYPE. Both types 2529 must be floating point. 2530``fpext (CST to TYPE)`` 2531 Floating point extend a constant to another type. The size of CST 2532 must be smaller or equal to the size of TYPE. Both types must be 2533 floating point. 2534``fptoui (CST to TYPE)`` 2535 Convert a floating point constant to the corresponding unsigned 2536 integer constant. TYPE must be a scalar or vector integer type. CST 2537 must be of scalar or vector floating point type. Both CST and TYPE 2538 must be scalars, or vectors of the same number of elements. If the 2539 value won't fit in the integer type, the results are undefined. 2540``fptosi (CST to TYPE)`` 2541 Convert a floating point constant to the corresponding signed 2542 integer constant. TYPE must be a scalar or vector integer type. CST 2543 must be of scalar or vector floating point type. Both CST and TYPE 2544 must be scalars, or vectors of the same number of elements. If the 2545 value won't fit in the integer type, the results are undefined. 2546``uitofp (CST to TYPE)`` 2547 Convert an unsigned integer constant to the corresponding floating 2548 point constant. TYPE must be a scalar or vector floating point type. 2549 CST must be of scalar or vector integer type. Both CST and TYPE must 2550 be scalars, or vectors of the same number of elements. If the value 2551 won't fit in the floating point type, the results are undefined. 2552``sitofp (CST to TYPE)`` 2553 Convert a signed integer constant to the corresponding floating 2554 point constant. TYPE must be a scalar or vector floating point type. 2555 CST must be of scalar or vector integer type. Both CST and TYPE must 2556 be scalars, or vectors of the same number of elements. If the value 2557 won't fit in the floating point type, the results are undefined. 2558``ptrtoint (CST to TYPE)`` 2559 Convert a pointer typed constant to the corresponding integer 2560 constant. ``TYPE`` must be an integer type. ``CST`` must be of 2561 pointer type. The ``CST`` value is zero extended, truncated, or 2562 unchanged to make it fit in ``TYPE``. 2563``inttoptr (CST to TYPE)`` 2564 Convert an integer constant to a pointer constant. TYPE must be a 2565 pointer type. CST must be of integer type. The CST value is zero 2566 extended, truncated, or unchanged to make it fit in a pointer size. 2567 This one is *really* dangerous! 2568``bitcast (CST to TYPE)`` 2569 Convert a constant, CST, to another TYPE. The constraints of the 2570 operands are the same as those for the :ref:`bitcast 2571 instruction <i_bitcast>`. 2572``addrspacecast (CST to TYPE)`` 2573 Convert a constant pointer or constant vector of pointer, CST, to another 2574 TYPE in a different address space. The constraints of the operands are the 2575 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`. 2576``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)`` 2577 Perform the :ref:`getelementptr operation <i_getelementptr>` on 2578 constants. As with the :ref:`getelementptr <i_getelementptr>` 2579 instruction, the index list may have zero or more indexes, which are 2580 required to make sense for the type of "CSTPTR". 2581``select (COND, VAL1, VAL2)`` 2582 Perform the :ref:`select operation <i_select>` on constants. 2583``icmp COND (VAL1, VAL2)`` 2584 Performs the :ref:`icmp operation <i_icmp>` on constants. 2585``fcmp COND (VAL1, VAL2)`` 2586 Performs the :ref:`fcmp operation <i_fcmp>` on constants. 2587``extractelement (VAL, IDX)`` 2588 Perform the :ref:`extractelement operation <i_extractelement>` on 2589 constants. 2590``insertelement (VAL, ELT, IDX)`` 2591 Perform the :ref:`insertelement operation <i_insertelement>` on 2592 constants. 2593``shufflevector (VEC1, VEC2, IDXMASK)`` 2594 Perform the :ref:`shufflevector operation <i_shufflevector>` on 2595 constants. 2596``extractvalue (VAL, IDX0, IDX1, ...)`` 2597 Perform the :ref:`extractvalue operation <i_extractvalue>` on 2598 constants. The index list is interpreted in a similar manner as 2599 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At 2600 least one index value must be specified. 2601``insertvalue (VAL, ELT, IDX0, IDX1, ...)`` 2602 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants. 2603 The index list is interpreted in a similar manner as indices in a 2604 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index 2605 value must be specified. 2606``OPCODE (LHS, RHS)`` 2607 Perform the specified operation of the LHS and RHS constants. OPCODE 2608 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise 2609 binary <bitwiseops>` operations. The constraints on operands are 2610 the same as those for the corresponding instruction (e.g. no bitwise 2611 operations on floating point values are allowed). 2612 2613Other Values 2614============ 2615 2616.. _inlineasmexprs: 2617 2618Inline Assembler Expressions 2619---------------------------- 2620 2621LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level 2622Inline Assembly <moduleasm>`) through the use of a special value. This 2623value represents the inline assembler as a string (containing the 2624instructions to emit), a list of operand constraints (stored as a 2625string), a flag that indicates whether or not the inline asm expression 2626has side effects, and a flag indicating whether the function containing 2627the asm needs to align its stack conservatively. An example inline 2628assembler expression is: 2629 2630.. code-block:: llvm 2631 2632 i32 (i32) asm "bswap $0", "=r,r" 2633 2634Inline assembler expressions may **only** be used as the callee operand 2635of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction. 2636Thus, typically we have: 2637 2638.. code-block:: llvm 2639 2640 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y) 2641 2642Inline asms with side effects not visible in the constraint list must be 2643marked as having side effects. This is done through the use of the 2644'``sideeffect``' keyword, like so: 2645 2646.. code-block:: llvm 2647 2648 call void asm sideeffect "eieio", ""() 2649 2650In some cases inline asms will contain code that will not work unless 2651the stack is aligned in some way, such as calls or SSE instructions on 2652x86, yet will not contain code that does that alignment within the asm. 2653The compiler should make conservative assumptions about what the asm 2654might contain and should generate its usual stack alignment code in the 2655prologue if the '``alignstack``' keyword is present: 2656 2657.. code-block:: llvm 2658 2659 call void asm alignstack "eieio", ""() 2660 2661Inline asms also support using non-standard assembly dialects. The 2662assumed dialect is ATT. When the '``inteldialect``' keyword is present, 2663the inline asm is using the Intel dialect. Currently, ATT and Intel are 2664the only supported dialects. An example is: 2665 2666.. code-block:: llvm 2667 2668 call void asm inteldialect "eieio", ""() 2669 2670If multiple keywords appear the '``sideeffect``' keyword must come 2671first, the '``alignstack``' keyword second and the '``inteldialect``' 2672keyword last. 2673 2674Inline Asm Metadata 2675^^^^^^^^^^^^^^^^^^^ 2676 2677The call instructions that wrap inline asm nodes may have a 2678"``!srcloc``" MDNode attached to it that contains a list of constant 2679integers. If present, the code generator will use the integer as the 2680location cookie value when report errors through the ``LLVMContext`` 2681error reporting mechanisms. This allows a front-end to correlate backend 2682errors that occur with inline asm back to the source code that produced 2683it. For example: 2684 2685.. code-block:: llvm 2686 2687 call void asm sideeffect "something bad", ""(), !srcloc !42 2688 ... 2689 !42 = !{ i32 1234567 } 2690 2691It is up to the front-end to make sense of the magic numbers it places 2692in the IR. If the MDNode contains multiple constants, the code generator 2693will use the one that corresponds to the line of the asm that the error 2694occurs on. 2695 2696.. _metadata: 2697 2698Metadata Nodes and Metadata Strings 2699----------------------------------- 2700 2701LLVM IR allows metadata to be attached to instructions in the program 2702that can convey extra information about the code to the optimizers and 2703code generator. One example application of metadata is source-level 2704debug information. There are two metadata primitives: strings and nodes. 2705All metadata has the ``metadata`` type and is identified in syntax by a 2706preceding exclamation point ('``!``'). 2707 2708A metadata string is a string surrounded by double quotes. It can 2709contain any character by escaping non-printable characters with 2710"``\xx``" where "``xx``" is the two digit hex code. For example: 2711"``!"test\00"``". 2712 2713Metadata nodes are represented with notation similar to structure 2714constants (a comma separated list of elements, surrounded by braces and 2715preceded by an exclamation point). Metadata nodes can have any values as 2716their operand. For example: 2717 2718.. code-block:: llvm 2719 2720 !{ metadata !"test\00", i32 10} 2721 2722A :ref:`named metadata <namedmetadatastructure>` is a collection of 2723metadata nodes, which can be looked up in the module symbol table. For 2724example: 2725 2726.. code-block:: llvm 2727 2728 !foo = metadata !{!4, !3} 2729 2730Metadata can be used as function arguments. Here ``llvm.dbg.value`` 2731function is using two metadata arguments: 2732 2733.. code-block:: llvm 2734 2735 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25) 2736 2737Metadata can be attached with an instruction. Here metadata ``!21`` is 2738attached to the ``add`` instruction using the ``!dbg`` identifier: 2739 2740.. code-block:: llvm 2741 2742 %indvar.next = add i64 %indvar, 1, !dbg !21 2743 2744More information about specific metadata nodes recognized by the 2745optimizers and code generator is found below. 2746 2747'``tbaa``' Metadata 2748^^^^^^^^^^^^^^^^^^^ 2749 2750In LLVM IR, memory does not have types, so LLVM's own type system is not 2751suitable for doing TBAA. Instead, metadata is added to the IR to 2752describe a type system of a higher level language. This can be used to 2753implement typical C/C++ TBAA, but it can also be used to implement 2754custom alias analysis behavior for other languages. 2755 2756The current metadata format is very simple. TBAA metadata nodes have up 2757to three fields, e.g.: 2758 2759.. code-block:: llvm 2760 2761 !0 = metadata !{ metadata !"an example type tree" } 2762 !1 = metadata !{ metadata !"int", metadata !0 } 2763 !2 = metadata !{ metadata !"float", metadata !0 } 2764 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } 2765 2766The first field is an identity field. It can be any value, usually a 2767metadata string, which uniquely identifies the type. The most important 2768name in the tree is the name of the root node. Two trees with different 2769root node names are entirely disjoint, even if they have leaves with 2770common names. 2771 2772The second field identifies the type's parent node in the tree, or is 2773null or omitted for a root node. A type is considered to alias all of 2774its descendants and all of its ancestors in the tree. Also, a type is 2775considered to alias all types in other trees, so that bitcode produced 2776from multiple front-ends is handled conservatively. 2777 2778If the third field is present, it's an integer which if equal to 1 2779indicates that the type is "constant" (meaning 2780``pointsToConstantMemory`` should return true; see `other useful 2781AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). 2782 2783'``tbaa.struct``' Metadata 2784^^^^^^^^^^^^^^^^^^^^^^^^^^ 2785 2786The :ref:`llvm.memcpy <int_memcpy>` is often used to implement 2787aggregate assignment operations in C and similar languages, however it 2788is defined to copy a contiguous region of memory, which is more than 2789strictly necessary for aggregate types which contain holes due to 2790padding. Also, it doesn't contain any TBAA information about the fields 2791of the aggregate. 2792 2793``!tbaa.struct`` metadata can describe which memory subregions in a 2794memcpy are padding and what the TBAA tags of the struct are. 2795 2796The current metadata format is very simple. ``!tbaa.struct`` metadata 2797nodes are a list of operands which are in conceptual groups of three. 2798For each group of three, the first operand gives the byte offset of a 2799field in bytes, the second gives its size in bytes, and the third gives 2800its tbaa tag. e.g.: 2801 2802.. code-block:: llvm 2803 2804 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 } 2805 2806This describes a struct with two fields. The first is at offset 0 bytes 2807with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes 2808and has size 4 bytes and has tbaa tag !2. 2809 2810Note that the fields need not be contiguous. In this example, there is a 28114 byte gap between the two fields. This gap represents padding which 2812does not carry useful data and need not be preserved. 2813 2814'``fpmath``' Metadata 2815^^^^^^^^^^^^^^^^^^^^^ 2816 2817``fpmath`` metadata may be attached to any instruction of floating point 2818type. It can be used to express the maximum acceptable error in the 2819result of that instruction, in ULPs, thus potentially allowing the 2820compiler to use a more efficient but less accurate method of computing 2821it. ULP is defined as follows: 2822 2823 If ``x`` is a real number that lies between two finite consecutive 2824 floating-point numbers ``a`` and ``b``, without being equal to one 2825 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the 2826 distance between the two non-equal finite floating-point numbers 2827 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``. 2828 2829The metadata node shall consist of a single positive floating point 2830number representing the maximum relative error, for example: 2831 2832.. code-block:: llvm 2833 2834 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs 2835 2836'``range``' Metadata 2837^^^^^^^^^^^^^^^^^^^^ 2838 2839``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of 2840integer types. It expresses the possible ranges the loaded value or the value 2841returned by the called function at this call site is in. The ranges are 2842represented with a flattened list of integers. The loaded value or the value 2843returned is known to be in the union of the ranges defined by each consecutive 2844pair. Each pair has the following properties: 2845 2846- The type must match the type loaded by the instruction. 2847- The pair ``a,b`` represents the range ``[a,b)``. 2848- Both ``a`` and ``b`` are constants. 2849- The range is allowed to wrap. 2850- The range should not represent the full or empty set. That is, 2851 ``a!=b``. 2852 2853In addition, the pairs must be in signed order of the lower bound and 2854they must be non-contiguous. 2855 2856Examples: 2857 2858.. code-block:: llvm 2859 2860 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1 2861 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1 2862 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5 2863 %d = invoke i8 @bar() to label %cont 2864 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5 2865 ... 2866 !0 = metadata !{ i8 0, i8 2 } 2867 !1 = metadata !{ i8 255, i8 2 } 2868 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 } 2869 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 } 2870 2871'``llvm.loop``' 2872^^^^^^^^^^^^^^^ 2873 2874It is sometimes useful to attach information to loop constructs. Currently, 2875loop metadata is implemented as metadata attached to the branch instruction 2876in the loop latch block. This type of metadata refer to a metadata node that is 2877guaranteed to be separate for each loop. The loop identifier metadata is 2878specified with the name ``llvm.loop``. 2879 2880The loop identifier metadata is implemented using a metadata that refers to 2881itself to avoid merging it with any other identifier metadata, e.g., 2882during module linkage or function inlining. That is, each loop should refer 2883to their own identification metadata even if they reside in separate functions. 2884The following example contains loop identifier metadata for two separate loop 2885constructs: 2886 2887.. code-block:: llvm 2888 2889 !0 = metadata !{ metadata !0 } 2890 !1 = metadata !{ metadata !1 } 2891 2892The loop identifier metadata can be used to specify additional per-loop 2893metadata. Any operands after the first operand can be treated as user-defined 2894metadata. For example the ``llvm.loop.vectorize.unroll`` metadata is understood 2895by the loop vectorizer to indicate how many times to unroll the loop: 2896 2897.. code-block:: llvm 2898 2899 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0 2900 ... 2901 !0 = metadata !{ metadata !0, metadata !1 } 2902 !1 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 2 } 2903 2904'``llvm.mem``' 2905^^^^^^^^^^^^^^^ 2906 2907Metadata types used to annotate memory accesses with information helpful 2908for optimizations are prefixed with ``llvm.mem``. 2909 2910'``llvm.mem.parallel_loop_access``' Metadata 2911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2912 2913The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier, 2914or metadata containing a list of loop identifiers for nested loops. 2915The metadata is attached to memory accessing instructions and denotes that 2916no loop carried memory dependence exist between it and other instructions denoted 2917with the same loop identifier. 2918 2919Precisely, given two instructions ``m1`` and ``m2`` that both have the 2920``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the 2921set of loops associated with that metadata, respectively, then there is no loop 2922carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and 2923``L2``. 2924 2925As a special case, if all memory accessing instructions in a loop have 2926``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the 2927loop has no loop carried memory dependences and is considered to be a parallel 2928loop. 2929 2930Note that if not all memory access instructions have such metadata referring to 2931the loop, then the loop is considered not being trivially parallel. Additional 2932memory dependence analysis is required to make that determination. As a fail 2933safe mechanism, this causes loops that were originally parallel to be considered 2934sequential (if optimization passes that are unaware of the parallel semantics 2935insert new memory instructions into the loop body). 2936 2937Example of a loop that is considered parallel due to its correct use of 2938both ``llvm.loop`` and ``llvm.mem.parallel_loop_access`` 2939metadata types that refer to the same loop identifier metadata. 2940 2941.. code-block:: llvm 2942 2943 for.body: 2944 ... 2945 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0 2946 ... 2947 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0 2948 ... 2949 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0 2950 2951 for.end: 2952 ... 2953 !0 = metadata !{ metadata !0 } 2954 2955It is also possible to have nested parallel loops. In that case the 2956memory accesses refer to a list of loop identifier metadata nodes instead of 2957the loop identifier metadata node directly: 2958 2959.. code-block:: llvm 2960 2961 outer.for.body: 2962 ... 2963 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2 2964 ... 2965 br label %inner.for.body 2966 2967 inner.for.body: 2968 ... 2969 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0 2970 ... 2971 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0 2972 ... 2973 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1 2974 2975 inner.for.end: 2976 ... 2977 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2 2978 ... 2979 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2 2980 2981 outer.for.end: ; preds = %for.body 2982 ... 2983 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers 2984 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop 2985 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop 2986 2987'``llvm.loop.vectorize``' 2988^^^^^^^^^^^^^^^^^^^^^^^^^ 2989 2990Metadata prefixed with ``llvm.loop.vectorize`` is used to control per-loop 2991vectorization parameters such as vectorization factor and unroll factor. 2992 2993``llvm.loop.vectorize`` metadata should be used in conjunction with 2994``llvm.loop`` loop identification metadata. 2995 2996'``llvm.loop.vectorize.unroll``' Metadata 2997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2998 2999This metadata instructs the loop vectorizer to unroll the specified 3000loop exactly ``N`` times. 3001 3002The first operand is the string ``llvm.loop.vectorize.unroll`` and the second 3003operand is an integer specifying the unroll factor. For example: 3004 3005.. code-block:: llvm 3006 3007 !0 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 4 } 3008 3009Note that setting ``llvm.loop.vectorize.unroll`` to 1 disables 3010unrolling of the loop. 3011 3012If ``llvm.loop.vectorize.unroll`` is set to 0 then the amount of 3013unrolling will be determined automatically. 3014 3015'``llvm.loop.vectorize.width``' Metadata 3016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3017 3018This metadata sets the target width of the vectorizer to ``N``. Without 3019this metadata, the vectorizer will choose a width automatically. 3020Regardless of this metadata, the vectorizer will only vectorize loops if 3021it believes it is valid to do so. 3022 3023The first operand is the string ``llvm.loop.vectorize.width`` and the 3024second operand is an integer specifying the width. For example: 3025 3026.. code-block:: llvm 3027 3028 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 } 3029 3030Note that setting ``llvm.loop.vectorize.width`` to 1 disables 3031vectorization of the loop. 3032 3033If ``llvm.loop.vectorize.width`` is set to 0 then the width will be 3034determined automatically. 3035 3036Module Flags Metadata 3037===================== 3038 3039Information about the module as a whole is difficult to convey to LLVM's 3040subsystems. The LLVM IR isn't sufficient to transmit this information. 3041The ``llvm.module.flags`` named metadata exists in order to facilitate 3042this. These flags are in the form of key / value pairs --- much like a 3043dictionary --- making it easy for any subsystem who cares about a flag to 3044look it up. 3045 3046The ``llvm.module.flags`` metadata contains a list of metadata triplets. 3047Each triplet has the following form: 3048 3049- The first element is a *behavior* flag, which specifies the behavior 3050 when two (or more) modules are merged together, and it encounters two 3051 (or more) metadata with the same ID. The supported behaviors are 3052 described below. 3053- The second element is a metadata string that is a unique ID for the 3054 metadata. Each module may only have one flag entry for each unique ID (not 3055 including entries with the **Require** behavior). 3056- The third element is the value of the flag. 3057 3058When two (or more) modules are merged together, the resulting 3059``llvm.module.flags`` metadata is the union of the modules' flags. That is, for 3060each unique metadata ID string, there will be exactly one entry in the merged 3061modules ``llvm.module.flags`` metadata table, and the value for that entry will 3062be determined by the merge behavior flag, as described below. The only exception 3063is that entries with the *Require* behavior are always preserved. 3064 3065The following behaviors are supported: 3066 3067.. list-table:: 3068 :header-rows: 1 3069 :widths: 10 90 3070 3071 * - Value 3072 - Behavior 3073 3074 * - 1 3075 - **Error** 3076 Emits an error if two values disagree, otherwise the resulting value 3077 is that of the operands. 3078 3079 * - 2 3080 - **Warning** 3081 Emits a warning if two values disagree. The result value will be the 3082 operand for the flag from the first module being linked. 3083 3084 * - 3 3085 - **Require** 3086 Adds a requirement that another module flag be present and have a 3087 specified value after linking is performed. The value must be a 3088 metadata pair, where the first element of the pair is the ID of the 3089 module flag to be restricted, and the second element of the pair is 3090 the value the module flag should be restricted to. This behavior can 3091 be used to restrict the allowable results (via triggering of an 3092 error) of linking IDs with the **Override** behavior. 3093 3094 * - 4 3095 - **Override** 3096 Uses the specified value, regardless of the behavior or value of the 3097 other module. If both modules specify **Override**, but the values 3098 differ, an error will be emitted. 3099 3100 * - 5 3101 - **Append** 3102 Appends the two values, which are required to be metadata nodes. 3103 3104 * - 6 3105 - **AppendUnique** 3106 Appends the two values, which are required to be metadata 3107 nodes. However, duplicate entries in the second list are dropped 3108 during the append operation. 3109 3110It is an error for a particular unique flag ID to have multiple behaviors, 3111except in the case of **Require** (which adds restrictions on another metadata 3112value) or **Override**. 3113 3114An example of module flags: 3115 3116.. code-block:: llvm 3117 3118 !0 = metadata !{ i32 1, metadata !"foo", i32 1 } 3119 !1 = metadata !{ i32 4, metadata !"bar", i32 37 } 3120 !2 = metadata !{ i32 2, metadata !"qux", i32 42 } 3121 !3 = metadata !{ i32 3, metadata !"qux", 3122 metadata !{ 3123 metadata !"foo", i32 1 3124 } 3125 } 3126 !llvm.module.flags = !{ !0, !1, !2, !3 } 3127 3128- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior 3129 if two or more ``!"foo"`` flags are seen is to emit an error if their 3130 values are not equal. 3131 3132- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The 3133 behavior if two or more ``!"bar"`` flags are seen is to use the value 3134 '37'. 3135 3136- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The 3137 behavior if two or more ``!"qux"`` flags are seen is to emit a 3138 warning if their values are not equal. 3139 3140- Metadata ``!3`` has the ID ``!"qux"`` and the value: 3141 3142 :: 3143 3144 metadata !{ metadata !"foo", i32 1 } 3145 3146 The behavior is to emit an error if the ``llvm.module.flags`` does not 3147 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is 3148 performed. 3149 3150Objective-C Garbage Collection Module Flags Metadata 3151---------------------------------------------------- 3152 3153On the Mach-O platform, Objective-C stores metadata about garbage 3154collection in a special section called "image info". The metadata 3155consists of a version number and a bitmask specifying what types of 3156garbage collection are supported (if any) by the file. If two or more 3157modules are linked together their garbage collection metadata needs to 3158be merged rather than appended together. 3159 3160The Objective-C garbage collection module flags metadata consists of the 3161following key-value pairs: 3162 3163.. list-table:: 3164 :header-rows: 1 3165 :widths: 30 70 3166 3167 * - Key 3168 - Value 3169 3170 * - ``Objective-C Version`` 3171 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2. 3172 3173 * - ``Objective-C Image Info Version`` 3174 - **[Required]** --- The version of the image info section. Currently 3175 always 0. 3176 3177 * - ``Objective-C Image Info Section`` 3178 - **[Required]** --- The section to place the metadata. Valid values are 3179 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and 3180 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for 3181 Objective-C ABI version 2. 3182 3183 * - ``Objective-C Garbage Collection`` 3184 - **[Required]** --- Specifies whether garbage collection is supported or 3185 not. Valid values are 0, for no garbage collection, and 2, for garbage 3186 collection supported. 3187 3188 * - ``Objective-C GC Only`` 3189 - **[Optional]** --- Specifies that only garbage collection is supported. 3190 If present, its value must be 6. This flag requires that the 3191 ``Objective-C Garbage Collection`` flag have the value 2. 3192 3193Some important flag interactions: 3194 3195- If a module with ``Objective-C Garbage Collection`` set to 0 is 3196 merged with a module with ``Objective-C Garbage Collection`` set to 3197 2, then the resulting module has the 3198 ``Objective-C Garbage Collection`` flag set to 0. 3199- A module with ``Objective-C Garbage Collection`` set to 0 cannot be 3200 merged with a module with ``Objective-C GC Only`` set to 6. 3201 3202Automatic Linker Flags Module Flags Metadata 3203-------------------------------------------- 3204 3205Some targets support embedding flags to the linker inside individual object 3206files. Typically this is used in conjunction with language extensions which 3207allow source files to explicitly declare the libraries they depend on, and have 3208these automatically be transmitted to the linker via object files. 3209 3210These flags are encoded in the IR using metadata in the module flags section, 3211using the ``Linker Options`` key. The merge behavior for this flag is required 3212to be ``AppendUnique``, and the value for the key is expected to be a metadata 3213node which should be a list of other metadata nodes, each of which should be a 3214list of metadata strings defining linker options. 3215 3216For example, the following metadata section specifies two separate sets of 3217linker options, presumably to link against ``libz`` and the ``Cocoa`` 3218framework:: 3219 3220 !0 = metadata !{ i32 6, metadata !"Linker Options", 3221 metadata !{ 3222 metadata !{ metadata !"-lz" }, 3223 metadata !{ metadata !"-framework", metadata !"Cocoa" } } } 3224 !llvm.module.flags = !{ !0 } 3225 3226The metadata encoding as lists of lists of options, as opposed to a collapsed 3227list of options, is chosen so that the IR encoding can use multiple option 3228strings to specify e.g., a single library, while still having that specifier be 3229preserved as an atomic element that can be recognized by a target specific 3230assembly writer or object file emitter. 3231 3232Each individual option is required to be either a valid option for the target's 3233linker, or an option that is reserved by the target specific assembly writer or 3234object file emitter. No other aspect of these options is defined by the IR. 3235 3236C type width Module Flags Metadata 3237---------------------------------- 3238 3239The ARM backend emits a section into each generated object file describing the 3240options that it was compiled with (in a compiler-independent way) to prevent 3241linking incompatible objects, and to allow automatic library selection. Some 3242of these options are not visible at the IR level, namely wchar_t width and enum 3243width. 3244 3245To pass this information to the backend, these options are encoded in module 3246flags metadata, using the following key-value pairs: 3247 3248.. list-table:: 3249 :header-rows: 1 3250 :widths: 30 70 3251 3252 * - Key 3253 - Value 3254 3255 * - short_wchar 3256 - * 0 --- sizeof(wchar_t) == 4 3257 * 1 --- sizeof(wchar_t) == 2 3258 3259 * - short_enum 3260 - * 0 --- Enums are at least as large as an ``int``. 3261 * 1 --- Enums are stored in the smallest integer type which can 3262 represent all of its values. 3263 3264For example, the following metadata section specifies that the module was 3265compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an 3266enum is the smallest type which can represent all of its values:: 3267 3268 !llvm.module.flags = !{!0, !1} 3269 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1} 3270 !1 = metadata !{i32 1, metadata !"short_enum", i32 0} 3271 3272.. _intrinsicglobalvariables: 3273 3274Intrinsic Global Variables 3275========================== 3276 3277LLVM has a number of "magic" global variables that contain data that 3278affect code generation or other IR semantics. These are documented here. 3279All globals of this sort should have a section specified as 3280"``llvm.metadata``". This section and all globals that start with 3281"``llvm.``" are reserved for use by LLVM. 3282 3283.. _gv_llvmused: 3284 3285The '``llvm.used``' Global Variable 3286----------------------------------- 3287 3288The ``@llvm.used`` global is an array which has 3289:ref:`appending linkage <linkage_appending>`. This array contains a list of 3290pointers to named global variables, functions and aliases which may optionally 3291have a pointer cast formed of bitcast or getelementptr. For example, a legal 3292use of it is: 3293 3294.. code-block:: llvm 3295 3296 @X = global i8 4 3297 @Y = global i32 123 3298 3299 @llvm.used = appending global [2 x i8*] [ 3300 i8* @X, 3301 i8* bitcast (i32* @Y to i8*) 3302 ], section "llvm.metadata" 3303 3304If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler, 3305and linker are required to treat the symbol as if there is a reference to the 3306symbol that it cannot see (which is why they have to be named). For example, if 3307a variable has internal linkage and no references other than that from the 3308``@llvm.used`` list, it cannot be deleted. This is commonly used to represent 3309references from inline asms and other things the compiler cannot "see", and 3310corresponds to "``attribute((used))``" in GNU C. 3311 3312On some targets, the code generator must emit a directive to the 3313assembler or object file to prevent the assembler and linker from 3314molesting the symbol. 3315 3316.. _gv_llvmcompilerused: 3317 3318The '``llvm.compiler.used``' Global Variable 3319-------------------------------------------- 3320 3321The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used`` 3322directive, except that it only prevents the compiler from touching the 3323symbol. On targets that support it, this allows an intelligent linker to 3324optimize references to the symbol without being impeded as it would be 3325by ``@llvm.used``. 3326 3327This is a rare construct that should only be used in rare circumstances, 3328and should not be exposed to source languages. 3329 3330.. _gv_llvmglobalctors: 3331 3332The '``llvm.global_ctors``' Global Variable 3333------------------------------------------- 3334 3335.. code-block:: llvm 3336 3337 %0 = type { i32, void ()*, i8* } 3338 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }] 3339 3340The ``@llvm.global_ctors`` array contains a list of constructor 3341functions, priorities, and an optional associated global or function. 3342The functions referenced by this array will be called in ascending order 3343of priority (i.e. lowest first) when the module is loaded. The order of 3344functions with the same priority is not defined. 3345 3346If the third field is present, non-null, and points to a global variable 3347or function, the initializer function will only run if the associated 3348data from the current module is not discarded. 3349 3350.. _llvmglobaldtors: 3351 3352The '``llvm.global_dtors``' Global Variable 3353------------------------------------------- 3354 3355.. code-block:: llvm 3356 3357 %0 = type { i32, void ()*, i8* } 3358 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }] 3359 3360The ``@llvm.global_dtors`` array contains a list of destructor 3361functions, priorities, and an optional associated global or function. 3362The functions referenced by this array will be called in descending 3363order of priority (i.e. highest first) when the module is unloaded. The 3364order of functions with the same priority is not defined. 3365 3366If the third field is present, non-null, and points to a global variable 3367or function, the destructor function will only run if the associated 3368data from the current module is not discarded. 3369 3370Instruction Reference 3371===================== 3372 3373The LLVM instruction set consists of several different classifications 3374of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary 3375instructions <binaryops>`, :ref:`bitwise binary 3376instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and 3377:ref:`other instructions <otherops>`. 3378 3379.. _terminators: 3380 3381Terminator Instructions 3382----------------------- 3383 3384As mentioned :ref:`previously <functionstructure>`, every basic block in a 3385program ends with a "Terminator" instruction, which indicates which 3386block should be executed after the current block is finished. These 3387terminator instructions typically yield a '``void``' value: they produce 3388control flow, not values (the one exception being the 3389':ref:`invoke <i_invoke>`' instruction). 3390 3391The terminator instructions are: ':ref:`ret <i_ret>`', 3392':ref:`br <i_br>`', ':ref:`switch <i_switch>`', 3393':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`', 3394':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'. 3395 3396.. _i_ret: 3397 3398'``ret``' Instruction 3399^^^^^^^^^^^^^^^^^^^^^ 3400 3401Syntax: 3402""""""" 3403 3404:: 3405 3406 ret <type> <value> ; Return a value from a non-void function 3407 ret void ; Return from void function 3408 3409Overview: 3410""""""""" 3411 3412The '``ret``' instruction is used to return control flow (and optionally 3413a value) from a function back to the caller. 3414 3415There are two forms of the '``ret``' instruction: one that returns a 3416value and then causes control flow, and one that just causes control 3417flow to occur. 3418 3419Arguments: 3420"""""""""" 3421 3422The '``ret``' instruction optionally accepts a single argument, the 3423return value. The type of the return value must be a ':ref:`first 3424class <t_firstclass>`' type. 3425 3426A function is not :ref:`well formed <wellformed>` if it it has a non-void 3427return type and contains a '``ret``' instruction with no return value or 3428a return value with a type that does not match its type, or if it has a 3429void return type and contains a '``ret``' instruction with a return 3430value. 3431 3432Semantics: 3433"""""""""" 3434 3435When the '``ret``' instruction is executed, control flow returns back to 3436the calling function's context. If the caller is a 3437":ref:`call <i_call>`" instruction, execution continues at the 3438instruction after the call. If the caller was an 3439":ref:`invoke <i_invoke>`" instruction, execution continues at the 3440beginning of the "normal" destination block. If the instruction returns 3441a value, that value shall set the call or invoke instruction's return 3442value. 3443 3444Example: 3445"""""""" 3446 3447.. code-block:: llvm 3448 3449 ret i32 5 ; Return an integer value of 5 3450 ret void ; Return from a void function 3451 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2 3452 3453.. _i_br: 3454 3455'``br``' Instruction 3456^^^^^^^^^^^^^^^^^^^^ 3457 3458Syntax: 3459""""""" 3460 3461:: 3462 3463 br i1 <cond>, label <iftrue>, label <iffalse> 3464 br label <dest> ; Unconditional branch 3465 3466Overview: 3467""""""""" 3468 3469The '``br``' instruction is used to cause control flow to transfer to a 3470different basic block in the current function. There are two forms of 3471this instruction, corresponding to a conditional branch and an 3472unconditional branch. 3473 3474Arguments: 3475"""""""""" 3476 3477The conditional branch form of the '``br``' instruction takes a single 3478'``i1``' value and two '``label``' values. The unconditional form of the 3479'``br``' instruction takes a single '``label``' value as a target. 3480 3481Semantics: 3482"""""""""" 3483 3484Upon execution of a conditional '``br``' instruction, the '``i1``' 3485argument is evaluated. If the value is ``true``, control flows to the 3486'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows 3487to the '``iffalse``' ``label`` argument. 3488 3489Example: 3490"""""""" 3491 3492.. code-block:: llvm 3493 3494 Test: 3495 %cond = icmp eq i32 %a, %b 3496 br i1 %cond, label %IfEqual, label %IfUnequal 3497 IfEqual: 3498 ret i32 1 3499 IfUnequal: 3500 ret i32 0 3501 3502.. _i_switch: 3503 3504'``switch``' Instruction 3505^^^^^^^^^^^^^^^^^^^^^^^^ 3506 3507Syntax: 3508""""""" 3509 3510:: 3511 3512 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] 3513 3514Overview: 3515""""""""" 3516 3517The '``switch``' instruction is used to transfer control flow to one of 3518several different places. It is a generalization of the '``br``' 3519instruction, allowing a branch to occur to one of many possible 3520destinations. 3521 3522Arguments: 3523"""""""""" 3524 3525The '``switch``' instruction uses three parameters: an integer 3526comparison value '``value``', a default '``label``' destination, and an 3527array of pairs of comparison value constants and '``label``'s. The table 3528is not allowed to contain duplicate constant entries. 3529 3530Semantics: 3531"""""""""" 3532 3533The ``switch`` instruction specifies a table of values and destinations. 3534When the '``switch``' instruction is executed, this table is searched 3535for the given value. If the value is found, control flow is transferred 3536to the corresponding destination; otherwise, control flow is transferred 3537to the default destination. 3538 3539Implementation: 3540""""""""""""""" 3541 3542Depending on properties of the target machine and the particular 3543``switch`` instruction, this instruction may be code generated in 3544different ways. For example, it could be generated as a series of 3545chained conditional branches or with a lookup table. 3546 3547Example: 3548"""""""" 3549 3550.. code-block:: llvm 3551 3552 ; Emulate a conditional br instruction 3553 %Val = zext i1 %value to i32 3554 switch i32 %Val, label %truedest [ i32 0, label %falsedest ] 3555 3556 ; Emulate an unconditional br instruction 3557 switch i32 0, label %dest [ ] 3558 3559 ; Implement a jump table: 3560 switch i32 %val, label %otherwise [ i32 0, label %onzero 3561 i32 1, label %onone 3562 i32 2, label %ontwo ] 3563 3564.. _i_indirectbr: 3565 3566'``indirectbr``' Instruction 3567^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3568 3569Syntax: 3570""""""" 3571 3572:: 3573 3574 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ] 3575 3576Overview: 3577""""""""" 3578 3579The '``indirectbr``' instruction implements an indirect branch to a 3580label within the current function, whose address is specified by 3581"``address``". Address must be derived from a 3582:ref:`blockaddress <blockaddress>` constant. 3583 3584Arguments: 3585"""""""""" 3586 3587The '``address``' argument is the address of the label to jump to. The 3588rest of the arguments indicate the full set of possible destinations 3589that the address may point to. Blocks are allowed to occur multiple 3590times in the destination list, though this isn't particularly useful. 3591 3592This destination list is required so that dataflow analysis has an 3593accurate understanding of the CFG. 3594 3595Semantics: 3596"""""""""" 3597 3598Control transfers to the block specified in the address argument. All 3599possible destination blocks must be listed in the label list, otherwise 3600this instruction has undefined behavior. This implies that jumps to 3601labels defined in other functions have undefined behavior as well. 3602 3603Implementation: 3604""""""""""""""" 3605 3606This is typically implemented with a jump through a register. 3607 3608Example: 3609"""""""" 3610 3611.. code-block:: llvm 3612 3613 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ] 3614 3615.. _i_invoke: 3616 3617'``invoke``' Instruction 3618^^^^^^^^^^^^^^^^^^^^^^^^ 3619 3620Syntax: 3621""""""" 3622 3623:: 3624 3625 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs] 3626 to label <normal label> unwind label <exception label> 3627 3628Overview: 3629""""""""" 3630 3631The '``invoke``' instruction causes control to transfer to a specified 3632function, with the possibility of control flow transfer to either the 3633'``normal``' label or the '``exception``' label. If the callee function 3634returns with the "``ret``" instruction, control flow will return to the 3635"normal" label. If the callee (or any indirect callees) returns via the 3636":ref:`resume <i_resume>`" instruction or other exception handling 3637mechanism, control is interrupted and continued at the dynamically 3638nearest "exception" label. 3639 3640The '``exception``' label is a `landing 3641pad <ExceptionHandling.html#overview>`_ for the exception. As such, 3642'``exception``' label is required to have the 3643":ref:`landingpad <i_landingpad>`" instruction, which contains the 3644information about the behavior of the program after unwinding happens, 3645as its first non-PHI instruction. The restrictions on the 3646"``landingpad``" instruction's tightly couples it to the "``invoke``" 3647instruction, so that the important information contained within the 3648"``landingpad``" instruction can't be lost through normal code motion. 3649 3650Arguments: 3651"""""""""" 3652 3653This instruction requires several arguments: 3654 3655#. The optional "cconv" marker indicates which :ref:`calling 3656 convention <callingconv>` the call should use. If none is 3657 specified, the call defaults to using C calling conventions. 3658#. The optional :ref:`Parameter Attributes <paramattrs>` list for return 3659 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes 3660 are valid here. 3661#. '``ptr to function ty``': shall be the signature of the pointer to 3662 function value being invoked. In most cases, this is a direct 3663 function invocation, but indirect ``invoke``'s are just as possible, 3664 branching off an arbitrary pointer to function value. 3665#. '``function ptr val``': An LLVM value containing a pointer to a 3666 function to be invoked. 3667#. '``function args``': argument list whose types match the function 3668 signature argument types and parameter attributes. All arguments must 3669 be of :ref:`first class <t_firstclass>` type. If the function signature 3670 indicates the function accepts a variable number of arguments, the 3671 extra arguments can be specified. 3672#. '``normal label``': the label reached when the called function 3673 executes a '``ret``' instruction. 3674#. '``exception label``': the label reached when a callee returns via 3675 the :ref:`resume <i_resume>` instruction or other exception handling 3676 mechanism. 3677#. The optional :ref:`function attributes <fnattrs>` list. Only 3678 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``' 3679 attributes are valid here. 3680 3681Semantics: 3682"""""""""" 3683 3684This instruction is designed to operate as a standard '``call``' 3685instruction in most regards. The primary difference is that it 3686establishes an association with a label, which is used by the runtime 3687library to unwind the stack. 3688 3689This instruction is used in languages with destructors to ensure that 3690proper cleanup is performed in the case of either a ``longjmp`` or a 3691thrown exception. Additionally, this is important for implementation of 3692'``catch``' clauses in high-level languages that support them. 3693 3694For the purposes of the SSA form, the definition of the value returned 3695by the '``invoke``' instruction is deemed to occur on the edge from the 3696current block to the "normal" label. If the callee unwinds then no 3697return value is available. 3698 3699Example: 3700"""""""" 3701 3702.. code-block:: llvm 3703 3704 %retval = invoke i32 @Test(i32 15) to label %Continue 3705 unwind label %TestCleanup ; i32:retval set 3706 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue 3707 unwind label %TestCleanup ; i32:retval set 3708 3709.. _i_resume: 3710 3711'``resume``' Instruction 3712^^^^^^^^^^^^^^^^^^^^^^^^ 3713 3714Syntax: 3715""""""" 3716 3717:: 3718 3719 resume <type> <value> 3720 3721Overview: 3722""""""""" 3723 3724The '``resume``' instruction is a terminator instruction that has no 3725successors. 3726 3727Arguments: 3728"""""""""" 3729 3730The '``resume``' instruction requires one argument, which must have the 3731same type as the result of any '``landingpad``' instruction in the same 3732function. 3733 3734Semantics: 3735"""""""""" 3736 3737The '``resume``' instruction resumes propagation of an existing 3738(in-flight) exception whose unwinding was interrupted with a 3739:ref:`landingpad <i_landingpad>` instruction. 3740 3741Example: 3742"""""""" 3743 3744.. code-block:: llvm 3745 3746 resume { i8*, i32 } %exn 3747 3748.. _i_unreachable: 3749 3750'``unreachable``' Instruction 3751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3752 3753Syntax: 3754""""""" 3755 3756:: 3757 3758 unreachable 3759 3760Overview: 3761""""""""" 3762 3763The '``unreachable``' instruction has no defined semantics. This 3764instruction is used to inform the optimizer that a particular portion of 3765the code is not reachable. This can be used to indicate that the code 3766after a no-return function cannot be reached, and other facts. 3767 3768Semantics: 3769"""""""""" 3770 3771The '``unreachable``' instruction has no defined semantics. 3772 3773.. _binaryops: 3774 3775Binary Operations 3776----------------- 3777 3778Binary operators are used to do most of the computation in a program. 3779They require two operands of the same type, execute an operation on 3780them, and produce a single value. The operands might represent multiple 3781data, as is the case with the :ref:`vector <t_vector>` data type. The 3782result value has the same type as its operands. 3783 3784There are several different binary operators: 3785 3786.. _i_add: 3787 3788'``add``' Instruction 3789^^^^^^^^^^^^^^^^^^^^^ 3790 3791Syntax: 3792""""""" 3793 3794:: 3795 3796 <result> = add <ty> <op1>, <op2> ; yields ty:result 3797 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result 3798 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result 3799 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result 3800 3801Overview: 3802""""""""" 3803 3804The '``add``' instruction returns the sum of its two operands. 3805 3806Arguments: 3807"""""""""" 3808 3809The two arguments to the '``add``' instruction must be 3810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3811arguments must have identical types. 3812 3813Semantics: 3814"""""""""" 3815 3816The value produced is the integer sum of the two operands. 3817 3818If the sum has unsigned overflow, the result returned is the 3819mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of 3820the result. 3821 3822Because LLVM integers use a two's complement representation, this 3823instruction is appropriate for both signed and unsigned integers. 3824 3825``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 3826respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 3827result value of the ``add`` is a :ref:`poison value <poisonvalues>` if 3828unsigned and/or signed overflow, respectively, occurs. 3829 3830Example: 3831"""""""" 3832 3833.. code-block:: llvm 3834 3835 <result> = add i32 4, %var ; yields i32:result = 4 + %var 3836 3837.. _i_fadd: 3838 3839'``fadd``' Instruction 3840^^^^^^^^^^^^^^^^^^^^^^ 3841 3842Syntax: 3843""""""" 3844 3845:: 3846 3847 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 3848 3849Overview: 3850""""""""" 3851 3852The '``fadd``' instruction returns the sum of its two operands. 3853 3854Arguments: 3855"""""""""" 3856 3857The two arguments to the '``fadd``' instruction must be :ref:`floating 3858point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 3859Both arguments must have identical types. 3860 3861Semantics: 3862"""""""""" 3863 3864The value produced is the floating point sum of the two operands. This 3865instruction can also take any number of :ref:`fast-math flags <fastmath>`, 3866which are optimization hints to enable otherwise unsafe floating point 3867optimizations: 3868 3869Example: 3870"""""""" 3871 3872.. code-block:: llvm 3873 3874 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var 3875 3876'``sub``' Instruction 3877^^^^^^^^^^^^^^^^^^^^^ 3878 3879Syntax: 3880""""""" 3881 3882:: 3883 3884 <result> = sub <ty> <op1>, <op2> ; yields ty:result 3885 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result 3886 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result 3887 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result 3888 3889Overview: 3890""""""""" 3891 3892The '``sub``' instruction returns the difference of its two operands. 3893 3894Note that the '``sub``' instruction is used to represent the '``neg``' 3895instruction present in most other intermediate representations. 3896 3897Arguments: 3898"""""""""" 3899 3900The two arguments to the '``sub``' instruction must be 3901:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3902arguments must have identical types. 3903 3904Semantics: 3905"""""""""" 3906 3907The value produced is the integer difference of the two operands. 3908 3909If the difference has unsigned overflow, the result returned is the 3910mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of 3911the result. 3912 3913Because LLVM integers use a two's complement representation, this 3914instruction is appropriate for both signed and unsigned integers. 3915 3916``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 3917respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 3918result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if 3919unsigned and/or signed overflow, respectively, occurs. 3920 3921Example: 3922"""""""" 3923 3924.. code-block:: llvm 3925 3926 <result> = sub i32 4, %var ; yields i32:result = 4 - %var 3927 <result> = sub i32 0, %val ; yields i32:result = -%var 3928 3929.. _i_fsub: 3930 3931'``fsub``' Instruction 3932^^^^^^^^^^^^^^^^^^^^^^ 3933 3934Syntax: 3935""""""" 3936 3937:: 3938 3939 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 3940 3941Overview: 3942""""""""" 3943 3944The '``fsub``' instruction returns the difference of its two operands. 3945 3946Note that the '``fsub``' instruction is used to represent the '``fneg``' 3947instruction present in most other intermediate representations. 3948 3949Arguments: 3950"""""""""" 3951 3952The two arguments to the '``fsub``' instruction must be :ref:`floating 3953point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 3954Both arguments must have identical types. 3955 3956Semantics: 3957"""""""""" 3958 3959The value produced is the floating point difference of the two operands. 3960This instruction can also take any number of :ref:`fast-math 3961flags <fastmath>`, which are optimization hints to enable otherwise 3962unsafe floating point optimizations: 3963 3964Example: 3965"""""""" 3966 3967.. code-block:: llvm 3968 3969 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var 3970 <result> = fsub float -0.0, %val ; yields float:result = -%var 3971 3972'``mul``' Instruction 3973^^^^^^^^^^^^^^^^^^^^^ 3974 3975Syntax: 3976""""""" 3977 3978:: 3979 3980 <result> = mul <ty> <op1>, <op2> ; yields ty:result 3981 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result 3982 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result 3983 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result 3984 3985Overview: 3986""""""""" 3987 3988The '``mul``' instruction returns the product of its two operands. 3989 3990Arguments: 3991"""""""""" 3992 3993The two arguments to the '``mul``' instruction must be 3994:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3995arguments must have identical types. 3996 3997Semantics: 3998"""""""""" 3999 4000The value produced is the integer product of the two operands. 4001 4002If the result of the multiplication has unsigned overflow, the result 4003returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the 4004bit width of the result. 4005 4006Because LLVM integers use a two's complement representation, and the 4007result is the same width as the operands, this instruction returns the 4008correct result for both signed and unsigned integers. If a full product 4009(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be 4010sign-extended or zero-extended as appropriate to the width of the full 4011product. 4012 4013``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 4014respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 4015result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if 4016unsigned and/or signed overflow, respectively, occurs. 4017 4018Example: 4019"""""""" 4020 4021.. code-block:: llvm 4022 4023 <result> = mul i32 4, %var ; yields i32:result = 4 * %var 4024 4025.. _i_fmul: 4026 4027'``fmul``' Instruction 4028^^^^^^^^^^^^^^^^^^^^^^ 4029 4030Syntax: 4031""""""" 4032 4033:: 4034 4035 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4036 4037Overview: 4038""""""""" 4039 4040The '``fmul``' instruction returns the product of its two operands. 4041 4042Arguments: 4043"""""""""" 4044 4045The two arguments to the '``fmul``' instruction must be :ref:`floating 4046point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4047Both arguments must have identical types. 4048 4049Semantics: 4050"""""""""" 4051 4052The value produced is the floating point product of the two operands. 4053This instruction can also take any number of :ref:`fast-math 4054flags <fastmath>`, which are optimization hints to enable otherwise 4055unsafe floating point optimizations: 4056 4057Example: 4058"""""""" 4059 4060.. code-block:: llvm 4061 4062 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var 4063 4064'``udiv``' Instruction 4065^^^^^^^^^^^^^^^^^^^^^^ 4066 4067Syntax: 4068""""""" 4069 4070:: 4071 4072 <result> = udiv <ty> <op1>, <op2> ; yields ty:result 4073 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result 4074 4075Overview: 4076""""""""" 4077 4078The '``udiv``' instruction returns the quotient of its two operands. 4079 4080Arguments: 4081"""""""""" 4082 4083The two arguments to the '``udiv``' instruction must be 4084:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4085arguments must have identical types. 4086 4087Semantics: 4088"""""""""" 4089 4090The value produced is the unsigned integer quotient of the two operands. 4091 4092Note that unsigned integer division and signed integer division are 4093distinct operations; for signed integer division, use '``sdiv``'. 4094 4095Division by zero leads to undefined behavior. 4096 4097If the ``exact`` keyword is present, the result value of the ``udiv`` is 4098a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as 4099such, "((a udiv exact b) mul b) == a"). 4100 4101Example: 4102"""""""" 4103 4104.. code-block:: llvm 4105 4106 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var 4107 4108'``sdiv``' Instruction 4109^^^^^^^^^^^^^^^^^^^^^^ 4110 4111Syntax: 4112""""""" 4113 4114:: 4115 4116 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result 4117 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result 4118 4119Overview: 4120""""""""" 4121 4122The '``sdiv``' instruction returns the quotient of its two operands. 4123 4124Arguments: 4125"""""""""" 4126 4127The two arguments to the '``sdiv``' instruction must be 4128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4129arguments must have identical types. 4130 4131Semantics: 4132"""""""""" 4133 4134The value produced is the signed integer quotient of the two operands 4135rounded towards zero. 4136 4137Note that signed integer division and unsigned integer division are 4138distinct operations; for unsigned integer division, use '``udiv``'. 4139 4140Division by zero leads to undefined behavior. Overflow also leads to 4141undefined behavior; this is a rare case, but can occur, for example, by 4142doing a 32-bit division of -2147483648 by -1. 4143 4144If the ``exact`` keyword is present, the result value of the ``sdiv`` is 4145a :ref:`poison value <poisonvalues>` if the result would be rounded. 4146 4147Example: 4148"""""""" 4149 4150.. code-block:: llvm 4151 4152 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var 4153 4154.. _i_fdiv: 4155 4156'``fdiv``' Instruction 4157^^^^^^^^^^^^^^^^^^^^^^ 4158 4159Syntax: 4160""""""" 4161 4162:: 4163 4164 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4165 4166Overview: 4167""""""""" 4168 4169The '``fdiv``' instruction returns the quotient of its two operands. 4170 4171Arguments: 4172"""""""""" 4173 4174The two arguments to the '``fdiv``' instruction must be :ref:`floating 4175point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4176Both arguments must have identical types. 4177 4178Semantics: 4179"""""""""" 4180 4181The value produced is the floating point quotient of the two operands. 4182This instruction can also take any number of :ref:`fast-math 4183flags <fastmath>`, which are optimization hints to enable otherwise 4184unsafe floating point optimizations: 4185 4186Example: 4187"""""""" 4188 4189.. code-block:: llvm 4190 4191 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var 4192 4193'``urem``' Instruction 4194^^^^^^^^^^^^^^^^^^^^^^ 4195 4196Syntax: 4197""""""" 4198 4199:: 4200 4201 <result> = urem <ty> <op1>, <op2> ; yields ty:result 4202 4203Overview: 4204""""""""" 4205 4206The '``urem``' instruction returns the remainder from the unsigned 4207division of its two arguments. 4208 4209Arguments: 4210"""""""""" 4211 4212The two arguments to the '``urem``' instruction must be 4213:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4214arguments must have identical types. 4215 4216Semantics: 4217"""""""""" 4218 4219This instruction returns the unsigned integer *remainder* of a division. 4220This instruction always performs an unsigned division to get the 4221remainder. 4222 4223Note that unsigned integer remainder and signed integer remainder are 4224distinct operations; for signed integer remainder, use '``srem``'. 4225 4226Taking the remainder of a division by zero leads to undefined behavior. 4227 4228Example: 4229"""""""" 4230 4231.. code-block:: llvm 4232 4233 <result> = urem i32 4, %var ; yields i32:result = 4 % %var 4234 4235'``srem``' Instruction 4236^^^^^^^^^^^^^^^^^^^^^^ 4237 4238Syntax: 4239""""""" 4240 4241:: 4242 4243 <result> = srem <ty> <op1>, <op2> ; yields ty:result 4244 4245Overview: 4246""""""""" 4247 4248The '``srem``' instruction returns the remainder from the signed 4249division of its two operands. This instruction can also take 4250:ref:`vector <t_vector>` versions of the values in which case the elements 4251must be integers. 4252 4253Arguments: 4254"""""""""" 4255 4256The two arguments to the '``srem``' instruction must be 4257:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4258arguments must have identical types. 4259 4260Semantics: 4261"""""""""" 4262 4263This instruction returns the *remainder* of a division (where the result 4264is either zero or has the same sign as the dividend, ``op1``), not the 4265*modulo* operator (where the result is either zero or has the same sign 4266as the divisor, ``op2``) of a value. For more information about the 4267difference, see `The Math 4268Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a 4269table of how this is implemented in various languages, please see 4270`Wikipedia: modulo 4271operation <http://en.wikipedia.org/wiki/Modulo_operation>`_. 4272 4273Note that signed integer remainder and unsigned integer remainder are 4274distinct operations; for unsigned integer remainder, use '``urem``'. 4275 4276Taking the remainder of a division by zero leads to undefined behavior. 4277Overflow also leads to undefined behavior; this is a rare case, but can 4278occur, for example, by taking the remainder of a 32-bit division of 4279-2147483648 by -1. (The remainder doesn't actually overflow, but this 4280rule lets srem be implemented using instructions that return both the 4281result of the division and the remainder.) 4282 4283Example: 4284"""""""" 4285 4286.. code-block:: llvm 4287 4288 <result> = srem i32 4, %var ; yields i32:result = 4 % %var 4289 4290.. _i_frem: 4291 4292'``frem``' Instruction 4293^^^^^^^^^^^^^^^^^^^^^^ 4294 4295Syntax: 4296""""""" 4297 4298:: 4299 4300 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4301 4302Overview: 4303""""""""" 4304 4305The '``frem``' instruction returns the remainder from the division of 4306its two operands. 4307 4308Arguments: 4309"""""""""" 4310 4311The two arguments to the '``frem``' instruction must be :ref:`floating 4312point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4313Both arguments must have identical types. 4314 4315Semantics: 4316"""""""""" 4317 4318This instruction returns the *remainder* of a division. The remainder 4319has the same sign as the dividend. This instruction can also take any 4320number of :ref:`fast-math flags <fastmath>`, which are optimization hints 4321to enable otherwise unsafe floating point optimizations: 4322 4323Example: 4324"""""""" 4325 4326.. code-block:: llvm 4327 4328 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var 4329 4330.. _bitwiseops: 4331 4332Bitwise Binary Operations 4333------------------------- 4334 4335Bitwise binary operators are used to do various forms of bit-twiddling 4336in a program. They are generally very efficient instructions and can 4337commonly be strength reduced from other instructions. They require two 4338operands of the same type, execute an operation on them, and produce a 4339single value. The resulting value is the same type as its operands. 4340 4341'``shl``' Instruction 4342^^^^^^^^^^^^^^^^^^^^^ 4343 4344Syntax: 4345""""""" 4346 4347:: 4348 4349 <result> = shl <ty> <op1>, <op2> ; yields ty:result 4350 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result 4351 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result 4352 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result 4353 4354Overview: 4355""""""""" 4356 4357The '``shl``' instruction returns the first operand shifted to the left 4358a specified number of bits. 4359 4360Arguments: 4361"""""""""" 4362 4363Both arguments to the '``shl``' instruction must be the same 4364:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4365'``op2``' is treated as an unsigned value. 4366 4367Semantics: 4368"""""""""" 4369 4370The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`, 4371where ``n`` is the width of the result. If ``op2`` is (statically or 4372dynamically) negative or equal to or larger than the number of bits in 4373``op1``, the result is undefined. If the arguments are vectors, each 4374vector element of ``op1`` is shifted by the corresponding shift amount 4375in ``op2``. 4376 4377If the ``nuw`` keyword is present, then the shift produces a :ref:`poison 4378value <poisonvalues>` if it shifts out any non-zero bits. If the 4379``nsw`` keyword is present, then the shift produces a :ref:`poison 4380value <poisonvalues>` if it shifts out any bits that disagree with the 4381resultant sign bit. As such, NUW/NSW have the same semantics as they 4382would if the shift were expressed as a mul instruction with the same 4383nsw/nuw bits in (mul %op1, (shl 1, %op2)). 4384 4385Example: 4386"""""""" 4387 4388.. code-block:: llvm 4389 4390 <result> = shl i32 4, %var ; yields i32: 4 << %var 4391 <result> = shl i32 4, 2 ; yields i32: 16 4392 <result> = shl i32 1, 10 ; yields i32: 1024 4393 <result> = shl i32 1, 32 ; undefined 4394 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4> 4395 4396'``lshr``' Instruction 4397^^^^^^^^^^^^^^^^^^^^^^ 4398 4399Syntax: 4400""""""" 4401 4402:: 4403 4404 <result> = lshr <ty> <op1>, <op2> ; yields ty:result 4405 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result 4406 4407Overview: 4408""""""""" 4409 4410The '``lshr``' instruction (logical shift right) returns the first 4411operand shifted to the right a specified number of bits with zero fill. 4412 4413Arguments: 4414"""""""""" 4415 4416Both arguments to the '``lshr``' instruction must be the same 4417:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4418'``op2``' is treated as an unsigned value. 4419 4420Semantics: 4421"""""""""" 4422 4423This instruction always performs a logical shift right operation. The 4424most significant bits of the result will be filled with zero bits after 4425the shift. If ``op2`` is (statically or dynamically) equal to or larger 4426than the number of bits in ``op1``, the result is undefined. If the 4427arguments are vectors, each vector element of ``op1`` is shifted by the 4428corresponding shift amount in ``op2``. 4429 4430If the ``exact`` keyword is present, the result value of the ``lshr`` is 4431a :ref:`poison value <poisonvalues>` if any of the bits shifted out are 4432non-zero. 4433 4434Example: 4435"""""""" 4436 4437.. code-block:: llvm 4438 4439 <result> = lshr i32 4, 1 ; yields i32:result = 2 4440 <result> = lshr i32 4, 2 ; yields i32:result = 1 4441 <result> = lshr i8 4, 3 ; yields i8:result = 0 4442 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F 4443 <result> = lshr i32 1, 32 ; undefined 4444 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1> 4445 4446'``ashr``' Instruction 4447^^^^^^^^^^^^^^^^^^^^^^ 4448 4449Syntax: 4450""""""" 4451 4452:: 4453 4454 <result> = ashr <ty> <op1>, <op2> ; yields ty:result 4455 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result 4456 4457Overview: 4458""""""""" 4459 4460The '``ashr``' instruction (arithmetic shift right) returns the first 4461operand shifted to the right a specified number of bits with sign 4462extension. 4463 4464Arguments: 4465"""""""""" 4466 4467Both arguments to the '``ashr``' instruction must be the same 4468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4469'``op2``' is treated as an unsigned value. 4470 4471Semantics: 4472"""""""""" 4473 4474This instruction always performs an arithmetic shift right operation, 4475The most significant bits of the result will be filled with the sign bit 4476of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger 4477than the number of bits in ``op1``, the result is undefined. If the 4478arguments are vectors, each vector element of ``op1`` is shifted by the 4479corresponding shift amount in ``op2``. 4480 4481If the ``exact`` keyword is present, the result value of the ``ashr`` is 4482a :ref:`poison value <poisonvalues>` if any of the bits shifted out are 4483non-zero. 4484 4485Example: 4486"""""""" 4487 4488.. code-block:: llvm 4489 4490 <result> = ashr i32 4, 1 ; yields i32:result = 2 4491 <result> = ashr i32 4, 2 ; yields i32:result = 1 4492 <result> = ashr i8 4, 3 ; yields i8:result = 0 4493 <result> = ashr i8 -2, 1 ; yields i8:result = -1 4494 <result> = ashr i32 1, 32 ; undefined 4495 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0> 4496 4497'``and``' Instruction 4498^^^^^^^^^^^^^^^^^^^^^ 4499 4500Syntax: 4501""""""" 4502 4503:: 4504 4505 <result> = and <ty> <op1>, <op2> ; yields ty:result 4506 4507Overview: 4508""""""""" 4509 4510The '``and``' instruction returns the bitwise logical and of its two 4511operands. 4512 4513Arguments: 4514"""""""""" 4515 4516The two arguments to the '``and``' instruction must be 4517:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4518arguments must have identical types. 4519 4520Semantics: 4521"""""""""" 4522 4523The truth table used for the '``and``' instruction is: 4524 4525+-----+-----+-----+ 4526| In0 | In1 | Out | 4527+-----+-----+-----+ 4528| 0 | 0 | 0 | 4529+-----+-----+-----+ 4530| 0 | 1 | 0 | 4531+-----+-----+-----+ 4532| 1 | 0 | 0 | 4533+-----+-----+-----+ 4534| 1 | 1 | 1 | 4535+-----+-----+-----+ 4536 4537Example: 4538"""""""" 4539 4540.. code-block:: llvm 4541 4542 <result> = and i32 4, %var ; yields i32:result = 4 & %var 4543 <result> = and i32 15, 40 ; yields i32:result = 8 4544 <result> = and i32 4, 8 ; yields i32:result = 0 4545 4546'``or``' Instruction 4547^^^^^^^^^^^^^^^^^^^^ 4548 4549Syntax: 4550""""""" 4551 4552:: 4553 4554 <result> = or <ty> <op1>, <op2> ; yields ty:result 4555 4556Overview: 4557""""""""" 4558 4559The '``or``' instruction returns the bitwise logical inclusive or of its 4560two operands. 4561 4562Arguments: 4563"""""""""" 4564 4565The two arguments to the '``or``' instruction must be 4566:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4567arguments must have identical types. 4568 4569Semantics: 4570"""""""""" 4571 4572The truth table used for the '``or``' instruction is: 4573 4574+-----+-----+-----+ 4575| In0 | In1 | Out | 4576+-----+-----+-----+ 4577| 0 | 0 | 0 | 4578+-----+-----+-----+ 4579| 0 | 1 | 1 | 4580+-----+-----+-----+ 4581| 1 | 0 | 1 | 4582+-----+-----+-----+ 4583| 1 | 1 | 1 | 4584+-----+-----+-----+ 4585 4586Example: 4587"""""""" 4588 4589:: 4590 4591 <result> = or i32 4, %var ; yields i32:result = 4 | %var 4592 <result> = or i32 15, 40 ; yields i32:result = 47 4593 <result> = or i32 4, 8 ; yields i32:result = 12 4594 4595'``xor``' Instruction 4596^^^^^^^^^^^^^^^^^^^^^ 4597 4598Syntax: 4599""""""" 4600 4601:: 4602 4603 <result> = xor <ty> <op1>, <op2> ; yields ty:result 4604 4605Overview: 4606""""""""" 4607 4608The '``xor``' instruction returns the bitwise logical exclusive or of 4609its two operands. The ``xor`` is used to implement the "one's 4610complement" operation, which is the "~" operator in C. 4611 4612Arguments: 4613"""""""""" 4614 4615The two arguments to the '``xor``' instruction must be 4616:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4617arguments must have identical types. 4618 4619Semantics: 4620"""""""""" 4621 4622The truth table used for the '``xor``' instruction is: 4623 4624+-----+-----+-----+ 4625| In0 | In1 | Out | 4626+-----+-----+-----+ 4627| 0 | 0 | 0 | 4628+-----+-----+-----+ 4629| 0 | 1 | 1 | 4630+-----+-----+-----+ 4631| 1 | 0 | 1 | 4632+-----+-----+-----+ 4633| 1 | 1 | 0 | 4634+-----+-----+-----+ 4635 4636Example: 4637"""""""" 4638 4639.. code-block:: llvm 4640 4641 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var 4642 <result> = xor i32 15, 40 ; yields i32:result = 39 4643 <result> = xor i32 4, 8 ; yields i32:result = 12 4644 <result> = xor i32 %V, -1 ; yields i32:result = ~%V 4645 4646Vector Operations 4647----------------- 4648 4649LLVM supports several instructions to represent vector operations in a 4650target-independent manner. These instructions cover the element-access 4651and vector-specific operations needed to process vectors effectively. 4652While LLVM does directly support these vector operations, many 4653sophisticated algorithms will want to use target-specific intrinsics to 4654take full advantage of a specific target. 4655 4656.. _i_extractelement: 4657 4658'``extractelement``' Instruction 4659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4660 4661Syntax: 4662""""""" 4663 4664:: 4665 4666 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty> 4667 4668Overview: 4669""""""""" 4670 4671The '``extractelement``' instruction extracts a single scalar element 4672from a vector at a specified index. 4673 4674Arguments: 4675"""""""""" 4676 4677The first operand of an '``extractelement``' instruction is a value of 4678:ref:`vector <t_vector>` type. The second operand is an index indicating 4679the position from which to extract the element. The index may be a 4680variable of any integer type. 4681 4682Semantics: 4683"""""""""" 4684 4685The result is a scalar of the same type as the element type of ``val``. 4686Its value is the value at position ``idx`` of ``val``. If ``idx`` 4687exceeds the length of ``val``, the results are undefined. 4688 4689Example: 4690"""""""" 4691 4692.. code-block:: llvm 4693 4694 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32 4695 4696.. _i_insertelement: 4697 4698'``insertelement``' Instruction 4699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4700 4701Syntax: 4702""""""" 4703 4704:: 4705 4706 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>> 4707 4708Overview: 4709""""""""" 4710 4711The '``insertelement``' instruction inserts a scalar element into a 4712vector at a specified index. 4713 4714Arguments: 4715"""""""""" 4716 4717The first operand of an '``insertelement``' instruction is a value of 4718:ref:`vector <t_vector>` type. The second operand is a scalar value whose 4719type must equal the element type of the first operand. The third operand 4720is an index indicating the position at which to insert the value. The 4721index may be a variable of any integer type. 4722 4723Semantics: 4724"""""""""" 4725 4726The result is a vector of the same type as ``val``. Its element values 4727are those of ``val`` except at position ``idx``, where it gets the value 4728``elt``. If ``idx`` exceeds the length of ``val``, the results are 4729undefined. 4730 4731Example: 4732"""""""" 4733 4734.. code-block:: llvm 4735 4736 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32> 4737 4738.. _i_shufflevector: 4739 4740'``shufflevector``' Instruction 4741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4742 4743Syntax: 4744""""""" 4745 4746:: 4747 4748 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>> 4749 4750Overview: 4751""""""""" 4752 4753The '``shufflevector``' instruction constructs a permutation of elements 4754from two input vectors, returning a vector with the same element type as 4755the input and length that is the same as the shuffle mask. 4756 4757Arguments: 4758"""""""""" 4759 4760The first two operands of a '``shufflevector``' instruction are vectors 4761with the same type. The third argument is a shuffle mask whose element 4762type is always 'i32'. The result of the instruction is a vector whose 4763length is the same as the shuffle mask and whose element type is the 4764same as the element type of the first two operands. 4765 4766The shuffle mask operand is required to be a constant vector with either 4767constant integer or undef values. 4768 4769Semantics: 4770"""""""""" 4771 4772The elements of the two input vectors are numbered from left to right 4773across both of the vectors. The shuffle mask operand specifies, for each 4774element of the result vector, which element of the two input vectors the 4775result element gets. The element selector may be undef (meaning "don't 4776care") and the second operand may be undef if performing a shuffle from 4777only one vector. 4778 4779Example: 4780"""""""" 4781 4782.. code-block:: llvm 4783 4784 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, 4785 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32> 4786 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef, 4787 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle. 4788 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef, 4789 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> 4790 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, 4791 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32> 4792 4793Aggregate Operations 4794-------------------- 4795 4796LLVM supports several instructions for working with 4797:ref:`aggregate <t_aggregate>` values. 4798 4799.. _i_extractvalue: 4800 4801'``extractvalue``' Instruction 4802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4803 4804Syntax: 4805""""""" 4806 4807:: 4808 4809 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}* 4810 4811Overview: 4812""""""""" 4813 4814The '``extractvalue``' instruction extracts the value of a member field 4815from an :ref:`aggregate <t_aggregate>` value. 4816 4817Arguments: 4818"""""""""" 4819 4820The first operand of an '``extractvalue``' instruction is a value of 4821:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are 4822constant indices to specify which value to extract in a similar manner 4823as indices in a '``getelementptr``' instruction. 4824 4825The major differences to ``getelementptr`` indexing are: 4826 4827- Since the value being indexed is not a pointer, the first index is 4828 omitted and assumed to be zero. 4829- At least one index must be specified. 4830- Not only struct indices but also array indices must be in bounds. 4831 4832Semantics: 4833"""""""""" 4834 4835The result is the value at the position in the aggregate specified by 4836the index operands. 4837 4838Example: 4839"""""""" 4840 4841.. code-block:: llvm 4842 4843 <result> = extractvalue {i32, float} %agg, 0 ; yields i32 4844 4845.. _i_insertvalue: 4846 4847'``insertvalue``' Instruction 4848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4849 4850Syntax: 4851""""""" 4852 4853:: 4854 4855 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type> 4856 4857Overview: 4858""""""""" 4859 4860The '``insertvalue``' instruction inserts a value into a member field in 4861an :ref:`aggregate <t_aggregate>` value. 4862 4863Arguments: 4864"""""""""" 4865 4866The first operand of an '``insertvalue``' instruction is a value of 4867:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is 4868a first-class value to insert. The following operands are constant 4869indices indicating the position at which to insert the value in a 4870similar manner as indices in a '``extractvalue``' instruction. The value 4871to insert must have the same type as the value identified by the 4872indices. 4873 4874Semantics: 4875"""""""""" 4876 4877The result is an aggregate of the same type as ``val``. Its value is 4878that of ``val`` except that the value at the position specified by the 4879indices is that of ``elt``. 4880 4881Example: 4882"""""""" 4883 4884.. code-block:: llvm 4885 4886 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef} 4887 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val} 4888 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val} 4889 4890.. _memoryops: 4891 4892Memory Access and Addressing Operations 4893--------------------------------------- 4894 4895A key design point of an SSA-based representation is how it represents 4896memory. In LLVM, no memory locations are in SSA form, which makes things 4897very simple. This section describes how to read, write, and allocate 4898memory in LLVM. 4899 4900.. _i_alloca: 4901 4902'``alloca``' Instruction 4903^^^^^^^^^^^^^^^^^^^^^^^^ 4904 4905Syntax: 4906""""""" 4907 4908:: 4909 4910 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result 4911 4912Overview: 4913""""""""" 4914 4915The '``alloca``' instruction allocates memory on the stack frame of the 4916currently executing function, to be automatically released when this 4917function returns to its caller. The object is always allocated in the 4918generic address space (address space zero). 4919 4920Arguments: 4921"""""""""" 4922 4923The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements`` 4924bytes of memory on the runtime stack, returning a pointer of the 4925appropriate type to the program. If "NumElements" is specified, it is 4926the number of elements allocated, otherwise "NumElements" is defaulted 4927to be one. If a constant alignment is specified, the value result of the 4928allocation is guaranteed to be aligned to at least that boundary. If not 4929specified, or if zero, the target can choose to align the allocation on 4930any convenient boundary compatible with the type. 4931 4932'``type``' may be any sized type. 4933 4934Semantics: 4935"""""""""" 4936 4937Memory is allocated; a pointer is returned. The operation is undefined 4938if there is insufficient stack space for the allocation. '``alloca``'d 4939memory is automatically released when the function returns. The 4940'``alloca``' instruction is commonly used to represent automatic 4941variables that must have an address available. When the function returns 4942(either with the ``ret`` or ``resume`` instructions), the memory is 4943reclaimed. Allocating zero bytes is legal, but the result is undefined. 4944The order in which memory is allocated (ie., which way the stack grows) 4945is not specified. 4946 4947Example: 4948"""""""" 4949 4950.. code-block:: llvm 4951 4952 %ptr = alloca i32 ; yields i32*:ptr 4953 %ptr = alloca i32, i32 4 ; yields i32*:ptr 4954 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr 4955 %ptr = alloca i32, align 1024 ; yields i32*:ptr 4956 4957.. _i_load: 4958 4959'``load``' Instruction 4960^^^^^^^^^^^^^^^^^^^^^^ 4961 4962Syntax: 4963""""""" 4964 4965:: 4966 4967 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>] 4968 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> 4969 !<index> = !{ i32 1 } 4970 4971Overview: 4972""""""""" 4973 4974The '``load``' instruction is used to read from memory. 4975 4976Arguments: 4977"""""""""" 4978 4979The argument to the ``load`` instruction specifies the memory address 4980from which to load. The pointer must point to a :ref:`first 4981class <t_firstclass>` type. If the ``load`` is marked as ``volatile``, 4982then the optimizer is not allowed to modify the number or order of 4983execution of this ``load`` with other :ref:`volatile 4984operations <volatile>`. 4985 4986If the ``load`` is marked as ``atomic``, it takes an extra 4987:ref:`ordering <ordering>` and optional ``singlethread`` argument. The 4988``release`` and ``acq_rel`` orderings are not valid on ``load`` 4989instructions. Atomic loads produce :ref:`defined <memmodel>` results 4990when they may see multiple atomic stores. The type of the pointee must 4991be an integer type whose bit width is a power of two greater than or 4992equal to eight and less than or equal to a target-specific size limit. 4993``align`` must be explicitly specified on atomic loads, and the load has 4994undefined behavior if the alignment is not set to a value which is at 4995least the size in bytes of the pointee. ``!nontemporal`` does not have 4996any defined semantics for atomic loads. 4997 4998The optional constant ``align`` argument specifies the alignment of the 4999operation (that is, the alignment of the memory address). A value of 0 5000or an omitted ``align`` argument means that the operation has the ABI 5001alignment for the target. It is the responsibility of the code emitter 5002to ensure that the alignment information is correct. Overestimating the 5003alignment results in undefined behavior. Underestimating the alignment 5004may produce less efficient code. An alignment of 1 is always safe. 5005 5006The optional ``!nontemporal`` metadata must reference a single 5007metadata name ``<index>`` corresponding to a metadata node with one 5008``i32`` entry of value 1. The existence of the ``!nontemporal`` 5009metadata on the instruction tells the optimizer and code generator 5010that this load is not expected to be reused in the cache. The code 5011generator may select special instructions to save cache bandwidth, such 5012as the ``MOVNT`` instruction on x86. 5013 5014The optional ``!invariant.load`` metadata must reference a single 5015metadata name ``<index>`` corresponding to a metadata node with no 5016entries. The existence of the ``!invariant.load`` metadata on the 5017instruction tells the optimizer and code generator that this load 5018address points to memory which does not change value during program 5019execution. The optimizer may then move this load around, for example, by 5020hoisting it out of loops using loop invariant code motion. 5021 5022Semantics: 5023"""""""""" 5024 5025The location of memory pointed to is loaded. If the value being loaded 5026is of scalar type then the number of bytes read does not exceed the 5027minimum number of bytes needed to hold all bits of the type. For 5028example, loading an ``i24`` reads at most three bytes. When loading a 5029value of a type like ``i20`` with a size that is not an integral number 5030of bytes, the result is undefined if the value was not originally 5031written using a store of the same type. 5032 5033Examples: 5034""""""""" 5035 5036.. code-block:: llvm 5037 5038 %ptr = alloca i32 ; yields i32*:ptr 5039 store i32 3, i32* %ptr ; yields void 5040 %val = load i32* %ptr ; yields i32:val = i32 3 5041 5042.. _i_store: 5043 5044'``store``' Instruction 5045^^^^^^^^^^^^^^^^^^^^^^^ 5046 5047Syntax: 5048""""""" 5049 5050:: 5051 5052 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void 5053 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void 5054 5055Overview: 5056""""""""" 5057 5058The '``store``' instruction is used to write to memory. 5059 5060Arguments: 5061"""""""""" 5062 5063There are two arguments to the ``store`` instruction: a value to store 5064and an address at which to store it. The type of the ``<pointer>`` 5065operand must be a pointer to the :ref:`first class <t_firstclass>` type of 5066the ``<value>`` operand. If the ``store`` is marked as ``volatile``, 5067then the optimizer is not allowed to modify the number or order of 5068execution of this ``store`` with other :ref:`volatile 5069operations <volatile>`. 5070 5071If the ``store`` is marked as ``atomic``, it takes an extra 5072:ref:`ordering <ordering>` and optional ``singlethread`` argument. The 5073``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` 5074instructions. Atomic loads produce :ref:`defined <memmodel>` results 5075when they may see multiple atomic stores. The type of the pointee must 5076be an integer type whose bit width is a power of two greater than or 5077equal to eight and less than or equal to a target-specific size limit. 5078``align`` must be explicitly specified on atomic stores, and the store 5079has undefined behavior if the alignment is not set to a value which is 5080at least the size in bytes of the pointee. ``!nontemporal`` does not 5081have any defined semantics for atomic stores. 5082 5083The optional constant ``align`` argument specifies the alignment of the 5084operation (that is, the alignment of the memory address). A value of 0 5085or an omitted ``align`` argument means that the operation has the ABI 5086alignment for the target. It is the responsibility of the code emitter 5087to ensure that the alignment information is correct. Overestimating the 5088alignment results in undefined behavior. Underestimating the 5089alignment may produce less efficient code. An alignment of 1 is always 5090safe. 5091 5092The optional ``!nontemporal`` metadata must reference a single metadata 5093name ``<index>`` corresponding to a metadata node with one ``i32`` entry of 5094value 1. The existence of the ``!nontemporal`` metadata on the instruction 5095tells the optimizer and code generator that this load is not expected to 5096be reused in the cache. The code generator may select special 5097instructions to save cache bandwidth, such as the MOVNT instruction on 5098x86. 5099 5100Semantics: 5101"""""""""" 5102 5103The contents of memory are updated to contain ``<value>`` at the 5104location specified by the ``<pointer>`` operand. If ``<value>`` is 5105of scalar type then the number of bytes written does not exceed the 5106minimum number of bytes needed to hold all bits of the type. For 5107example, storing an ``i24`` writes at most three bytes. When writing a 5108value of a type like ``i20`` with a size that is not an integral number 5109of bytes, it is unspecified what happens to the extra bits that do not 5110belong to the type, but they will typically be overwritten. 5111 5112Example: 5113"""""""" 5114 5115.. code-block:: llvm 5116 5117 %ptr = alloca i32 ; yields i32*:ptr 5118 store i32 3, i32* %ptr ; yields void 5119 %val = load i32* %ptr ; yields i32:val = i32 3 5120 5121.. _i_fence: 5122 5123'``fence``' Instruction 5124^^^^^^^^^^^^^^^^^^^^^^^ 5125 5126Syntax: 5127""""""" 5128 5129:: 5130 5131 fence [singlethread] <ordering> ; yields void 5132 5133Overview: 5134""""""""" 5135 5136The '``fence``' instruction is used to introduce happens-before edges 5137between operations. 5138 5139Arguments: 5140"""""""""" 5141 5142'``fence``' instructions take an :ref:`ordering <ordering>` argument which 5143defines what *synchronizes-with* edges they add. They can only be given 5144``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings. 5145 5146Semantics: 5147"""""""""" 5148 5149A fence A which has (at least) ``release`` ordering semantics 5150*synchronizes with* a fence B with (at least) ``acquire`` ordering 5151semantics if and only if there exist atomic operations X and Y, both 5152operating on some atomic object M, such that A is sequenced before X, X 5153modifies M (either directly or through some side effect of a sequence 5154headed by X), Y is sequenced before B, and Y observes M. This provides a 5155*happens-before* dependency between A and B. Rather than an explicit 5156``fence``, one (but not both) of the atomic operations X or Y might 5157provide a ``release`` or ``acquire`` (resp.) ordering constraint and 5158still *synchronize-with* the explicit ``fence`` and establish the 5159*happens-before* edge. 5160 5161A ``fence`` which has ``seq_cst`` ordering, in addition to having both 5162``acquire`` and ``release`` semantics specified above, participates in 5163the global program order of other ``seq_cst`` operations and/or fences. 5164 5165The optional ":ref:`singlethread <singlethread>`" argument specifies 5166that the fence only synchronizes with other fences in the same thread. 5167(This is useful for interacting with signal handlers.) 5168 5169Example: 5170"""""""" 5171 5172.. code-block:: llvm 5173 5174 fence acquire ; yields void 5175 fence singlethread seq_cst ; yields void 5176 5177.. _i_cmpxchg: 5178 5179'``cmpxchg``' Instruction 5180^^^^^^^^^^^^^^^^^^^^^^^^^ 5181 5182Syntax: 5183""""""" 5184 5185:: 5186 5187 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 } 5188 5189Overview: 5190""""""""" 5191 5192The '``cmpxchg``' instruction is used to atomically modify memory. It 5193loads a value in memory and compares it to a given value. If they are 5194equal, it tries to store a new value into the memory. 5195 5196Arguments: 5197"""""""""" 5198 5199There are three arguments to the '``cmpxchg``' instruction: an address 5200to operate on, a value to compare to the value currently be at that 5201address, and a new value to place at that address if the compared values 5202are equal. The type of '<cmp>' must be an integer type whose bit width 5203is a power of two greater than or equal to eight and less than or equal 5204to a target-specific size limit. '<cmp>' and '<new>' must have the same 5205type, and the type of '<pointer>' must be a pointer to that type. If the 5206``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed 5207to modify the number or order of execution of this ``cmpxchg`` with 5208other :ref:`volatile operations <volatile>`. 5209 5210The success and failure :ref:`ordering <ordering>` arguments specify how this 5211``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters 5212must be at least ``monotonic``, the ordering constraint on failure must be no 5213stronger than that on success, and the failure ordering cannot be either 5214``release`` or ``acq_rel``. 5215 5216The optional "``singlethread``" argument declares that the ``cmpxchg`` 5217is only atomic with respect to code (usually signal handlers) running in 5218the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with 5219respect to all other code in the system. 5220 5221The pointer passed into cmpxchg must have alignment greater than or 5222equal to the size in memory of the operand. 5223 5224Semantics: 5225"""""""""" 5226 5227The contents of memory at the location specified by the '``<pointer>``' operand 5228is read and compared to '``<cmp>``'; if the read value is the equal, the 5229'``<new>``' is written. The original value at the location is returned, together 5230with a flag indicating success (true) or failure (false). 5231 5232If the cmpxchg operation is marked as ``weak`` then a spurious failure is 5233permitted: the operation may not write ``<new>`` even if the comparison 5234matched. 5235 5236If the cmpxchg operation is strong (the default), the i1 value is 1 if and only 5237if the value loaded equals ``cmp``. 5238 5239A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of 5240identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic 5241load with an ordering parameter determined the second ordering parameter. 5242 5243Example: 5244"""""""" 5245 5246.. code-block:: llvm 5247 5248 entry: 5249 %orig = atomic load i32* %ptr unordered ; yields i32 5250 br label %loop 5251 5252 loop: 5253 %cmp = phi i32 [ %orig, %entry ], [%old, %loop] 5254 %squared = mul i32 %cmp, %cmp 5255 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 } 5256 %value_loaded = extractvalue { i32, i1 } %val_success, 0 5257 %success = extractvalue { i32, i1 } %val_success, 1 5258 br i1 %success, label %done, label %loop 5259 5260 done: 5261 ... 5262 5263.. _i_atomicrmw: 5264 5265'``atomicrmw``' Instruction 5266^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5267 5268Syntax: 5269""""""" 5270 5271:: 5272 5273 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty 5274 5275Overview: 5276""""""""" 5277 5278The '``atomicrmw``' instruction is used to atomically modify memory. 5279 5280Arguments: 5281"""""""""" 5282 5283There are three arguments to the '``atomicrmw``' instruction: an 5284operation to apply, an address whose value to modify, an argument to the 5285operation. The operation must be one of the following keywords: 5286 5287- xchg 5288- add 5289- sub 5290- and 5291- nand 5292- or 5293- xor 5294- max 5295- min 5296- umax 5297- umin 5298 5299The type of '<value>' must be an integer type whose bit width is a power 5300of two greater than or equal to eight and less than or equal to a 5301target-specific size limit. The type of the '``<pointer>``' operand must 5302be a pointer to that type. If the ``atomicrmw`` is marked as 5303``volatile``, then the optimizer is not allowed to modify the number or 5304order of execution of this ``atomicrmw`` with other :ref:`volatile 5305operations <volatile>`. 5306 5307Semantics: 5308"""""""""" 5309 5310The contents of memory at the location specified by the '``<pointer>``' 5311operand are atomically read, modified, and written back. The original 5312value at the location is returned. The modification is specified by the 5313operation argument: 5314 5315- xchg: ``*ptr = val`` 5316- add: ``*ptr = *ptr + val`` 5317- sub: ``*ptr = *ptr - val`` 5318- and: ``*ptr = *ptr & val`` 5319- nand: ``*ptr = ~(*ptr & val)`` 5320- or: ``*ptr = *ptr | val`` 5321- xor: ``*ptr = *ptr ^ val`` 5322- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison) 5323- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison) 5324- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned 5325 comparison) 5326- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned 5327 comparison) 5328 5329Example: 5330"""""""" 5331 5332.. code-block:: llvm 5333 5334 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32 5335 5336.. _i_getelementptr: 5337 5338'``getelementptr``' Instruction 5339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5340 5341Syntax: 5342""""""" 5343 5344:: 5345 5346 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}* 5347 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}* 5348 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx 5349 5350Overview: 5351""""""""" 5352 5353The '``getelementptr``' instruction is used to get the address of a 5354subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs 5355address calculation only and does not access memory. 5356 5357Arguments: 5358"""""""""" 5359 5360The first argument is always a pointer or a vector of pointers, and 5361forms the basis of the calculation. The remaining arguments are indices 5362that indicate which of the elements of the aggregate object are indexed. 5363The interpretation of each index is dependent on the type being indexed 5364into. The first index always indexes the pointer value given as the 5365first argument, the second index indexes a value of the type pointed to 5366(not necessarily the value directly pointed to, since the first index 5367can be non-zero), etc. The first type indexed into must be a pointer 5368value, subsequent types can be arrays, vectors, and structs. Note that 5369subsequent types being indexed into can never be pointers, since that 5370would require loading the pointer before continuing calculation. 5371 5372The type of each index argument depends on the type it is indexing into. 5373When indexing into a (optionally packed) structure, only ``i32`` integer 5374**constants** are allowed (when using a vector of indices they must all 5375be the **same** ``i32`` integer constant). When indexing into an array, 5376pointer or vector, integers of any width are allowed, and they are not 5377required to be constant. These integers are treated as signed values 5378where relevant. 5379 5380For example, let's consider a C code fragment and how it gets compiled 5381to LLVM: 5382 5383.. code-block:: c 5384 5385 struct RT { 5386 char A; 5387 int B[10][20]; 5388 char C; 5389 }; 5390 struct ST { 5391 int X; 5392 double Y; 5393 struct RT Z; 5394 }; 5395 5396 int *foo(struct ST *s) { 5397 return &s[1].Z.B[5][13]; 5398 } 5399 5400The LLVM code generated by Clang is: 5401 5402.. code-block:: llvm 5403 5404 %struct.RT = type { i8, [10 x [20 x i32]], i8 } 5405 %struct.ST = type { i32, double, %struct.RT } 5406 5407 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp { 5408 entry: 5409 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13 5410 ret i32* %arrayidx 5411 } 5412 5413Semantics: 5414"""""""""" 5415 5416In the example above, the first index is indexing into the 5417'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``' 5418= '``{ i32, double, %struct.RT }``' type, a structure. The second index 5419indexes into the third element of the structure, yielding a 5420'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another 5421structure. The third index indexes into the second element of the 5422structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two 5423dimensions of the array are subscripted into, yielding an '``i32``' 5424type. The '``getelementptr``' instruction returns a pointer to this 5425element, thus computing a value of '``i32*``' type. 5426 5427Note that it is perfectly legal to index partially through a structure, 5428returning a pointer to an inner element. Because of this, the LLVM code 5429for the given testcase is equivalent to: 5430 5431.. code-block:: llvm 5432 5433 define i32* @foo(%struct.ST* %s) { 5434 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1 5435 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2 5436 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3 5437 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4 5438 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5 5439 ret i32* %t5 5440 } 5441 5442If the ``inbounds`` keyword is present, the result value of the 5443``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base 5444pointer is not an *in bounds* address of an allocated object, or if any 5445of the addresses that would be formed by successive addition of the 5446offsets implied by the indices to the base address with infinitely 5447precise signed arithmetic are not an *in bounds* address of that 5448allocated object. The *in bounds* addresses for an allocated object are 5449all the addresses that point into the object, plus the address one byte 5450past the end. In cases where the base is a vector of pointers the 5451``inbounds`` keyword applies to each of the computations element-wise. 5452 5453If the ``inbounds`` keyword is not present, the offsets are added to the 5454base address with silently-wrapping two's complement arithmetic. If the 5455offsets have a different width from the pointer, they are sign-extended 5456or truncated to the width of the pointer. The result value of the 5457``getelementptr`` may be outside the object pointed to by the base 5458pointer. The result value may not necessarily be used to access memory 5459though, even if it happens to point into allocated storage. See the 5460:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more 5461information. 5462 5463The getelementptr instruction is often confusing. For some more insight 5464into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`. 5465 5466Example: 5467"""""""" 5468 5469.. code-block:: llvm 5470 5471 ; yields [12 x i8]*:aptr 5472 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1 5473 ; yields i8*:vptr 5474 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1 5475 ; yields i8*:eptr 5476 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1 5477 ; yields i32*:iptr 5478 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0 5479 5480In cases where the pointer argument is a vector of pointers, each index 5481must be a vector with the same number of elements. For example: 5482 5483.. code-block:: llvm 5484 5485 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets, 5486 5487Conversion Operations 5488--------------------- 5489 5490The instructions in this category are the conversion instructions 5491(casting) which all take a single operand and a type. They perform 5492various bit conversions on the operand. 5493 5494'``trunc .. to``' Instruction 5495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5496 5497Syntax: 5498""""""" 5499 5500:: 5501 5502 <result> = trunc <ty> <value> to <ty2> ; yields ty2 5503 5504Overview: 5505""""""""" 5506 5507The '``trunc``' instruction truncates its operand to the type ``ty2``. 5508 5509Arguments: 5510"""""""""" 5511 5512The '``trunc``' instruction takes a value to trunc, and a type to trunc 5513it to. Both types must be of :ref:`integer <t_integer>` types, or vectors 5514of the same number of integers. The bit size of the ``value`` must be 5515larger than the bit size of the destination type, ``ty2``. Equal sized 5516types are not allowed. 5517 5518Semantics: 5519"""""""""" 5520 5521The '``trunc``' instruction truncates the high order bits in ``value`` 5522and converts the remaining bits to ``ty2``. Since the source size must 5523be larger than the destination size, ``trunc`` cannot be a *no-op cast*. 5524It will always truncate bits. 5525 5526Example: 5527"""""""" 5528 5529.. code-block:: llvm 5530 5531 %X = trunc i32 257 to i8 ; yields i8:1 5532 %Y = trunc i32 123 to i1 ; yields i1:true 5533 %Z = trunc i32 122 to i1 ; yields i1:false 5534 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7> 5535 5536'``zext .. to``' Instruction 5537^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5538 5539Syntax: 5540""""""" 5541 5542:: 5543 5544 <result> = zext <ty> <value> to <ty2> ; yields ty2 5545 5546Overview: 5547""""""""" 5548 5549The '``zext``' instruction zero extends its operand to type ``ty2``. 5550 5551Arguments: 5552"""""""""" 5553 5554The '``zext``' instruction takes a value to cast, and a type to cast it 5555to. Both types must be of :ref:`integer <t_integer>` types, or vectors of 5556the same number of integers. The bit size of the ``value`` must be 5557smaller than the bit size of the destination type, ``ty2``. 5558 5559Semantics: 5560"""""""""" 5561 5562The ``zext`` fills the high order bits of the ``value`` with zero bits 5563until it reaches the size of the destination type, ``ty2``. 5564 5565When zero extending from i1, the result will always be either 0 or 1. 5566 5567Example: 5568"""""""" 5569 5570.. code-block:: llvm 5571 5572 %X = zext i32 257 to i64 ; yields i64:257 5573 %Y = zext i1 true to i32 ; yields i32:1 5574 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7> 5575 5576'``sext .. to``' Instruction 5577^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5578 5579Syntax: 5580""""""" 5581 5582:: 5583 5584 <result> = sext <ty> <value> to <ty2> ; yields ty2 5585 5586Overview: 5587""""""""" 5588 5589The '``sext``' sign extends ``value`` to the type ``ty2``. 5590 5591Arguments: 5592"""""""""" 5593 5594The '``sext``' instruction takes a value to cast, and a type to cast it 5595to. Both types must be of :ref:`integer <t_integer>` types, or vectors of 5596the same number of integers. The bit size of the ``value`` must be 5597smaller than the bit size of the destination type, ``ty2``. 5598 5599Semantics: 5600"""""""""" 5601 5602The '``sext``' instruction performs a sign extension by copying the sign 5603bit (highest order bit) of the ``value`` until it reaches the bit size 5604of the type ``ty2``. 5605 5606When sign extending from i1, the extension always results in -1 or 0. 5607 5608Example: 5609"""""""" 5610 5611.. code-block:: llvm 5612 5613 %X = sext i8 -1 to i16 ; yields i16 :65535 5614 %Y = sext i1 true to i32 ; yields i32:-1 5615 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7> 5616 5617'``fptrunc .. to``' Instruction 5618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5619 5620Syntax: 5621""""""" 5622 5623:: 5624 5625 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2 5626 5627Overview: 5628""""""""" 5629 5630The '``fptrunc``' instruction truncates ``value`` to type ``ty2``. 5631 5632Arguments: 5633"""""""""" 5634 5635The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>` 5636value to cast and a :ref:`floating point <t_floating>` type to cast it to. 5637The size of ``value`` must be larger than the size of ``ty2``. This 5638implies that ``fptrunc`` cannot be used to make a *no-op cast*. 5639 5640Semantics: 5641"""""""""" 5642 5643The '``fptrunc``' instruction truncates a ``value`` from a larger 5644:ref:`floating point <t_floating>` type to a smaller :ref:`floating 5645point <t_floating>` type. If the value cannot fit within the 5646destination type, ``ty2``, then the results are undefined. 5647 5648Example: 5649"""""""" 5650 5651.. code-block:: llvm 5652 5653 %X = fptrunc double 123.0 to float ; yields float:123.0 5654 %Y = fptrunc double 1.0E+300 to float ; yields undefined 5655 5656'``fpext .. to``' Instruction 5657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5658 5659Syntax: 5660""""""" 5661 5662:: 5663 5664 <result> = fpext <ty> <value> to <ty2> ; yields ty2 5665 5666Overview: 5667""""""""" 5668 5669The '``fpext``' extends a floating point ``value`` to a larger floating 5670point value. 5671 5672Arguments: 5673"""""""""" 5674 5675The '``fpext``' instruction takes a :ref:`floating point <t_floating>` 5676``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it 5677to. The source type must be smaller than the destination type. 5678 5679Semantics: 5680"""""""""" 5681 5682The '``fpext``' instruction extends the ``value`` from a smaller 5683:ref:`floating point <t_floating>` type to a larger :ref:`floating 5684point <t_floating>` type. The ``fpext`` cannot be used to make a 5685*no-op cast* because it always changes bits. Use ``bitcast`` to make a 5686*no-op cast* for a floating point cast. 5687 5688Example: 5689"""""""" 5690 5691.. code-block:: llvm 5692 5693 %X = fpext float 3.125 to double ; yields double:3.125000e+00 5694 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000 5695 5696'``fptoui .. to``' Instruction 5697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5698 5699Syntax: 5700""""""" 5701 5702:: 5703 5704 <result> = fptoui <ty> <value> to <ty2> ; yields ty2 5705 5706Overview: 5707""""""""" 5708 5709The '``fptoui``' converts a floating point ``value`` to its unsigned 5710integer equivalent of type ``ty2``. 5711 5712Arguments: 5713"""""""""" 5714 5715The '``fptoui``' instruction takes a value to cast, which must be a 5716scalar or vector :ref:`floating point <t_floating>` value, and a type to 5717cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If 5718``ty`` is a vector floating point type, ``ty2`` must be a vector integer 5719type with the same number of elements as ``ty`` 5720 5721Semantics: 5722"""""""""" 5723 5724The '``fptoui``' instruction converts its :ref:`floating 5725point <t_floating>` operand into the nearest (rounding towards zero) 5726unsigned integer value. If the value cannot fit in ``ty2``, the results 5727are undefined. 5728 5729Example: 5730"""""""" 5731 5732.. code-block:: llvm 5733 5734 %X = fptoui double 123.0 to i32 ; yields i32:123 5735 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1 5736 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1 5737 5738'``fptosi .. to``' Instruction 5739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5740 5741Syntax: 5742""""""" 5743 5744:: 5745 5746 <result> = fptosi <ty> <value> to <ty2> ; yields ty2 5747 5748Overview: 5749""""""""" 5750 5751The '``fptosi``' instruction converts :ref:`floating point <t_floating>` 5752``value`` to type ``ty2``. 5753 5754Arguments: 5755"""""""""" 5756 5757The '``fptosi``' instruction takes a value to cast, which must be a 5758scalar or vector :ref:`floating point <t_floating>` value, and a type to 5759cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If 5760``ty`` is a vector floating point type, ``ty2`` must be a vector integer 5761type with the same number of elements as ``ty`` 5762 5763Semantics: 5764"""""""""" 5765 5766The '``fptosi``' instruction converts its :ref:`floating 5767point <t_floating>` operand into the nearest (rounding towards zero) 5768signed integer value. If the value cannot fit in ``ty2``, the results 5769are undefined. 5770 5771Example: 5772"""""""" 5773 5774.. code-block:: llvm 5775 5776 %X = fptosi double -123.0 to i32 ; yields i32:-123 5777 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1 5778 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1 5779 5780'``uitofp .. to``' Instruction 5781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5782 5783Syntax: 5784""""""" 5785 5786:: 5787 5788 <result> = uitofp <ty> <value> to <ty2> ; yields ty2 5789 5790Overview: 5791""""""""" 5792 5793The '``uitofp``' instruction regards ``value`` as an unsigned integer 5794and converts that value to the ``ty2`` type. 5795 5796Arguments: 5797"""""""""" 5798 5799The '``uitofp``' instruction takes a value to cast, which must be a 5800scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to 5801``ty2``, which must be an :ref:`floating point <t_floating>` type. If 5802``ty`` is a vector integer type, ``ty2`` must be a vector floating point 5803type with the same number of elements as ``ty`` 5804 5805Semantics: 5806"""""""""" 5807 5808The '``uitofp``' instruction interprets its operand as an unsigned 5809integer quantity and converts it to the corresponding floating point 5810value. If the value cannot fit in the floating point value, the results 5811are undefined. 5812 5813Example: 5814"""""""" 5815 5816.. code-block:: llvm 5817 5818 %X = uitofp i32 257 to float ; yields float:257.0 5819 %Y = uitofp i8 -1 to double ; yields double:255.0 5820 5821'``sitofp .. to``' Instruction 5822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5823 5824Syntax: 5825""""""" 5826 5827:: 5828 5829 <result> = sitofp <ty> <value> to <ty2> ; yields ty2 5830 5831Overview: 5832""""""""" 5833 5834The '``sitofp``' instruction regards ``value`` as a signed integer and 5835converts that value to the ``ty2`` type. 5836 5837Arguments: 5838"""""""""" 5839 5840The '``sitofp``' instruction takes a value to cast, which must be a 5841scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to 5842``ty2``, which must be an :ref:`floating point <t_floating>` type. If 5843``ty`` is a vector integer type, ``ty2`` must be a vector floating point 5844type with the same number of elements as ``ty`` 5845 5846Semantics: 5847"""""""""" 5848 5849The '``sitofp``' instruction interprets its operand as a signed integer 5850quantity and converts it to the corresponding floating point value. If 5851the value cannot fit in the floating point value, the results are 5852undefined. 5853 5854Example: 5855"""""""" 5856 5857.. code-block:: llvm 5858 5859 %X = sitofp i32 257 to float ; yields float:257.0 5860 %Y = sitofp i8 -1 to double ; yields double:-1.0 5861 5862.. _i_ptrtoint: 5863 5864'``ptrtoint .. to``' Instruction 5865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5866 5867Syntax: 5868""""""" 5869 5870:: 5871 5872 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2 5873 5874Overview: 5875""""""""" 5876 5877The '``ptrtoint``' instruction converts the pointer or a vector of 5878pointers ``value`` to the integer (or vector of integers) type ``ty2``. 5879 5880Arguments: 5881"""""""""" 5882 5883The '``ptrtoint``' instruction takes a ``value`` to cast, which must be 5884a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a 5885type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or 5886a vector of integers type. 5887 5888Semantics: 5889"""""""""" 5890 5891The '``ptrtoint``' instruction converts ``value`` to integer type 5892``ty2`` by interpreting the pointer value as an integer and either 5893truncating or zero extending that value to the size of the integer type. 5894If ``value`` is smaller than ``ty2`` then a zero extension is done. If 5895``value`` is larger than ``ty2`` then a truncation is done. If they are 5896the same size, then nothing is done (*no-op cast*) other than a type 5897change. 5898 5899Example: 5900"""""""" 5901 5902.. code-block:: llvm 5903 5904 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture 5905 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture 5906 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture 5907 5908.. _i_inttoptr: 5909 5910'``inttoptr .. to``' Instruction 5911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5912 5913Syntax: 5914""""""" 5915 5916:: 5917 5918 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2 5919 5920Overview: 5921""""""""" 5922 5923The '``inttoptr``' instruction converts an integer ``value`` to a 5924pointer type, ``ty2``. 5925 5926Arguments: 5927"""""""""" 5928 5929The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to 5930cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>` 5931type. 5932 5933Semantics: 5934"""""""""" 5935 5936The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by 5937applying either a zero extension or a truncation depending on the size 5938of the integer ``value``. If ``value`` is larger than the size of a 5939pointer then a truncation is done. If ``value`` is smaller than the size 5940of a pointer then a zero extension is done. If they are the same size, 5941nothing is done (*no-op cast*). 5942 5943Example: 5944"""""""" 5945 5946.. code-block:: llvm 5947 5948 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture 5949 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture 5950 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture 5951 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers 5952 5953.. _i_bitcast: 5954 5955'``bitcast .. to``' Instruction 5956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5957 5958Syntax: 5959""""""" 5960 5961:: 5962 5963 <result> = bitcast <ty> <value> to <ty2> ; yields ty2 5964 5965Overview: 5966""""""""" 5967 5968The '``bitcast``' instruction converts ``value`` to type ``ty2`` without 5969changing any bits. 5970 5971Arguments: 5972"""""""""" 5973 5974The '``bitcast``' instruction takes a value to cast, which must be a 5975non-aggregate first class value, and a type to cast it to, which must 5976also be a non-aggregate :ref:`first class <t_firstclass>` type. The 5977bit sizes of ``value`` and the destination type, ``ty2``, must be 5978identical. If the source type is a pointer, the destination type must 5979also be a pointer of the same size. This instruction supports bitwise 5980conversion of vectors to integers and to vectors of other types (as 5981long as they have the same size). 5982 5983Semantics: 5984"""""""""" 5985 5986The '``bitcast``' instruction converts ``value`` to type ``ty2``. It 5987is always a *no-op cast* because no bits change with this 5988conversion. The conversion is done as if the ``value`` had been stored 5989to memory and read back as type ``ty2``. Pointer (or vector of 5990pointers) types may only be converted to other pointer (or vector of 5991pointers) types with the same address space through this instruction. 5992To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>` 5993or :ref:`ptrtoint <i_ptrtoint>` instructions first. 5994 5995Example: 5996"""""""" 5997 5998.. code-block:: llvm 5999 6000 %X = bitcast i8 255 to i8 ; yields i8 :-1 6001 %Y = bitcast i32* %x to sint* ; yields sint*:%x 6002 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V 6003 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*> 6004 6005.. _i_addrspacecast: 6006 6007'``addrspacecast .. to``' Instruction 6008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6009 6010Syntax: 6011""""""" 6012 6013:: 6014 6015 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2 6016 6017Overview: 6018""""""""" 6019 6020The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in 6021address space ``n`` to type ``pty2`` in address space ``m``. 6022 6023Arguments: 6024"""""""""" 6025 6026The '``addrspacecast``' instruction takes a pointer or vector of pointer value 6027to cast and a pointer type to cast it to, which must have a different 6028address space. 6029 6030Semantics: 6031"""""""""" 6032 6033The '``addrspacecast``' instruction converts the pointer value 6034``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex 6035value modification, depending on the target and the address space 6036pair. Pointer conversions within the same address space must be 6037performed with the ``bitcast`` instruction. Note that if the address space 6038conversion is legal then both result and operand refer to the same memory 6039location. 6040 6041Example: 6042"""""""" 6043 6044.. code-block:: llvm 6045 6046 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x 6047 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y 6048 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z 6049 6050.. _otherops: 6051 6052Other Operations 6053---------------- 6054 6055The instructions in this category are the "miscellaneous" instructions, 6056which defy better classification. 6057 6058.. _i_icmp: 6059 6060'``icmp``' Instruction 6061^^^^^^^^^^^^^^^^^^^^^^ 6062 6063Syntax: 6064""""""" 6065 6066:: 6067 6068 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result 6069 6070Overview: 6071""""""""" 6072 6073The '``icmp``' instruction returns a boolean value or a vector of 6074boolean values based on comparison of its two integer, integer vector, 6075pointer, or pointer vector operands. 6076 6077Arguments: 6078"""""""""" 6079 6080The '``icmp``' instruction takes three operands. The first operand is 6081the condition code indicating the kind of comparison to perform. It is 6082not a value, just a keyword. The possible condition code are: 6083 6084#. ``eq``: equal 6085#. ``ne``: not equal 6086#. ``ugt``: unsigned greater than 6087#. ``uge``: unsigned greater or equal 6088#. ``ult``: unsigned less than 6089#. ``ule``: unsigned less or equal 6090#. ``sgt``: signed greater than 6091#. ``sge``: signed greater or equal 6092#. ``slt``: signed less than 6093#. ``sle``: signed less or equal 6094 6095The remaining two arguments must be :ref:`integer <t_integer>` or 6096:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They 6097must also be identical types. 6098 6099Semantics: 6100"""""""""" 6101 6102The '``icmp``' compares ``op1`` and ``op2`` according to the condition 6103code given as ``cond``. The comparison performed always yields either an 6104:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows: 6105 6106#. ``eq``: yields ``true`` if the operands are equal, ``false`` 6107 otherwise. No sign interpretation is necessary or performed. 6108#. ``ne``: yields ``true`` if the operands are unequal, ``false`` 6109 otherwise. No sign interpretation is necessary or performed. 6110#. ``ugt``: interprets the operands as unsigned values and yields 6111 ``true`` if ``op1`` is greater than ``op2``. 6112#. ``uge``: interprets the operands as unsigned values and yields 6113 ``true`` if ``op1`` is greater than or equal to ``op2``. 6114#. ``ult``: interprets the operands as unsigned values and yields 6115 ``true`` if ``op1`` is less than ``op2``. 6116#. ``ule``: interprets the operands as unsigned values and yields 6117 ``true`` if ``op1`` is less than or equal to ``op2``. 6118#. ``sgt``: interprets the operands as signed values and yields ``true`` 6119 if ``op1`` is greater than ``op2``. 6120#. ``sge``: interprets the operands as signed values and yields ``true`` 6121 if ``op1`` is greater than or equal to ``op2``. 6122#. ``slt``: interprets the operands as signed values and yields ``true`` 6123 if ``op1`` is less than ``op2``. 6124#. ``sle``: interprets the operands as signed values and yields ``true`` 6125 if ``op1`` is less than or equal to ``op2``. 6126 6127If the operands are :ref:`pointer <t_pointer>` typed, the pointer values 6128are compared as if they were integers. 6129 6130If the operands are integer vectors, then they are compared element by 6131element. The result is an ``i1`` vector with the same number of elements 6132as the values being compared. Otherwise, the result is an ``i1``. 6133 6134Example: 6135"""""""" 6136 6137.. code-block:: llvm 6138 6139 <result> = icmp eq i32 4, 5 ; yields: result=false 6140 <result> = icmp ne float* %X, %X ; yields: result=false 6141 <result> = icmp ult i16 4, 5 ; yields: result=true 6142 <result> = icmp sgt i16 4, 5 ; yields: result=false 6143 <result> = icmp ule i16 -4, 5 ; yields: result=false 6144 <result> = icmp sge i16 4, 5 ; yields: result=false 6145 6146Note that the code generator does not yet support vector types with the 6147``icmp`` instruction. 6148 6149.. _i_fcmp: 6150 6151'``fcmp``' Instruction 6152^^^^^^^^^^^^^^^^^^^^^^ 6153 6154Syntax: 6155""""""" 6156 6157:: 6158 6159 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result 6160 6161Overview: 6162""""""""" 6163 6164The '``fcmp``' instruction returns a boolean value or vector of boolean 6165values based on comparison of its operands. 6166 6167If the operands are floating point scalars, then the result type is a 6168boolean (:ref:`i1 <t_integer>`). 6169 6170If the operands are floating point vectors, then the result type is a 6171vector of boolean with the same number of elements as the operands being 6172compared. 6173 6174Arguments: 6175"""""""""" 6176 6177The '``fcmp``' instruction takes three operands. The first operand is 6178the condition code indicating the kind of comparison to perform. It is 6179not a value, just a keyword. The possible condition code are: 6180 6181#. ``false``: no comparison, always returns false 6182#. ``oeq``: ordered and equal 6183#. ``ogt``: ordered and greater than 6184#. ``oge``: ordered and greater than or equal 6185#. ``olt``: ordered and less than 6186#. ``ole``: ordered and less than or equal 6187#. ``one``: ordered and not equal 6188#. ``ord``: ordered (no nans) 6189#. ``ueq``: unordered or equal 6190#. ``ugt``: unordered or greater than 6191#. ``uge``: unordered or greater than or equal 6192#. ``ult``: unordered or less than 6193#. ``ule``: unordered or less than or equal 6194#. ``une``: unordered or not equal 6195#. ``uno``: unordered (either nans) 6196#. ``true``: no comparison, always returns true 6197 6198*Ordered* means that neither operand is a QNAN while *unordered* means 6199that either operand may be a QNAN. 6200 6201Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating 6202point <t_floating>` type or a :ref:`vector <t_vector>` of floating point 6203type. They must have identical types. 6204 6205Semantics: 6206"""""""""" 6207 6208The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the 6209condition code given as ``cond``. If the operands are vectors, then the 6210vectors are compared element by element. Each comparison performed 6211always yields an :ref:`i1 <t_integer>` result, as follows: 6212 6213#. ``false``: always yields ``false``, regardless of operands. 6214#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1`` 6215 is equal to ``op2``. 6216#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1`` 6217 is greater than ``op2``. 6218#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1`` 6219 is greater than or equal to ``op2``. 6220#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1`` 6221 is less than ``op2``. 6222#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1`` 6223 is less than or equal to ``op2``. 6224#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1`` 6225 is not equal to ``op2``. 6226#. ``ord``: yields ``true`` if both operands are not a QNAN. 6227#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is 6228 equal to ``op2``. 6229#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is 6230 greater than ``op2``. 6231#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is 6232 greater than or equal to ``op2``. 6233#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is 6234 less than ``op2``. 6235#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is 6236 less than or equal to ``op2``. 6237#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is 6238 not equal to ``op2``. 6239#. ``uno``: yields ``true`` if either operand is a QNAN. 6240#. ``true``: always yields ``true``, regardless of operands. 6241 6242Example: 6243"""""""" 6244 6245.. code-block:: llvm 6246 6247 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false 6248 <result> = fcmp one float 4.0, 5.0 ; yields: result=true 6249 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true 6250 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false 6251 6252Note that the code generator does not yet support vector types with the 6253``fcmp`` instruction. 6254 6255.. _i_phi: 6256 6257'``phi``' Instruction 6258^^^^^^^^^^^^^^^^^^^^^ 6259 6260Syntax: 6261""""""" 6262 6263:: 6264 6265 <result> = phi <ty> [ <val0>, <label0>], ... 6266 6267Overview: 6268""""""""" 6269 6270The '``phi``' instruction is used to implement the φ node in the SSA 6271graph representing the function. 6272 6273Arguments: 6274"""""""""" 6275 6276The type of the incoming values is specified with the first type field. 6277After this, the '``phi``' instruction takes a list of pairs as 6278arguments, with one pair for each predecessor basic block of the current 6279block. Only values of :ref:`first class <t_firstclass>` type may be used as 6280the value arguments to the PHI node. Only labels may be used as the 6281label arguments. 6282 6283There must be no non-phi instructions between the start of a basic block 6284and the PHI instructions: i.e. PHI instructions must be first in a basic 6285block. 6286 6287For the purposes of the SSA form, the use of each incoming value is 6288deemed to occur on the edge from the corresponding predecessor block to 6289the current block (but after any definition of an '``invoke``' 6290instruction's return value on the same edge). 6291 6292Semantics: 6293"""""""""" 6294 6295At runtime, the '``phi``' instruction logically takes on the value 6296specified by the pair corresponding to the predecessor basic block that 6297executed just prior to the current block. 6298 6299Example: 6300"""""""" 6301 6302.. code-block:: llvm 6303 6304 Loop: ; Infinite loop that counts from 0 on up... 6305 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ] 6306 %nextindvar = add i32 %indvar, 1 6307 br label %Loop 6308 6309.. _i_select: 6310 6311'``select``' Instruction 6312^^^^^^^^^^^^^^^^^^^^^^^^ 6313 6314Syntax: 6315""""""" 6316 6317:: 6318 6319 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty 6320 6321 selty is either i1 or {<N x i1>} 6322 6323Overview: 6324""""""""" 6325 6326The '``select``' instruction is used to choose one value based on a 6327condition, without IR-level branching. 6328 6329Arguments: 6330"""""""""" 6331 6332The '``select``' instruction requires an 'i1' value or a vector of 'i1' 6333values indicating the condition, and two values of the same :ref:`first 6334class <t_firstclass>` type. If the val1/val2 are vectors and the 6335condition is a scalar, then entire vectors are selected, not individual 6336elements. 6337 6338Semantics: 6339"""""""""" 6340 6341If the condition is an i1 and it evaluates to 1, the instruction returns 6342the first value argument; otherwise, it returns the second value 6343argument. 6344 6345If the condition is a vector of i1, then the value arguments must be 6346vectors of the same size, and the selection is done element by element. 6347 6348Example: 6349"""""""" 6350 6351.. code-block:: llvm 6352 6353 %X = select i1 true, i8 17, i8 42 ; yields i8:17 6354 6355.. _i_call: 6356 6357'``call``' Instruction 6358^^^^^^^^^^^^^^^^^^^^^^ 6359 6360Syntax: 6361""""""" 6362 6363:: 6364 6365 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs] 6366 6367Overview: 6368""""""""" 6369 6370The '``call``' instruction represents a simple function call. 6371 6372Arguments: 6373"""""""""" 6374 6375This instruction requires several arguments: 6376 6377#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers 6378 should perform tail call optimization. The ``tail`` marker is a hint that 6379 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker 6380 means that the call must be tail call optimized in order for the program to 6381 be correct. The ``musttail`` marker provides these guarantees: 6382 6383 #. The call will not cause unbounded stack growth if it is part of a 6384 recursive cycle in the call graph. 6385 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are 6386 forwarded in place. 6387 6388 Both markers imply that the callee does not access allocas or varargs from 6389 the caller. Calls marked ``musttail`` must obey the following additional 6390 rules: 6391 6392 - The call must immediately precede a :ref:`ret <i_ret>` instruction, 6393 or a pointer bitcast followed by a ret instruction. 6394 - The ret instruction must return the (possibly bitcasted) value 6395 produced by the call or void. 6396 - The caller and callee prototypes must match. Pointer types of 6397 parameters or return types may differ in pointee type, but not 6398 in address space. 6399 - The calling conventions of the caller and callee must match. 6400 - All ABI-impacting function attributes, such as sret, byval, inreg, 6401 returned, and inalloca, must match. 6402 6403 Tail call optimization for calls marked ``tail`` is guaranteed to occur if 6404 the following conditions are met: 6405 6406 - Caller and callee both have the calling convention ``fastcc``. 6407 - The call is in tail position (ret immediately follows call and ret 6408 uses value of call or is void). 6409 - Option ``-tailcallopt`` is enabled, or 6410 ``llvm::GuaranteedTailCallOpt`` is ``true``. 6411 - `Platform-specific constraints are 6412 met. <CodeGenerator.html#tailcallopt>`_ 6413 6414#. The optional "cconv" marker indicates which :ref:`calling 6415 convention <callingconv>` the call should use. If none is 6416 specified, the call defaults to using C calling conventions. The 6417 calling convention of the call must match the calling convention of 6418 the target function, or else the behavior is undefined. 6419#. The optional :ref:`Parameter Attributes <paramattrs>` list for return 6420 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes 6421 are valid here. 6422#. '``ty``': the type of the call instruction itself which is also the 6423 type of the return value. Functions that return no value are marked 6424 ``void``. 6425#. '``fnty``': shall be the signature of the pointer to function value 6426 being invoked. The argument types must match the types implied by 6427 this signature. This type can be omitted if the function is not 6428 varargs and if the function type does not return a pointer to a 6429 function. 6430#. '``fnptrval``': An LLVM value containing a pointer to a function to 6431 be invoked. In most cases, this is a direct function invocation, but 6432 indirect ``call``'s are just as possible, calling an arbitrary pointer 6433 to function value. 6434#. '``function args``': argument list whose types match the function 6435 signature argument types and parameter attributes. All arguments must 6436 be of :ref:`first class <t_firstclass>` type. If the function signature 6437 indicates the function accepts a variable number of arguments, the 6438 extra arguments can be specified. 6439#. The optional :ref:`function attributes <fnattrs>` list. Only 6440 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``' 6441 attributes are valid here. 6442 6443Semantics: 6444"""""""""" 6445 6446The '``call``' instruction is used to cause control flow to transfer to 6447a specified function, with its incoming arguments bound to the specified 6448values. Upon a '``ret``' instruction in the called function, control 6449flow continues with the instruction after the function call, and the 6450return value of the function is bound to the result argument. 6451 6452Example: 6453"""""""" 6454 6455.. code-block:: llvm 6456 6457 %retval = call i32 @test(i32 %argc) 6458 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32 6459 %X = tail call i32 @foo() ; yields i32 6460 %Y = tail call fastcc i32 @foo() ; yields i32 6461 call void %foo(i8 97 signext) 6462 6463 %struct.A = type { i32, i8 } 6464 %r = call %struct.A @foo() ; yields { i32, i8 } 6465 %gr = extractvalue %struct.A %r, 0 ; yields i32 6466 %gr1 = extractvalue %struct.A %r, 1 ; yields i8 6467 %Z = call void @foo() noreturn ; indicates that %foo never returns normally 6468 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended 6469 6470llvm treats calls to some functions with names and arguments that match 6471the standard C99 library as being the C99 library functions, and may 6472perform optimizations or generate code for them under that assumption. 6473This is something we'd like to change in the future to provide better 6474support for freestanding environments and non-C-based languages. 6475 6476.. _i_va_arg: 6477 6478'``va_arg``' Instruction 6479^^^^^^^^^^^^^^^^^^^^^^^^ 6480 6481Syntax: 6482""""""" 6483 6484:: 6485 6486 <resultval> = va_arg <va_list*> <arglist>, <argty> 6487 6488Overview: 6489""""""""" 6490 6491The '``va_arg``' instruction is used to access arguments passed through 6492the "variable argument" area of a function call. It is used to implement 6493the ``va_arg`` macro in C. 6494 6495Arguments: 6496"""""""""" 6497 6498This instruction takes a ``va_list*`` value and the type of the 6499argument. It returns a value of the specified argument type and 6500increments the ``va_list`` to point to the next argument. The actual 6501type of ``va_list`` is target specific. 6502 6503Semantics: 6504"""""""""" 6505 6506The '``va_arg``' instruction loads an argument of the specified type 6507from the specified ``va_list`` and causes the ``va_list`` to point to 6508the next argument. For more information, see the variable argument 6509handling :ref:`Intrinsic Functions <int_varargs>`. 6510 6511It is legal for this instruction to be called in a function which does 6512not take a variable number of arguments, for example, the ``vfprintf`` 6513function. 6514 6515``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic 6516function <intrinsics>` because it takes a type as an argument. 6517 6518Example: 6519"""""""" 6520 6521See the :ref:`variable argument processing <int_varargs>` section. 6522 6523Note that the code generator does not yet fully support va\_arg on many 6524targets. Also, it does not currently support va\_arg with aggregate 6525types on any target. 6526 6527.. _i_landingpad: 6528 6529'``landingpad``' Instruction 6530^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6531 6532Syntax: 6533""""""" 6534 6535:: 6536 6537 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+ 6538 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>* 6539 6540 <clause> := catch <type> <value> 6541 <clause> := filter <array constant type> <array constant> 6542 6543Overview: 6544""""""""" 6545 6546The '``landingpad``' instruction is used by `LLVM's exception handling 6547system <ExceptionHandling.html#overview>`_ to specify that a basic block 6548is a landing pad --- one where the exception lands, and corresponds to the 6549code found in the ``catch`` portion of a ``try``/``catch`` sequence. It 6550defines values supplied by the personality function (``pers_fn``) upon 6551re-entry to the function. The ``resultval`` has the type ``resultty``. 6552 6553Arguments: 6554"""""""""" 6555 6556This instruction takes a ``pers_fn`` value. This is the personality 6557function associated with the unwinding mechanism. The optional 6558``cleanup`` flag indicates that the landing pad block is a cleanup. 6559 6560A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and 6561contains the global variable representing the "type" that may be caught 6562or filtered respectively. Unlike the ``catch`` clause, the ``filter`` 6563clause takes an array constant as its argument. Use 6564"``[0 x i8**] undef``" for a filter which cannot throw. The 6565'``landingpad``' instruction must contain *at least* one ``clause`` or 6566the ``cleanup`` flag. 6567 6568Semantics: 6569"""""""""" 6570 6571The '``landingpad``' instruction defines the values which are set by the 6572personality function (``pers_fn``) upon re-entry to the function, and 6573therefore the "result type" of the ``landingpad`` instruction. As with 6574calling conventions, how the personality function results are 6575represented in LLVM IR is target specific. 6576 6577The clauses are applied in order from top to bottom. If two 6578``landingpad`` instructions are merged together through inlining, the 6579clauses from the calling function are appended to the list of clauses. 6580When the call stack is being unwound due to an exception being thrown, 6581the exception is compared against each ``clause`` in turn. If it doesn't 6582match any of the clauses, and the ``cleanup`` flag is not set, then 6583unwinding continues further up the call stack. 6584 6585The ``landingpad`` instruction has several restrictions: 6586 6587- A landing pad block is a basic block which is the unwind destination 6588 of an '``invoke``' instruction. 6589- A landing pad block must have a '``landingpad``' instruction as its 6590 first non-PHI instruction. 6591- There can be only one '``landingpad``' instruction within the landing 6592 pad block. 6593- A basic block that is not a landing pad block may not include a 6594 '``landingpad``' instruction. 6595- All '``landingpad``' instructions in a function must have the same 6596 personality function. 6597 6598Example: 6599"""""""" 6600 6601.. code-block:: llvm 6602 6603 ;; A landing pad which can catch an integer. 6604 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6605 catch i8** @_ZTIi 6606 ;; A landing pad that is a cleanup. 6607 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6608 cleanup 6609 ;; A landing pad which can catch an integer and can only throw a double. 6610 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6611 catch i8** @_ZTIi 6612 filter [1 x i8**] [@_ZTId] 6613 6614.. _intrinsics: 6615 6616Intrinsic Functions 6617=================== 6618 6619LLVM supports the notion of an "intrinsic function". These functions 6620have well known names and semantics and are required to follow certain 6621restrictions. Overall, these intrinsics represent an extension mechanism 6622for the LLVM language that does not require changing all of the 6623transformations in LLVM when adding to the language (or the bitcode 6624reader/writer, the parser, etc...). 6625 6626Intrinsic function names must all start with an "``llvm.``" prefix. This 6627prefix is reserved in LLVM for intrinsic names; thus, function names may 6628not begin with this prefix. Intrinsic functions must always be external 6629functions: you cannot define the body of intrinsic functions. Intrinsic 6630functions may only be used in call or invoke instructions: it is illegal 6631to take the address of an intrinsic function. Additionally, because 6632intrinsic functions are part of the LLVM language, it is required if any 6633are added that they be documented here. 6634 6635Some intrinsic functions can be overloaded, i.e., the intrinsic 6636represents a family of functions that perform the same operation but on 6637different data types. Because LLVM can represent over 8 million 6638different integer types, overloading is used commonly to allow an 6639intrinsic function to operate on any integer type. One or more of the 6640argument types or the result type can be overloaded to accept any 6641integer type. Argument types may also be defined as exactly matching a 6642previous argument's type or the result type. This allows an intrinsic 6643function which accepts multiple arguments, but needs all of them to be 6644of the same type, to only be overloaded with respect to a single 6645argument or the result. 6646 6647Overloaded intrinsics will have the names of its overloaded argument 6648types encoded into its function name, each preceded by a period. Only 6649those types which are overloaded result in a name suffix. Arguments 6650whose type is matched against another type do not. For example, the 6651``llvm.ctpop`` function can take an integer of any width and returns an 6652integer of exactly the same integer width. This leads to a family of 6653functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and 6654``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is 6655overloaded, and only one type suffix is required. Because the argument's 6656type is matched against the return type, it does not require its own 6657name suffix. 6658 6659To learn how to add an intrinsic function, please see the `Extending 6660LLVM Guide <ExtendingLLVM.html>`_. 6661 6662.. _int_varargs: 6663 6664Variable Argument Handling Intrinsics 6665------------------------------------- 6666 6667Variable argument support is defined in LLVM with the 6668:ref:`va_arg <i_va_arg>` instruction and these three intrinsic 6669functions. These functions are related to the similarly named macros 6670defined in the ``<stdarg.h>`` header file. 6671 6672All of these functions operate on arguments that use a target-specific 6673value type "``va_list``". The LLVM assembly language reference manual 6674does not define what this type is, so all transformations should be 6675prepared to handle these functions regardless of the type used. 6676 6677This example shows how the :ref:`va_arg <i_va_arg>` instruction and the 6678variable argument handling intrinsic functions are used. 6679 6680.. code-block:: llvm 6681 6682 define i32 @test(i32 %X, ...) { 6683 ; Initialize variable argument processing 6684 %ap = alloca i8* 6685 %ap2 = bitcast i8** %ap to i8* 6686 call void @llvm.va_start(i8* %ap2) 6687 6688 ; Read a single integer argument 6689 %tmp = va_arg i8** %ap, i32 6690 6691 ; Demonstrate usage of llvm.va_copy and llvm.va_end 6692 %aq = alloca i8* 6693 %aq2 = bitcast i8** %aq to i8* 6694 call void @llvm.va_copy(i8* %aq2, i8* %ap2) 6695 call void @llvm.va_end(i8* %aq2) 6696 6697 ; Stop processing of arguments. 6698 call void @llvm.va_end(i8* %ap2) 6699 ret i32 %tmp 6700 } 6701 6702 declare void @llvm.va_start(i8*) 6703 declare void @llvm.va_copy(i8*, i8*) 6704 declare void @llvm.va_end(i8*) 6705 6706.. _int_va_start: 6707 6708'``llvm.va_start``' Intrinsic 6709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6710 6711Syntax: 6712""""""" 6713 6714:: 6715 6716 declare void @llvm.va_start(i8* <arglist>) 6717 6718Overview: 6719""""""""" 6720 6721The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for 6722subsequent use by ``va_arg``. 6723 6724Arguments: 6725"""""""""" 6726 6727The argument is a pointer to a ``va_list`` element to initialize. 6728 6729Semantics: 6730"""""""""" 6731 6732The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro 6733available in C. In a target-dependent way, it initializes the 6734``va_list`` element to which the argument points, so that the next call 6735to ``va_arg`` will produce the first variable argument passed to the 6736function. Unlike the C ``va_start`` macro, this intrinsic does not need 6737to know the last argument of the function as the compiler can figure 6738that out. 6739 6740'``llvm.va_end``' Intrinsic 6741^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6742 6743Syntax: 6744""""""" 6745 6746:: 6747 6748 declare void @llvm.va_end(i8* <arglist>) 6749 6750Overview: 6751""""""""" 6752 6753The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been 6754initialized previously with ``llvm.va_start`` or ``llvm.va_copy``. 6755 6756Arguments: 6757"""""""""" 6758 6759The argument is a pointer to a ``va_list`` to destroy. 6760 6761Semantics: 6762"""""""""" 6763 6764The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro 6765available in C. In a target-dependent way, it destroys the ``va_list`` 6766element to which the argument points. Calls to 6767:ref:`llvm.va_start <int_va_start>` and 6768:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to 6769``llvm.va_end``. 6770 6771.. _int_va_copy: 6772 6773'``llvm.va_copy``' Intrinsic 6774^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6775 6776Syntax: 6777""""""" 6778 6779:: 6780 6781 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>) 6782 6783Overview: 6784""""""""" 6785 6786The '``llvm.va_copy``' intrinsic copies the current argument position 6787from the source argument list to the destination argument list. 6788 6789Arguments: 6790"""""""""" 6791 6792The first argument is a pointer to a ``va_list`` element to initialize. 6793The second argument is a pointer to a ``va_list`` element to copy from. 6794 6795Semantics: 6796"""""""""" 6797 6798The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro 6799available in C. In a target-dependent way, it copies the source 6800``va_list`` element into the destination ``va_list`` element. This 6801intrinsic is necessary because the `` llvm.va_start`` intrinsic may be 6802arbitrarily complex and require, for example, memory allocation. 6803 6804Accurate Garbage Collection Intrinsics 6805-------------------------------------- 6806 6807LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_ 6808(GC) requires the implementation and generation of these intrinsics. 6809These intrinsics allow identification of :ref:`GC roots on the 6810stack <int_gcroot>`, as well as garbage collector implementations that 6811require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. 6812Front-ends for type-safe garbage collected languages should generate 6813these intrinsics to make use of the LLVM garbage collectors. For more 6814details, see `Accurate Garbage Collection with 6815LLVM <GarbageCollection.html>`_. 6816 6817The garbage collection intrinsics only operate on objects in the generic 6818address space (address space zero). 6819 6820.. _int_gcroot: 6821 6822'``llvm.gcroot``' Intrinsic 6823^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6824 6825Syntax: 6826""""""" 6827 6828:: 6829 6830 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata) 6831 6832Overview: 6833""""""""" 6834 6835The '``llvm.gcroot``' intrinsic declares the existence of a GC root to 6836the code generator, and allows some metadata to be associated with it. 6837 6838Arguments: 6839"""""""""" 6840 6841The first argument specifies the address of a stack object that contains 6842the root pointer. The second pointer (which must be either a constant or 6843a global value address) contains the meta-data to be associated with the 6844root. 6845 6846Semantics: 6847"""""""""" 6848 6849At runtime, a call to this intrinsic stores a null pointer into the 6850"ptrloc" location. At compile-time, the code generator generates 6851information to allow the runtime to find the pointer at GC safe points. 6852The '``llvm.gcroot``' intrinsic may only be used in a function which 6853:ref:`specifies a GC algorithm <gc>`. 6854 6855.. _int_gcread: 6856 6857'``llvm.gcread``' Intrinsic 6858^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6859 6860Syntax: 6861""""""" 6862 6863:: 6864 6865 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr) 6866 6867Overview: 6868""""""""" 6869 6870The '``llvm.gcread``' intrinsic identifies reads of references from heap 6871locations, allowing garbage collector implementations that require read 6872barriers. 6873 6874Arguments: 6875"""""""""" 6876 6877The second argument is the address to read from, which should be an 6878address allocated from the garbage collector. The first object is a 6879pointer to the start of the referenced object, if needed by the language 6880runtime (otherwise null). 6881 6882Semantics: 6883"""""""""" 6884 6885The '``llvm.gcread``' intrinsic has the same semantics as a load 6886instruction, but may be replaced with substantially more complex code by 6887the garbage collector runtime, as needed. The '``llvm.gcread``' 6888intrinsic may only be used in a function which :ref:`specifies a GC 6889algorithm <gc>`. 6890 6891.. _int_gcwrite: 6892 6893'``llvm.gcwrite``' Intrinsic 6894^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6895 6896Syntax: 6897""""""" 6898 6899:: 6900 6901 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2) 6902 6903Overview: 6904""""""""" 6905 6906The '``llvm.gcwrite``' intrinsic identifies writes of references to heap 6907locations, allowing garbage collector implementations that require write 6908barriers (such as generational or reference counting collectors). 6909 6910Arguments: 6911"""""""""" 6912 6913The first argument is the reference to store, the second is the start of 6914the object to store it to, and the third is the address of the field of 6915Obj to store to. If the runtime does not require a pointer to the 6916object, Obj may be null. 6917 6918Semantics: 6919"""""""""" 6920 6921The '``llvm.gcwrite``' intrinsic has the same semantics as a store 6922instruction, but may be replaced with substantially more complex code by 6923the garbage collector runtime, as needed. The '``llvm.gcwrite``' 6924intrinsic may only be used in a function which :ref:`specifies a GC 6925algorithm <gc>`. 6926 6927Code Generator Intrinsics 6928------------------------- 6929 6930These intrinsics are provided by LLVM to expose special features that 6931may only be implemented with code generator support. 6932 6933'``llvm.returnaddress``' Intrinsic 6934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6935 6936Syntax: 6937""""""" 6938 6939:: 6940 6941 declare i8 *@llvm.returnaddress(i32 <level>) 6942 6943Overview: 6944""""""""" 6945 6946The '``llvm.returnaddress``' intrinsic attempts to compute a 6947target-specific value indicating the return address of the current 6948function or one of its callers. 6949 6950Arguments: 6951"""""""""" 6952 6953The argument to this intrinsic indicates which function to return the 6954address for. Zero indicates the calling function, one indicates its 6955caller, etc. The argument is **required** to be a constant integer 6956value. 6957 6958Semantics: 6959"""""""""" 6960 6961The '``llvm.returnaddress``' intrinsic either returns a pointer 6962indicating the return address of the specified call frame, or zero if it 6963cannot be identified. The value returned by this intrinsic is likely to 6964be incorrect or 0 for arguments other than zero, so it should only be 6965used for debugging purposes. 6966 6967Note that calling this intrinsic does not prevent function inlining or 6968other aggressive transformations, so the value returned may not be that 6969of the obvious source-language caller. 6970 6971'``llvm.frameaddress``' Intrinsic 6972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6973 6974Syntax: 6975""""""" 6976 6977:: 6978 6979 declare i8* @llvm.frameaddress(i32 <level>) 6980 6981Overview: 6982""""""""" 6983 6984The '``llvm.frameaddress``' intrinsic attempts to return the 6985target-specific frame pointer value for the specified stack frame. 6986 6987Arguments: 6988"""""""""" 6989 6990The argument to this intrinsic indicates which function to return the 6991frame pointer for. Zero indicates the calling function, one indicates 6992its caller, etc. The argument is **required** to be a constant integer 6993value. 6994 6995Semantics: 6996"""""""""" 6997 6998The '``llvm.frameaddress``' intrinsic either returns a pointer 6999indicating the frame address of the specified call frame, or zero if it 7000cannot be identified. The value returned by this intrinsic is likely to 7001be incorrect or 0 for arguments other than zero, so it should only be 7002used for debugging purposes. 7003 7004Note that calling this intrinsic does not prevent function inlining or 7005other aggressive transformations, so the value returned may not be that 7006of the obvious source-language caller. 7007 7008.. _int_read_register: 7009.. _int_write_register: 7010 7011'``llvm.read_register``' and '``llvm.write_register``' Intrinsics 7012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7013 7014Syntax: 7015""""""" 7016 7017:: 7018 7019 declare i32 @llvm.read_register.i32(metadata) 7020 declare i64 @llvm.read_register.i64(metadata) 7021 declare void @llvm.write_register.i32(metadata, i32 @value) 7022 declare void @llvm.write_register.i64(metadata, i64 @value) 7023 !0 = metadata !{metadata !"sp\00"} 7024 7025Overview: 7026""""""""" 7027 7028The '``llvm.read_register``' and '``llvm.write_register``' intrinsics 7029provides access to the named register. The register must be valid on 7030the architecture being compiled to. The type needs to be compatible 7031with the register being read. 7032 7033Semantics: 7034"""""""""" 7035 7036The '``llvm.read_register``' intrinsic returns the current value of the 7037register, where possible. The '``llvm.write_register``' intrinsic sets 7038the current value of the register, where possible. 7039 7040This is useful to implement named register global variables that need 7041to always be mapped to a specific register, as is common practice on 7042bare-metal programs including OS kernels. 7043 7044The compiler doesn't check for register availability or use of the used 7045register in surrounding code, including inline assembly. Because of that, 7046allocatable registers are not supported. 7047 7048Warning: So far it only works with the stack pointer on selected 7049architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of 7050work is needed to support other registers and even more so, allocatable 7051registers. 7052 7053.. _int_stacksave: 7054 7055'``llvm.stacksave``' Intrinsic 7056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7057 7058Syntax: 7059""""""" 7060 7061:: 7062 7063 declare i8* @llvm.stacksave() 7064 7065Overview: 7066""""""""" 7067 7068The '``llvm.stacksave``' intrinsic is used to remember the current state 7069of the function stack, for use with 7070:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for 7071implementing language features like scoped automatic variable sized 7072arrays in C99. 7073 7074Semantics: 7075"""""""""" 7076 7077This intrinsic returns a opaque pointer value that can be passed to 7078:ref:`llvm.stackrestore <int_stackrestore>`. When an 7079``llvm.stackrestore`` intrinsic is executed with a value saved from 7080``llvm.stacksave``, it effectively restores the state of the stack to 7081the state it was in when the ``llvm.stacksave`` intrinsic executed. In 7082practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that 7083were allocated after the ``llvm.stacksave`` was executed. 7084 7085.. _int_stackrestore: 7086 7087'``llvm.stackrestore``' Intrinsic 7088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7089 7090Syntax: 7091""""""" 7092 7093:: 7094 7095 declare void @llvm.stackrestore(i8* %ptr) 7096 7097Overview: 7098""""""""" 7099 7100The '``llvm.stackrestore``' intrinsic is used to restore the state of 7101the function stack to the state it was in when the corresponding 7102:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is 7103useful for implementing language features like scoped automatic variable 7104sized arrays in C99. 7105 7106Semantics: 7107"""""""""" 7108 7109See the description for :ref:`llvm.stacksave <int_stacksave>`. 7110 7111'``llvm.prefetch``' Intrinsic 7112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7113 7114Syntax: 7115""""""" 7116 7117:: 7118 7119 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>) 7120 7121Overview: 7122""""""""" 7123 7124The '``llvm.prefetch``' intrinsic is a hint to the code generator to 7125insert a prefetch instruction if supported; otherwise, it is a noop. 7126Prefetches have no effect on the behavior of the program but can change 7127its performance characteristics. 7128 7129Arguments: 7130"""""""""" 7131 7132``address`` is the address to be prefetched, ``rw`` is the specifier 7133determining if the fetch should be for a read (0) or write (1), and 7134``locality`` is a temporal locality specifier ranging from (0) - no 7135locality, to (3) - extremely local keep in cache. The ``cache type`` 7136specifies whether the prefetch is performed on the data (1) or 7137instruction (0) cache. The ``rw``, ``locality`` and ``cache type`` 7138arguments must be constant integers. 7139 7140Semantics: 7141"""""""""" 7142 7143This intrinsic does not modify the behavior of the program. In 7144particular, prefetches cannot trap and do not produce a value. On 7145targets that support this intrinsic, the prefetch can provide hints to 7146the processor cache for better performance. 7147 7148'``llvm.pcmarker``' Intrinsic 7149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7150 7151Syntax: 7152""""""" 7153 7154:: 7155 7156 declare void @llvm.pcmarker(i32 <id>) 7157 7158Overview: 7159""""""""" 7160 7161The '``llvm.pcmarker``' intrinsic is a method to export a Program 7162Counter (PC) in a region of code to simulators and other tools. The 7163method is target specific, but it is expected that the marker will use 7164exported symbols to transmit the PC of the marker. The marker makes no 7165guarantees that it will remain with any specific instruction after 7166optimizations. It is possible that the presence of a marker will inhibit 7167optimizations. The intended use is to be inserted after optimizations to 7168allow correlations of simulation runs. 7169 7170Arguments: 7171"""""""""" 7172 7173``id`` is a numerical id identifying the marker. 7174 7175Semantics: 7176"""""""""" 7177 7178This intrinsic does not modify the behavior of the program. Backends 7179that do not support this intrinsic may ignore it. 7180 7181'``llvm.readcyclecounter``' Intrinsic 7182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7183 7184Syntax: 7185""""""" 7186 7187:: 7188 7189 declare i64 @llvm.readcyclecounter() 7190 7191Overview: 7192""""""""" 7193 7194The '``llvm.readcyclecounter``' intrinsic provides access to the cycle 7195counter register (or similar low latency, high accuracy clocks) on those 7196targets that support it. On X86, it should map to RDTSC. On Alpha, it 7197should map to RPCC. As the backing counters overflow quickly (on the 7198order of 9 seconds on alpha), this should only be used for small 7199timings. 7200 7201Semantics: 7202"""""""""" 7203 7204When directly supported, reading the cycle counter should not modify any 7205memory. Implementations are allowed to either return a application 7206specific value or a system wide value. On backends without support, this 7207is lowered to a constant 0. 7208 7209Note that runtime support may be conditional on the privilege-level code is 7210running at and the host platform. 7211 7212'``llvm.clear_cache``' Intrinsic 7213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7214 7215Syntax: 7216""""""" 7217 7218:: 7219 7220 declare void @llvm.clear_cache(i8*, i8*) 7221 7222Overview: 7223""""""""" 7224 7225The '``llvm.clear_cache``' intrinsic ensures visibility of modifications 7226in the specified range to the execution unit of the processor. On 7227targets with non-unified instruction and data cache, the implementation 7228flushes the instruction cache. 7229 7230Semantics: 7231"""""""""" 7232 7233On platforms with coherent instruction and data caches (e.g. x86), this 7234intrinsic is a nop. On platforms with non-coherent instruction and data 7235cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate 7236instructions or a system call, if cache flushing requires special 7237privileges. 7238 7239The default behavior is to emit a call to ``__clear_cache`` from the run 7240time library. 7241 7242This instrinsic does *not* empty the instruction pipeline. Modifications 7243of the current function are outside the scope of the intrinsic. 7244 7245Standard C Library Intrinsics 7246----------------------------- 7247 7248LLVM provides intrinsics for a few important standard C library 7249functions. These intrinsics allow source-language front-ends to pass 7250information about the alignment of the pointer arguments to the code 7251generator, providing opportunity for more efficient code generation. 7252 7253.. _int_memcpy: 7254 7255'``llvm.memcpy``' Intrinsic 7256^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7257 7258Syntax: 7259""""""" 7260 7261This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any 7262integer bit width and for different address spaces. Not all targets 7263support all bit widths however. 7264 7265:: 7266 7267 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>, 7268 i32 <len>, i32 <align>, i1 <isvolatile>) 7269 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>, 7270 i64 <len>, i32 <align>, i1 <isvolatile>) 7271 7272Overview: 7273""""""""" 7274 7275The '``llvm.memcpy.*``' intrinsics copy a block of memory from the 7276source location to the destination location. 7277 7278Note that, unlike the standard libc function, the ``llvm.memcpy.*`` 7279intrinsics do not return a value, takes extra alignment/isvolatile 7280arguments and the pointers can be in specified address spaces. 7281 7282Arguments: 7283"""""""""" 7284 7285The first argument is a pointer to the destination, the second is a 7286pointer to the source. The third argument is an integer argument 7287specifying the number of bytes to copy, the fourth argument is the 7288alignment of the source and destination locations, and the fifth is a 7289boolean indicating a volatile access. 7290 7291If the call to this intrinsic has an alignment value that is not 0 or 1, 7292then the caller guarantees that both the source and destination pointers 7293are aligned to that boundary. 7294 7295If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is 7296a :ref:`volatile operation <volatile>`. The detailed access behavior is not 7297very cleanly specified and it is unwise to depend on it. 7298 7299Semantics: 7300"""""""""" 7301 7302The '``llvm.memcpy.*``' intrinsics copy a block of memory from the 7303source location to the destination location, which are not allowed to 7304overlap. It copies "len" bytes of memory over. If the argument is known 7305to be aligned to some boundary, this can be specified as the fourth 7306argument, otherwise it should be set to 0 or 1 (both meaning no alignment). 7307 7308'``llvm.memmove``' Intrinsic 7309^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7310 7311Syntax: 7312""""""" 7313 7314This is an overloaded intrinsic. You can use llvm.memmove on any integer 7315bit width and for different address space. Not all targets support all 7316bit widths however. 7317 7318:: 7319 7320 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>, 7321 i32 <len>, i32 <align>, i1 <isvolatile>) 7322 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>, 7323 i64 <len>, i32 <align>, i1 <isvolatile>) 7324 7325Overview: 7326""""""""" 7327 7328The '``llvm.memmove.*``' intrinsics move a block of memory from the 7329source location to the destination location. It is similar to the 7330'``llvm.memcpy``' intrinsic but allows the two memory locations to 7331overlap. 7332 7333Note that, unlike the standard libc function, the ``llvm.memmove.*`` 7334intrinsics do not return a value, takes extra alignment/isvolatile 7335arguments and the pointers can be in specified address spaces. 7336 7337Arguments: 7338"""""""""" 7339 7340The first argument is a pointer to the destination, the second is a 7341pointer to the source. The third argument is an integer argument 7342specifying the number of bytes to copy, the fourth argument is the 7343alignment of the source and destination locations, and the fifth is a 7344boolean indicating a volatile access. 7345 7346If the call to this intrinsic has an alignment value that is not 0 or 1, 7347then the caller guarantees that the source and destination pointers are 7348aligned to that boundary. 7349 7350If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call 7351is a :ref:`volatile operation <volatile>`. The detailed access behavior is 7352not very cleanly specified and it is unwise to depend on it. 7353 7354Semantics: 7355"""""""""" 7356 7357The '``llvm.memmove.*``' intrinsics copy a block of memory from the 7358source location to the destination location, which may overlap. It 7359copies "len" bytes of memory over. If the argument is known to be 7360aligned to some boundary, this can be specified as the fourth argument, 7361otherwise it should be set to 0 or 1 (both meaning no alignment). 7362 7363'``llvm.memset.*``' Intrinsics 7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7365 7366Syntax: 7367""""""" 7368 7369This is an overloaded intrinsic. You can use llvm.memset on any integer 7370bit width and for different address spaces. However, not all targets 7371support all bit widths. 7372 7373:: 7374 7375 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>, 7376 i32 <len>, i32 <align>, i1 <isvolatile>) 7377 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>, 7378 i64 <len>, i32 <align>, i1 <isvolatile>) 7379 7380Overview: 7381""""""""" 7382 7383The '``llvm.memset.*``' intrinsics fill a block of memory with a 7384particular byte value. 7385 7386Note that, unlike the standard libc function, the ``llvm.memset`` 7387intrinsic does not return a value and takes extra alignment/volatile 7388arguments. Also, the destination can be in an arbitrary address space. 7389 7390Arguments: 7391"""""""""" 7392 7393The first argument is a pointer to the destination to fill, the second 7394is the byte value with which to fill it, the third argument is an 7395integer argument specifying the number of bytes to fill, and the fourth 7396argument is the known alignment of the destination location. 7397 7398If the call to this intrinsic has an alignment value that is not 0 or 1, 7399then the caller guarantees that the destination pointer is aligned to 7400that boundary. 7401 7402If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is 7403a :ref:`volatile operation <volatile>`. The detailed access behavior is not 7404very cleanly specified and it is unwise to depend on it. 7405 7406Semantics: 7407"""""""""" 7408 7409The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting 7410at the destination location. If the argument is known to be aligned to 7411some boundary, this can be specified as the fourth argument, otherwise 7412it should be set to 0 or 1 (both meaning no alignment). 7413 7414'``llvm.sqrt.*``' Intrinsic 7415^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7416 7417Syntax: 7418""""""" 7419 7420This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any 7421floating point or vector of floating point type. Not all targets support 7422all types however. 7423 7424:: 7425 7426 declare float @llvm.sqrt.f32(float %Val) 7427 declare double @llvm.sqrt.f64(double %Val) 7428 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val) 7429 declare fp128 @llvm.sqrt.f128(fp128 %Val) 7430 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val) 7431 7432Overview: 7433""""""""" 7434 7435The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand, 7436returning the same value as the libm '``sqrt``' functions would. Unlike 7437``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for 7438negative numbers other than -0.0 (which allows for better optimization, 7439because there is no need to worry about errno being set). 7440``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt. 7441 7442Arguments: 7443"""""""""" 7444 7445The argument and return value are floating point numbers of the same 7446type. 7447 7448Semantics: 7449"""""""""" 7450 7451This function returns the sqrt of the specified operand if it is a 7452nonnegative floating point number. 7453 7454'``llvm.powi.*``' Intrinsic 7455^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7456 7457Syntax: 7458""""""" 7459 7460This is an overloaded intrinsic. You can use ``llvm.powi`` on any 7461floating point or vector of floating point type. Not all targets support 7462all types however. 7463 7464:: 7465 7466 declare float @llvm.powi.f32(float %Val, i32 %power) 7467 declare double @llvm.powi.f64(double %Val, i32 %power) 7468 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power) 7469 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power) 7470 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power) 7471 7472Overview: 7473""""""""" 7474 7475The '``llvm.powi.*``' intrinsics return the first operand raised to the 7476specified (positive or negative) power. The order of evaluation of 7477multiplications is not defined. When a vector of floating point type is 7478used, the second argument remains a scalar integer value. 7479 7480Arguments: 7481"""""""""" 7482 7483The second argument is an integer power, and the first is a value to 7484raise to that power. 7485 7486Semantics: 7487"""""""""" 7488 7489This function returns the first value raised to the second power with an 7490unspecified sequence of rounding operations. 7491 7492'``llvm.sin.*``' Intrinsic 7493^^^^^^^^^^^^^^^^^^^^^^^^^^ 7494 7495Syntax: 7496""""""" 7497 7498This is an overloaded intrinsic. You can use ``llvm.sin`` on any 7499floating point or vector of floating point type. Not all targets support 7500all types however. 7501 7502:: 7503 7504 declare float @llvm.sin.f32(float %Val) 7505 declare double @llvm.sin.f64(double %Val) 7506 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val) 7507 declare fp128 @llvm.sin.f128(fp128 %Val) 7508 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val) 7509 7510Overview: 7511""""""""" 7512 7513The '``llvm.sin.*``' intrinsics return the sine of the operand. 7514 7515Arguments: 7516"""""""""" 7517 7518The argument and return value are floating point numbers of the same 7519type. 7520 7521Semantics: 7522"""""""""" 7523 7524This function returns the sine of the specified operand, returning the 7525same values as the libm ``sin`` functions would, and handles error 7526conditions in the same way. 7527 7528'``llvm.cos.*``' Intrinsic 7529^^^^^^^^^^^^^^^^^^^^^^^^^^ 7530 7531Syntax: 7532""""""" 7533 7534This is an overloaded intrinsic. You can use ``llvm.cos`` on any 7535floating point or vector of floating point type. Not all targets support 7536all types however. 7537 7538:: 7539 7540 declare float @llvm.cos.f32(float %Val) 7541 declare double @llvm.cos.f64(double %Val) 7542 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val) 7543 declare fp128 @llvm.cos.f128(fp128 %Val) 7544 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val) 7545 7546Overview: 7547""""""""" 7548 7549The '``llvm.cos.*``' intrinsics return the cosine of the operand. 7550 7551Arguments: 7552"""""""""" 7553 7554The argument and return value are floating point numbers of the same 7555type. 7556 7557Semantics: 7558"""""""""" 7559 7560This function returns the cosine of the specified operand, returning the 7561same values as the libm ``cos`` functions would, and handles error 7562conditions in the same way. 7563 7564'``llvm.pow.*``' Intrinsic 7565^^^^^^^^^^^^^^^^^^^^^^^^^^ 7566 7567Syntax: 7568""""""" 7569 7570This is an overloaded intrinsic. You can use ``llvm.pow`` on any 7571floating point or vector of floating point type. Not all targets support 7572all types however. 7573 7574:: 7575 7576 declare float @llvm.pow.f32(float %Val, float %Power) 7577 declare double @llvm.pow.f64(double %Val, double %Power) 7578 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power) 7579 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power) 7580 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power) 7581 7582Overview: 7583""""""""" 7584 7585The '``llvm.pow.*``' intrinsics return the first operand raised to the 7586specified (positive or negative) power. 7587 7588Arguments: 7589"""""""""" 7590 7591The second argument is a floating point power, and the first is a value 7592to raise to that power. 7593 7594Semantics: 7595"""""""""" 7596 7597This function returns the first value raised to the second power, 7598returning the same values as the libm ``pow`` functions would, and 7599handles error conditions in the same way. 7600 7601'``llvm.exp.*``' Intrinsic 7602^^^^^^^^^^^^^^^^^^^^^^^^^^ 7603 7604Syntax: 7605""""""" 7606 7607This is an overloaded intrinsic. You can use ``llvm.exp`` on any 7608floating point or vector of floating point type. Not all targets support 7609all types however. 7610 7611:: 7612 7613 declare float @llvm.exp.f32(float %Val) 7614 declare double @llvm.exp.f64(double %Val) 7615 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val) 7616 declare fp128 @llvm.exp.f128(fp128 %Val) 7617 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val) 7618 7619Overview: 7620""""""""" 7621 7622The '``llvm.exp.*``' intrinsics perform the exp function. 7623 7624Arguments: 7625"""""""""" 7626 7627The argument and return value are floating point numbers of the same 7628type. 7629 7630Semantics: 7631"""""""""" 7632 7633This function returns the same values as the libm ``exp`` functions 7634would, and handles error conditions in the same way. 7635 7636'``llvm.exp2.*``' Intrinsic 7637^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7638 7639Syntax: 7640""""""" 7641 7642This is an overloaded intrinsic. You can use ``llvm.exp2`` on any 7643floating point or vector of floating point type. Not all targets support 7644all types however. 7645 7646:: 7647 7648 declare float @llvm.exp2.f32(float %Val) 7649 declare double @llvm.exp2.f64(double %Val) 7650 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val) 7651 declare fp128 @llvm.exp2.f128(fp128 %Val) 7652 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val) 7653 7654Overview: 7655""""""""" 7656 7657The '``llvm.exp2.*``' intrinsics perform the exp2 function. 7658 7659Arguments: 7660"""""""""" 7661 7662The argument and return value are floating point numbers of the same 7663type. 7664 7665Semantics: 7666"""""""""" 7667 7668This function returns the same values as the libm ``exp2`` functions 7669would, and handles error conditions in the same way. 7670 7671'``llvm.log.*``' Intrinsic 7672^^^^^^^^^^^^^^^^^^^^^^^^^^ 7673 7674Syntax: 7675""""""" 7676 7677This is an overloaded intrinsic. You can use ``llvm.log`` on any 7678floating point or vector of floating point type. Not all targets support 7679all types however. 7680 7681:: 7682 7683 declare float @llvm.log.f32(float %Val) 7684 declare double @llvm.log.f64(double %Val) 7685 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val) 7686 declare fp128 @llvm.log.f128(fp128 %Val) 7687 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val) 7688 7689Overview: 7690""""""""" 7691 7692The '``llvm.log.*``' intrinsics perform the log function. 7693 7694Arguments: 7695"""""""""" 7696 7697The argument and return value are floating point numbers of the same 7698type. 7699 7700Semantics: 7701"""""""""" 7702 7703This function returns the same values as the libm ``log`` functions 7704would, and handles error conditions in the same way. 7705 7706'``llvm.log10.*``' Intrinsic 7707^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7708 7709Syntax: 7710""""""" 7711 7712This is an overloaded intrinsic. You can use ``llvm.log10`` on any 7713floating point or vector of floating point type. Not all targets support 7714all types however. 7715 7716:: 7717 7718 declare float @llvm.log10.f32(float %Val) 7719 declare double @llvm.log10.f64(double %Val) 7720 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val) 7721 declare fp128 @llvm.log10.f128(fp128 %Val) 7722 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val) 7723 7724Overview: 7725""""""""" 7726 7727The '``llvm.log10.*``' intrinsics perform the log10 function. 7728 7729Arguments: 7730"""""""""" 7731 7732The argument and return value are floating point numbers of the same 7733type. 7734 7735Semantics: 7736"""""""""" 7737 7738This function returns the same values as the libm ``log10`` functions 7739would, and handles error conditions in the same way. 7740 7741'``llvm.log2.*``' Intrinsic 7742^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7743 7744Syntax: 7745""""""" 7746 7747This is an overloaded intrinsic. You can use ``llvm.log2`` on any 7748floating point or vector of floating point type. Not all targets support 7749all types however. 7750 7751:: 7752 7753 declare float @llvm.log2.f32(float %Val) 7754 declare double @llvm.log2.f64(double %Val) 7755 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val) 7756 declare fp128 @llvm.log2.f128(fp128 %Val) 7757 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val) 7758 7759Overview: 7760""""""""" 7761 7762The '``llvm.log2.*``' intrinsics perform the log2 function. 7763 7764Arguments: 7765"""""""""" 7766 7767The argument and return value are floating point numbers of the same 7768type. 7769 7770Semantics: 7771"""""""""" 7772 7773This function returns the same values as the libm ``log2`` functions 7774would, and handles error conditions in the same way. 7775 7776'``llvm.fma.*``' Intrinsic 7777^^^^^^^^^^^^^^^^^^^^^^^^^^ 7778 7779Syntax: 7780""""""" 7781 7782This is an overloaded intrinsic. You can use ``llvm.fma`` on any 7783floating point or vector of floating point type. Not all targets support 7784all types however. 7785 7786:: 7787 7788 declare float @llvm.fma.f32(float %a, float %b, float %c) 7789 declare double @llvm.fma.f64(double %a, double %b, double %c) 7790 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c) 7791 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c) 7792 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c) 7793 7794Overview: 7795""""""""" 7796 7797The '``llvm.fma.*``' intrinsics perform the fused multiply-add 7798operation. 7799 7800Arguments: 7801"""""""""" 7802 7803The argument and return value are floating point numbers of the same 7804type. 7805 7806Semantics: 7807"""""""""" 7808 7809This function returns the same values as the libm ``fma`` functions 7810would, and does not set errno. 7811 7812'``llvm.fabs.*``' Intrinsic 7813^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7814 7815Syntax: 7816""""""" 7817 7818This is an overloaded intrinsic. You can use ``llvm.fabs`` on any 7819floating point or vector of floating point type. Not all targets support 7820all types however. 7821 7822:: 7823 7824 declare float @llvm.fabs.f32(float %Val) 7825 declare double @llvm.fabs.f64(double %Val) 7826 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val) 7827 declare fp128 @llvm.fabs.f128(fp128 %Val) 7828 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val) 7829 7830Overview: 7831""""""""" 7832 7833The '``llvm.fabs.*``' intrinsics return the absolute value of the 7834operand. 7835 7836Arguments: 7837"""""""""" 7838 7839The argument and return value are floating point numbers of the same 7840type. 7841 7842Semantics: 7843"""""""""" 7844 7845This function returns the same values as the libm ``fabs`` functions 7846would, and handles error conditions in the same way. 7847 7848'``llvm.copysign.*``' Intrinsic 7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7850 7851Syntax: 7852""""""" 7853 7854This is an overloaded intrinsic. You can use ``llvm.copysign`` on any 7855floating point or vector of floating point type. Not all targets support 7856all types however. 7857 7858:: 7859 7860 declare float @llvm.copysign.f32(float %Mag, float %Sgn) 7861 declare double @llvm.copysign.f64(double %Mag, double %Sgn) 7862 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn) 7863 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn) 7864 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn) 7865 7866Overview: 7867""""""""" 7868 7869The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the 7870first operand and the sign of the second operand. 7871 7872Arguments: 7873"""""""""" 7874 7875The arguments and return value are floating point numbers of the same 7876type. 7877 7878Semantics: 7879"""""""""" 7880 7881This function returns the same values as the libm ``copysign`` 7882functions would, and handles error conditions in the same way. 7883 7884'``llvm.floor.*``' Intrinsic 7885^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7886 7887Syntax: 7888""""""" 7889 7890This is an overloaded intrinsic. You can use ``llvm.floor`` on any 7891floating point or vector of floating point type. Not all targets support 7892all types however. 7893 7894:: 7895 7896 declare float @llvm.floor.f32(float %Val) 7897 declare double @llvm.floor.f64(double %Val) 7898 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val) 7899 declare fp128 @llvm.floor.f128(fp128 %Val) 7900 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val) 7901 7902Overview: 7903""""""""" 7904 7905The '``llvm.floor.*``' intrinsics return the floor of the operand. 7906 7907Arguments: 7908"""""""""" 7909 7910The argument and return value are floating point numbers of the same 7911type. 7912 7913Semantics: 7914"""""""""" 7915 7916This function returns the same values as the libm ``floor`` functions 7917would, and handles error conditions in the same way. 7918 7919'``llvm.ceil.*``' Intrinsic 7920^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7921 7922Syntax: 7923""""""" 7924 7925This is an overloaded intrinsic. You can use ``llvm.ceil`` on any 7926floating point or vector of floating point type. Not all targets support 7927all types however. 7928 7929:: 7930 7931 declare float @llvm.ceil.f32(float %Val) 7932 declare double @llvm.ceil.f64(double %Val) 7933 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val) 7934 declare fp128 @llvm.ceil.f128(fp128 %Val) 7935 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val) 7936 7937Overview: 7938""""""""" 7939 7940The '``llvm.ceil.*``' intrinsics return the ceiling of the operand. 7941 7942Arguments: 7943"""""""""" 7944 7945The argument and return value are floating point numbers of the same 7946type. 7947 7948Semantics: 7949"""""""""" 7950 7951This function returns the same values as the libm ``ceil`` functions 7952would, and handles error conditions in the same way. 7953 7954'``llvm.trunc.*``' Intrinsic 7955^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7956 7957Syntax: 7958""""""" 7959 7960This is an overloaded intrinsic. You can use ``llvm.trunc`` on any 7961floating point or vector of floating point type. Not all targets support 7962all types however. 7963 7964:: 7965 7966 declare float @llvm.trunc.f32(float %Val) 7967 declare double @llvm.trunc.f64(double %Val) 7968 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val) 7969 declare fp128 @llvm.trunc.f128(fp128 %Val) 7970 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val) 7971 7972Overview: 7973""""""""" 7974 7975The '``llvm.trunc.*``' intrinsics returns the operand rounded to the 7976nearest integer not larger in magnitude than the operand. 7977 7978Arguments: 7979"""""""""" 7980 7981The argument and return value are floating point numbers of the same 7982type. 7983 7984Semantics: 7985"""""""""" 7986 7987This function returns the same values as the libm ``trunc`` functions 7988would, and handles error conditions in the same way. 7989 7990'``llvm.rint.*``' Intrinsic 7991^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7992 7993Syntax: 7994""""""" 7995 7996This is an overloaded intrinsic. You can use ``llvm.rint`` on any 7997floating point or vector of floating point type. Not all targets support 7998all types however. 7999 8000:: 8001 8002 declare float @llvm.rint.f32(float %Val) 8003 declare double @llvm.rint.f64(double %Val) 8004 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val) 8005 declare fp128 @llvm.rint.f128(fp128 %Val) 8006 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val) 8007 8008Overview: 8009""""""""" 8010 8011The '``llvm.rint.*``' intrinsics returns the operand rounded to the 8012nearest integer. It may raise an inexact floating-point exception if the 8013operand isn't an integer. 8014 8015Arguments: 8016"""""""""" 8017 8018The argument and return value are floating point numbers of the same 8019type. 8020 8021Semantics: 8022"""""""""" 8023 8024This function returns the same values as the libm ``rint`` functions 8025would, and handles error conditions in the same way. 8026 8027'``llvm.nearbyint.*``' Intrinsic 8028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8029 8030Syntax: 8031""""""" 8032 8033This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any 8034floating point or vector of floating point type. Not all targets support 8035all types however. 8036 8037:: 8038 8039 declare float @llvm.nearbyint.f32(float %Val) 8040 declare double @llvm.nearbyint.f64(double %Val) 8041 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val) 8042 declare fp128 @llvm.nearbyint.f128(fp128 %Val) 8043 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val) 8044 8045Overview: 8046""""""""" 8047 8048The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the 8049nearest integer. 8050 8051Arguments: 8052"""""""""" 8053 8054The argument and return value are floating point numbers of the same 8055type. 8056 8057Semantics: 8058"""""""""" 8059 8060This function returns the same values as the libm ``nearbyint`` 8061functions would, and handles error conditions in the same way. 8062 8063'``llvm.round.*``' Intrinsic 8064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8065 8066Syntax: 8067""""""" 8068 8069This is an overloaded intrinsic. You can use ``llvm.round`` on any 8070floating point or vector of floating point type. Not all targets support 8071all types however. 8072 8073:: 8074 8075 declare float @llvm.round.f32(float %Val) 8076 declare double @llvm.round.f64(double %Val) 8077 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val) 8078 declare fp128 @llvm.round.f128(fp128 %Val) 8079 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val) 8080 8081Overview: 8082""""""""" 8083 8084The '``llvm.round.*``' intrinsics returns the operand rounded to the 8085nearest integer. 8086 8087Arguments: 8088"""""""""" 8089 8090The argument and return value are floating point numbers of the same 8091type. 8092 8093Semantics: 8094"""""""""" 8095 8096This function returns the same values as the libm ``round`` 8097functions would, and handles error conditions in the same way. 8098 8099Bit Manipulation Intrinsics 8100--------------------------- 8101 8102LLVM provides intrinsics for a few important bit manipulation 8103operations. These allow efficient code generation for some algorithms. 8104 8105'``llvm.bswap.*``' Intrinsics 8106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8107 8108Syntax: 8109""""""" 8110 8111This is an overloaded intrinsic function. You can use bswap on any 8112integer type that is an even number of bytes (i.e. BitWidth % 16 == 0). 8113 8114:: 8115 8116 declare i16 @llvm.bswap.i16(i16 <id>) 8117 declare i32 @llvm.bswap.i32(i32 <id>) 8118 declare i64 @llvm.bswap.i64(i64 <id>) 8119 8120Overview: 8121""""""""" 8122 8123The '``llvm.bswap``' family of intrinsics is used to byte swap integer 8124values with an even number of bytes (positive multiple of 16 bits). 8125These are useful for performing operations on data that is not in the 8126target's native byte order. 8127 8128Semantics: 8129"""""""""" 8130 8131The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high 8132and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32`` 8133intrinsic returns an i32 value that has the four bytes of the input i32 8134swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the 8135returned i32 will have its bytes in 3, 2, 1, 0 order. The 8136``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this 8137concept to additional even-byte lengths (6 bytes, 8 bytes and more, 8138respectively). 8139 8140'``llvm.ctpop.*``' Intrinsic 8141^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8142 8143Syntax: 8144""""""" 8145 8146This is an overloaded intrinsic. You can use llvm.ctpop on any integer 8147bit width, or on any vector with integer elements. Not all targets 8148support all bit widths or vector types, however. 8149 8150:: 8151 8152 declare i8 @llvm.ctpop.i8(i8 <src>) 8153 declare i16 @llvm.ctpop.i16(i16 <src>) 8154 declare i32 @llvm.ctpop.i32(i32 <src>) 8155 declare i64 @llvm.ctpop.i64(i64 <src>) 8156 declare i256 @llvm.ctpop.i256(i256 <src>) 8157 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>) 8158 8159Overview: 8160""""""""" 8161 8162The '``llvm.ctpop``' family of intrinsics counts the number of bits set 8163in a value. 8164 8165Arguments: 8166"""""""""" 8167 8168The only argument is the value to be counted. The argument may be of any 8169integer type, or a vector with integer elements. The return type must 8170match the argument type. 8171 8172Semantics: 8173"""""""""" 8174 8175The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within 8176each element of a vector. 8177 8178'``llvm.ctlz.*``' Intrinsic 8179^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8180 8181Syntax: 8182""""""" 8183 8184This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any 8185integer bit width, or any vector whose elements are integers. Not all 8186targets support all bit widths or vector types, however. 8187 8188:: 8189 8190 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>) 8191 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>) 8192 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>) 8193 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>) 8194 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>) 8195 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) 8196 8197Overview: 8198""""""""" 8199 8200The '``llvm.ctlz``' family of intrinsic functions counts the number of 8201leading zeros in a variable. 8202 8203Arguments: 8204"""""""""" 8205 8206The first argument is the value to be counted. This argument may be of 8207any integer type, or a vectory with integer element type. The return 8208type must match the first argument type. 8209 8210The second argument must be a constant and is a flag to indicate whether 8211the intrinsic should ensure that a zero as the first argument produces a 8212defined result. Historically some architectures did not provide a 8213defined result for zero values as efficiently, and many algorithms are 8214now predicated on avoiding zero-value inputs. 8215 8216Semantics: 8217"""""""""" 8218 8219The '``llvm.ctlz``' intrinsic counts the leading (most significant) 8220zeros in a variable, or within each element of the vector. If 8221``src == 0`` then the result is the size in bits of the type of ``src`` 8222if ``is_zero_undef == 0`` and ``undef`` otherwise. For example, 8223``llvm.ctlz(i32 2) = 30``. 8224 8225'``llvm.cttz.*``' Intrinsic 8226^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8227 8228Syntax: 8229""""""" 8230 8231This is an overloaded intrinsic. You can use ``llvm.cttz`` on any 8232integer bit width, or any vector of integer elements. Not all targets 8233support all bit widths or vector types, however. 8234 8235:: 8236 8237 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>) 8238 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>) 8239 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>) 8240 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>) 8241 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>) 8242 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) 8243 8244Overview: 8245""""""""" 8246 8247The '``llvm.cttz``' family of intrinsic functions counts the number of 8248trailing zeros. 8249 8250Arguments: 8251"""""""""" 8252 8253The first argument is the value to be counted. This argument may be of 8254any integer type, or a vectory with integer element type. The return 8255type must match the first argument type. 8256 8257The second argument must be a constant and is a flag to indicate whether 8258the intrinsic should ensure that a zero as the first argument produces a 8259defined result. Historically some architectures did not provide a 8260defined result for zero values as efficiently, and many algorithms are 8261now predicated on avoiding zero-value inputs. 8262 8263Semantics: 8264"""""""""" 8265 8266The '``llvm.cttz``' intrinsic counts the trailing (least significant) 8267zeros in a variable, or within each element of a vector. If ``src == 0`` 8268then the result is the size in bits of the type of ``src`` if 8269``is_zero_undef == 0`` and ``undef`` otherwise. For example, 8270``llvm.cttz(2) = 1``. 8271 8272Arithmetic with Overflow Intrinsics 8273----------------------------------- 8274 8275LLVM provides intrinsics for some arithmetic with overflow operations. 8276 8277'``llvm.sadd.with.overflow.*``' Intrinsics 8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8279 8280Syntax: 8281""""""" 8282 8283This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow`` 8284on any integer bit width. 8285 8286:: 8287 8288 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) 8289 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) 8290 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b) 8291 8292Overview: 8293""""""""" 8294 8295The '``llvm.sadd.with.overflow``' family of intrinsic functions perform 8296a signed addition of the two arguments, and indicate whether an overflow 8297occurred during the signed summation. 8298 8299Arguments: 8300"""""""""" 8301 8302The arguments (%a and %b) and the first element of the result structure 8303may be of integer types of any bit width, but they must have the same 8304bit width. The second element of the result structure must be of type 8305``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8306addition. 8307 8308Semantics: 8309"""""""""" 8310 8311The '``llvm.sadd.with.overflow``' family of intrinsic functions perform 8312a signed addition of the two variables. They return a structure --- the 8313first element of which is the signed summation, and the second element 8314of which is a bit specifying if the signed summation resulted in an 8315overflow. 8316 8317Examples: 8318""""""""" 8319 8320.. code-block:: llvm 8321 8322 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) 8323 %sum = extractvalue {i32, i1} %res, 0 8324 %obit = extractvalue {i32, i1} %res, 1 8325 br i1 %obit, label %overflow, label %normal 8326 8327'``llvm.uadd.with.overflow.*``' Intrinsics 8328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8329 8330Syntax: 8331""""""" 8332 8333This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow`` 8334on any integer bit width. 8335 8336:: 8337 8338 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b) 8339 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) 8340 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b) 8341 8342Overview: 8343""""""""" 8344 8345The '``llvm.uadd.with.overflow``' family of intrinsic functions perform 8346an unsigned addition of the two arguments, and indicate whether a carry 8347occurred during the unsigned summation. 8348 8349Arguments: 8350"""""""""" 8351 8352The arguments (%a and %b) and the first element of the result structure 8353may be of integer types of any bit width, but they must have the same 8354bit width. The second element of the result structure must be of type 8355``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8356addition. 8357 8358Semantics: 8359"""""""""" 8360 8361The '``llvm.uadd.with.overflow``' family of intrinsic functions perform 8362an unsigned addition of the two arguments. They return a structure --- the 8363first element of which is the sum, and the second element of which is a 8364bit specifying if the unsigned summation resulted in a carry. 8365 8366Examples: 8367""""""""" 8368 8369.. code-block:: llvm 8370 8371 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) 8372 %sum = extractvalue {i32, i1} %res, 0 8373 %obit = extractvalue {i32, i1} %res, 1 8374 br i1 %obit, label %carry, label %normal 8375 8376'``llvm.ssub.with.overflow.*``' Intrinsics 8377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8378 8379Syntax: 8380""""""" 8381 8382This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow`` 8383on any integer bit width. 8384 8385:: 8386 8387 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b) 8388 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) 8389 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b) 8390 8391Overview: 8392""""""""" 8393 8394The '``llvm.ssub.with.overflow``' family of intrinsic functions perform 8395a signed subtraction of the two arguments, and indicate whether an 8396overflow occurred during the signed subtraction. 8397 8398Arguments: 8399"""""""""" 8400 8401The arguments (%a and %b) and the first element of the result structure 8402may be of integer types of any bit width, but they must have the same 8403bit width. The second element of the result structure must be of type 8404``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8405subtraction. 8406 8407Semantics: 8408"""""""""" 8409 8410The '``llvm.ssub.with.overflow``' family of intrinsic functions perform 8411a signed subtraction of the two arguments. They return a structure --- the 8412first element of which is the subtraction, and the second element of 8413which is a bit specifying if the signed subtraction resulted in an 8414overflow. 8415 8416Examples: 8417""""""""" 8418 8419.. code-block:: llvm 8420 8421 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) 8422 %sum = extractvalue {i32, i1} %res, 0 8423 %obit = extractvalue {i32, i1} %res, 1 8424 br i1 %obit, label %overflow, label %normal 8425 8426'``llvm.usub.with.overflow.*``' Intrinsics 8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8428 8429Syntax: 8430""""""" 8431 8432This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow`` 8433on any integer bit width. 8434 8435:: 8436 8437 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b) 8438 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) 8439 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b) 8440 8441Overview: 8442""""""""" 8443 8444The '``llvm.usub.with.overflow``' family of intrinsic functions perform 8445an unsigned subtraction of the two arguments, and indicate whether an 8446overflow occurred during the unsigned subtraction. 8447 8448Arguments: 8449"""""""""" 8450 8451The arguments (%a and %b) and the first element of the result structure 8452may be of integer types of any bit width, but they must have the same 8453bit width. The second element of the result structure must be of type 8454``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8455subtraction. 8456 8457Semantics: 8458"""""""""" 8459 8460The '``llvm.usub.with.overflow``' family of intrinsic functions perform 8461an unsigned subtraction of the two arguments. They return a structure --- 8462the first element of which is the subtraction, and the second element of 8463which is a bit specifying if the unsigned subtraction resulted in an 8464overflow. 8465 8466Examples: 8467""""""""" 8468 8469.. code-block:: llvm 8470 8471 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) 8472 %sum = extractvalue {i32, i1} %res, 0 8473 %obit = extractvalue {i32, i1} %res, 1 8474 br i1 %obit, label %overflow, label %normal 8475 8476'``llvm.smul.with.overflow.*``' Intrinsics 8477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8478 8479Syntax: 8480""""""" 8481 8482This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow`` 8483on any integer bit width. 8484 8485:: 8486 8487 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b) 8488 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) 8489 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b) 8490 8491Overview: 8492""""""""" 8493 8494The '``llvm.smul.with.overflow``' family of intrinsic functions perform 8495a signed multiplication of the two arguments, and indicate whether an 8496overflow occurred during the signed multiplication. 8497 8498Arguments: 8499"""""""""" 8500 8501The arguments (%a and %b) and the first element of the result structure 8502may be of integer types of any bit width, but they must have the same 8503bit width. The second element of the result structure must be of type 8504``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8505multiplication. 8506 8507Semantics: 8508"""""""""" 8509 8510The '``llvm.smul.with.overflow``' family of intrinsic functions perform 8511a signed multiplication of the two arguments. They return a structure --- 8512the first element of which is the multiplication, and the second element 8513of which is a bit specifying if the signed multiplication resulted in an 8514overflow. 8515 8516Examples: 8517""""""""" 8518 8519.. code-block:: llvm 8520 8521 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) 8522 %sum = extractvalue {i32, i1} %res, 0 8523 %obit = extractvalue {i32, i1} %res, 1 8524 br i1 %obit, label %overflow, label %normal 8525 8526'``llvm.umul.with.overflow.*``' Intrinsics 8527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8528 8529Syntax: 8530""""""" 8531 8532This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow`` 8533on any integer bit width. 8534 8535:: 8536 8537 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b) 8538 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) 8539 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b) 8540 8541Overview: 8542""""""""" 8543 8544The '``llvm.umul.with.overflow``' family of intrinsic functions perform 8545a unsigned multiplication of the two arguments, and indicate whether an 8546overflow occurred during the unsigned multiplication. 8547 8548Arguments: 8549"""""""""" 8550 8551The arguments (%a and %b) and the first element of the result structure 8552may be of integer types of any bit width, but they must have the same 8553bit width. The second element of the result structure must be of type 8554``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8555multiplication. 8556 8557Semantics: 8558"""""""""" 8559 8560The '``llvm.umul.with.overflow``' family of intrinsic functions perform 8561an unsigned multiplication of the two arguments. They return a structure --- 8562the first element of which is the multiplication, and the second 8563element of which is a bit specifying if the unsigned multiplication 8564resulted in an overflow. 8565 8566Examples: 8567""""""""" 8568 8569.. code-block:: llvm 8570 8571 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) 8572 %sum = extractvalue {i32, i1} %res, 0 8573 %obit = extractvalue {i32, i1} %res, 1 8574 br i1 %obit, label %overflow, label %normal 8575 8576Specialised Arithmetic Intrinsics 8577--------------------------------- 8578 8579'``llvm.fmuladd.*``' Intrinsic 8580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8581 8582Syntax: 8583""""""" 8584 8585:: 8586 8587 declare float @llvm.fmuladd.f32(float %a, float %b, float %c) 8588 declare double @llvm.fmuladd.f64(double %a, double %b, double %c) 8589 8590Overview: 8591""""""""" 8592 8593The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add 8594expressions that can be fused if the code generator determines that (a) the 8595target instruction set has support for a fused operation, and (b) that the 8596fused operation is more efficient than the equivalent, separate pair of mul 8597and add instructions. 8598 8599Arguments: 8600"""""""""" 8601 8602The '``llvm.fmuladd.*``' intrinsics each take three arguments: two 8603multiplicands, a and b, and an addend c. 8604 8605Semantics: 8606"""""""""" 8607 8608The expression: 8609 8610:: 8611 8612 %0 = call float @llvm.fmuladd.f32(%a, %b, %c) 8613 8614is equivalent to the expression a \* b + c, except that rounding will 8615not be performed between the multiplication and addition steps if the 8616code generator fuses the operations. Fusion is not guaranteed, even if 8617the target platform supports it. If a fused multiply-add is required the 8618corresponding llvm.fma.\* intrinsic function should be used 8619instead. This never sets errno, just as '``llvm.fma.*``'. 8620 8621Examples: 8622""""""""" 8623 8624.. code-block:: llvm 8625 8626 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c 8627 8628Half Precision Floating Point Intrinsics 8629---------------------------------------- 8630 8631For most target platforms, half precision floating point is a 8632storage-only format. This means that it is a dense encoding (in memory) 8633but does not support computation in the format. 8634 8635This means that code must first load the half-precision floating point 8636value as an i16, then convert it to float with 8637:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can 8638then be performed on the float value (including extending to double 8639etc). To store the value back to memory, it is first converted to float 8640if needed, then converted to i16 with 8641:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an 8642i16 value. 8643 8644.. _int_convert_to_fp16: 8645 8646'``llvm.convert.to.fp16``' Intrinsic 8647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8648 8649Syntax: 8650""""""" 8651 8652:: 8653 8654 declare i16 @llvm.convert.to.fp16(float %a) 8655 8656Overview: 8657""""""""" 8658 8659The '``llvm.convert.to.fp16``' intrinsic function performs a conversion 8660from single precision floating point format to half precision floating 8661point format. 8662 8663Arguments: 8664"""""""""" 8665 8666The intrinsic function contains single argument - the value to be 8667converted. 8668 8669Semantics: 8670"""""""""" 8671 8672The '``llvm.convert.to.fp16``' intrinsic function performs a conversion 8673from single precision floating point format to half precision floating 8674point format. The return value is an ``i16`` which contains the 8675converted number. 8676 8677Examples: 8678""""""""" 8679 8680.. code-block:: llvm 8681 8682 %res = call i16 @llvm.convert.to.fp16(float %a) 8683 store i16 %res, i16* @x, align 2 8684 8685.. _int_convert_from_fp16: 8686 8687'``llvm.convert.from.fp16``' Intrinsic 8688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8689 8690Syntax: 8691""""""" 8692 8693:: 8694 8695 declare float @llvm.convert.from.fp16(i16 %a) 8696 8697Overview: 8698""""""""" 8699 8700The '``llvm.convert.from.fp16``' intrinsic function performs a 8701conversion from half precision floating point format to single precision 8702floating point format. 8703 8704Arguments: 8705"""""""""" 8706 8707The intrinsic function contains single argument - the value to be 8708converted. 8709 8710Semantics: 8711"""""""""" 8712 8713The '``llvm.convert.from.fp16``' intrinsic function performs a 8714conversion from half single precision floating point format to single 8715precision floating point format. The input half-float value is 8716represented by an ``i16`` value. 8717 8718Examples: 8719""""""""" 8720 8721.. code-block:: llvm 8722 8723 %a = load i16* @x, align 2 8724 %res = call float @llvm.convert.from.fp16(i16 %a) 8725 8726Debugger Intrinsics 8727------------------- 8728 8729The LLVM debugger intrinsics (which all start with ``llvm.dbg.`` 8730prefix), are described in the `LLVM Source Level 8731Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_ 8732document. 8733 8734Exception Handling Intrinsics 8735----------------------------- 8736 8737The LLVM exception handling intrinsics (which all start with 8738``llvm.eh.`` prefix), are described in the `LLVM Exception 8739Handling <ExceptionHandling.html#format_common_intrinsics>`_ document. 8740 8741.. _int_trampoline: 8742 8743Trampoline Intrinsics 8744--------------------- 8745 8746These intrinsics make it possible to excise one parameter, marked with 8747the :ref:`nest <nest>` attribute, from a function. The result is a 8748callable function pointer lacking the nest parameter - the caller does 8749not need to provide a value for it. Instead, the value to use is stored 8750in advance in a "trampoline", a block of memory usually allocated on the 8751stack, which also contains code to splice the nest value into the 8752argument list. This is used to implement the GCC nested function address 8753extension. 8754 8755For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)`` 8756then the resulting function pointer has signature ``i32 (i32, i32)*``. 8757It can be created as follows: 8758 8759.. code-block:: llvm 8760 8761 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86 8762 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0 8763 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval) 8764 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1) 8765 %fp = bitcast i8* %p to i32 (i32, i32)* 8766 8767The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to 8768``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``. 8769 8770.. _int_it: 8771 8772'``llvm.init.trampoline``' Intrinsic 8773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8774 8775Syntax: 8776""""""" 8777 8778:: 8779 8780 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>) 8781 8782Overview: 8783""""""""" 8784 8785This fills the memory pointed to by ``tramp`` with executable code, 8786turning it into a trampoline. 8787 8788Arguments: 8789"""""""""" 8790 8791The ``llvm.init.trampoline`` intrinsic takes three arguments, all 8792pointers. The ``tramp`` argument must point to a sufficiently large and 8793sufficiently aligned block of memory; this memory is written to by the 8794intrinsic. Note that the size and the alignment are target-specific - 8795LLVM currently provides no portable way of determining them, so a 8796front-end that generates this intrinsic needs to have some 8797target-specific knowledge. The ``func`` argument must hold a function 8798bitcast to an ``i8*``. 8799 8800Semantics: 8801"""""""""" 8802 8803The block of memory pointed to by ``tramp`` is filled with target 8804dependent code, turning it into a function. Then ``tramp`` needs to be 8805passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can 8806be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new 8807function's signature is the same as that of ``func`` with any arguments 8808marked with the ``nest`` attribute removed. At most one such ``nest`` 8809argument is allowed, and it must be of pointer type. Calling the new 8810function is equivalent to calling ``func`` with the same argument list, 8811but with ``nval`` used for the missing ``nest`` argument. If, after 8812calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is 8813modified, then the effect of any later call to the returned function 8814pointer is undefined. 8815 8816.. _int_at: 8817 8818'``llvm.adjust.trampoline``' Intrinsic 8819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8820 8821Syntax: 8822""""""" 8823 8824:: 8825 8826 declare i8* @llvm.adjust.trampoline(i8* <tramp>) 8827 8828Overview: 8829""""""""" 8830 8831This performs any required machine-specific adjustment to the address of 8832a trampoline (passed as ``tramp``). 8833 8834Arguments: 8835"""""""""" 8836 8837``tramp`` must point to a block of memory which already has trampoline 8838code filled in by a previous call to 8839:ref:`llvm.init.trampoline <int_it>`. 8840 8841Semantics: 8842"""""""""" 8843 8844On some architectures the address of the code to be executed needs to be 8845different than the address where the trampoline is actually stored. This 8846intrinsic returns the executable address corresponding to ``tramp`` 8847after performing the required machine specific adjustments. The pointer 8848returned can then be :ref:`bitcast and executed <int_trampoline>`. 8849 8850Memory Use Markers 8851------------------ 8852 8853This class of intrinsics provides information about the lifetime of 8854memory objects and ranges where variables are immutable. 8855 8856.. _int_lifestart: 8857 8858'``llvm.lifetime.start``' Intrinsic 8859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8860 8861Syntax: 8862""""""" 8863 8864:: 8865 8866 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>) 8867 8868Overview: 8869""""""""" 8870 8871The '``llvm.lifetime.start``' intrinsic specifies the start of a memory 8872object's lifetime. 8873 8874Arguments: 8875"""""""""" 8876 8877The first argument is a constant integer representing the size of the 8878object, or -1 if it is variable sized. The second argument is a pointer 8879to the object. 8880 8881Semantics: 8882"""""""""" 8883 8884This intrinsic indicates that before this point in the code, the value 8885of the memory pointed to by ``ptr`` is dead. This means that it is known 8886to never be used and has an undefined value. A load from the pointer 8887that precedes this intrinsic can be replaced with ``'undef'``. 8888 8889.. _int_lifeend: 8890 8891'``llvm.lifetime.end``' Intrinsic 8892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8893 8894Syntax: 8895""""""" 8896 8897:: 8898 8899 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>) 8900 8901Overview: 8902""""""""" 8903 8904The '``llvm.lifetime.end``' intrinsic specifies the end of a memory 8905object's lifetime. 8906 8907Arguments: 8908"""""""""" 8909 8910The first argument is a constant integer representing the size of the 8911object, or -1 if it is variable sized. The second argument is a pointer 8912to the object. 8913 8914Semantics: 8915"""""""""" 8916 8917This intrinsic indicates that after this point in the code, the value of 8918the memory pointed to by ``ptr`` is dead. This means that it is known to 8919never be used and has an undefined value. Any stores into the memory 8920object following this intrinsic may be removed as dead. 8921 8922'``llvm.invariant.start``' Intrinsic 8923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8924 8925Syntax: 8926""""""" 8927 8928:: 8929 8930 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>) 8931 8932Overview: 8933""""""""" 8934 8935The '``llvm.invariant.start``' intrinsic specifies that the contents of 8936a memory object will not change. 8937 8938Arguments: 8939"""""""""" 8940 8941The first argument is a constant integer representing the size of the 8942object, or -1 if it is variable sized. The second argument is a pointer 8943to the object. 8944 8945Semantics: 8946"""""""""" 8947 8948This intrinsic indicates that until an ``llvm.invariant.end`` that uses 8949the return value, the referenced memory location is constant and 8950unchanging. 8951 8952'``llvm.invariant.end``' Intrinsic 8953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8954 8955Syntax: 8956""""""" 8957 8958:: 8959 8960 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>) 8961 8962Overview: 8963""""""""" 8964 8965The '``llvm.invariant.end``' intrinsic specifies that the contents of a 8966memory object are mutable. 8967 8968Arguments: 8969"""""""""" 8970 8971The first argument is the matching ``llvm.invariant.start`` intrinsic. 8972The second argument is a constant integer representing the size of the 8973object, or -1 if it is variable sized and the third argument is a 8974pointer to the object. 8975 8976Semantics: 8977"""""""""" 8978 8979This intrinsic indicates that the memory is mutable again. 8980 8981General Intrinsics 8982------------------ 8983 8984This class of intrinsics is designed to be generic and has no specific 8985purpose. 8986 8987'``llvm.var.annotation``' Intrinsic 8988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8989 8990Syntax: 8991""""""" 8992 8993:: 8994 8995 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>) 8996 8997Overview: 8998""""""""" 8999 9000The '``llvm.var.annotation``' intrinsic. 9001 9002Arguments: 9003"""""""""" 9004 9005The first argument is a pointer to a value, the second is a pointer to a 9006global string, the third is a pointer to a global string which is the 9007source file name, and the last argument is the line number. 9008 9009Semantics: 9010"""""""""" 9011 9012This intrinsic allows annotation of local variables with arbitrary 9013strings. This can be useful for special purpose optimizations that want 9014to look for these annotations. These have no other defined use; they are 9015ignored by code generation and optimization. 9016 9017'``llvm.ptr.annotation.*``' Intrinsic 9018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9019 9020Syntax: 9021""""""" 9022 9023This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a 9024pointer to an integer of any width. *NOTE* you must specify an address space for 9025the pointer. The identifier for the default address space is the integer 9026'``0``'. 9027 9028:: 9029 9030 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>) 9031 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>) 9032 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>) 9033 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>) 9034 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>) 9035 9036Overview: 9037""""""""" 9038 9039The '``llvm.ptr.annotation``' intrinsic. 9040 9041Arguments: 9042"""""""""" 9043 9044The first argument is a pointer to an integer value of arbitrary bitwidth 9045(result of some expression), the second is a pointer to a global string, the 9046third is a pointer to a global string which is the source file name, and the 9047last argument is the line number. It returns the value of the first argument. 9048 9049Semantics: 9050"""""""""" 9051 9052This intrinsic allows annotation of a pointer to an integer with arbitrary 9053strings. This can be useful for special purpose optimizations that want to look 9054for these annotations. These have no other defined use; they are ignored by code 9055generation and optimization. 9056 9057'``llvm.annotation.*``' Intrinsic 9058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9059 9060Syntax: 9061""""""" 9062 9063This is an overloaded intrinsic. You can use '``llvm.annotation``' on 9064any integer bit width. 9065 9066:: 9067 9068 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>) 9069 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>) 9070 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>) 9071 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>) 9072 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>) 9073 9074Overview: 9075""""""""" 9076 9077The '``llvm.annotation``' intrinsic. 9078 9079Arguments: 9080"""""""""" 9081 9082The first argument is an integer value (result of some expression), the 9083second is a pointer to a global string, the third is a pointer to a 9084global string which is the source file name, and the last argument is 9085the line number. It returns the value of the first argument. 9086 9087Semantics: 9088"""""""""" 9089 9090This intrinsic allows annotations to be put on arbitrary expressions 9091with arbitrary strings. This can be useful for special purpose 9092optimizations that want to look for these annotations. These have no 9093other defined use; they are ignored by code generation and optimization. 9094 9095'``llvm.trap``' Intrinsic 9096^^^^^^^^^^^^^^^^^^^^^^^^^ 9097 9098Syntax: 9099""""""" 9100 9101:: 9102 9103 declare void @llvm.trap() noreturn nounwind 9104 9105Overview: 9106""""""""" 9107 9108The '``llvm.trap``' intrinsic. 9109 9110Arguments: 9111"""""""""" 9112 9113None. 9114 9115Semantics: 9116"""""""""" 9117 9118This intrinsic is lowered to the target dependent trap instruction. If 9119the target does not have a trap instruction, this intrinsic will be 9120lowered to a call of the ``abort()`` function. 9121 9122'``llvm.debugtrap``' Intrinsic 9123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9124 9125Syntax: 9126""""""" 9127 9128:: 9129 9130 declare void @llvm.debugtrap() nounwind 9131 9132Overview: 9133""""""""" 9134 9135The '``llvm.debugtrap``' intrinsic. 9136 9137Arguments: 9138"""""""""" 9139 9140None. 9141 9142Semantics: 9143"""""""""" 9144 9145This intrinsic is lowered to code which is intended to cause an 9146execution trap with the intention of requesting the attention of a 9147debugger. 9148 9149'``llvm.stackprotector``' Intrinsic 9150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9151 9152Syntax: 9153""""""" 9154 9155:: 9156 9157 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>) 9158 9159Overview: 9160""""""""" 9161 9162The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it 9163onto the stack at ``slot``. The stack slot is adjusted to ensure that it 9164is placed on the stack before local variables. 9165 9166Arguments: 9167"""""""""" 9168 9169The ``llvm.stackprotector`` intrinsic requires two pointer arguments. 9170The first argument is the value loaded from the stack guard 9171``@__stack_chk_guard``. The second variable is an ``alloca`` that has 9172enough space to hold the value of the guard. 9173 9174Semantics: 9175"""""""""" 9176 9177This intrinsic causes the prologue/epilogue inserter to force the position of 9178the ``AllocaInst`` stack slot to be before local variables on the stack. This is 9179to ensure that if a local variable on the stack is overwritten, it will destroy 9180the value of the guard. When the function exits, the guard on the stack is 9181checked against the original guard by ``llvm.stackprotectorcheck``. If they are 9182different, then ``llvm.stackprotectorcheck`` causes the program to abort by 9183calling the ``__stack_chk_fail()`` function. 9184 9185'``llvm.stackprotectorcheck``' Intrinsic 9186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9187 9188Syntax: 9189""""""" 9190 9191:: 9192 9193 declare void @llvm.stackprotectorcheck(i8** <guard>) 9194 9195Overview: 9196""""""""" 9197 9198The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already 9199created stack protector and if they are not equal calls the 9200``__stack_chk_fail()`` function. 9201 9202Arguments: 9203"""""""""" 9204 9205The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the 9206the variable ``@__stack_chk_guard``. 9207 9208Semantics: 9209"""""""""" 9210 9211This intrinsic is provided to perform the stack protector check by comparing 9212``guard`` with the stack slot created by ``llvm.stackprotector`` and if the 9213values do not match call the ``__stack_chk_fail()`` function. 9214 9215The reason to provide this as an IR level intrinsic instead of implementing it 9216via other IR operations is that in order to perform this operation at the IR 9217level without an intrinsic, one would need to create additional basic blocks to 9218handle the success/failure cases. This makes it difficult to stop the stack 9219protector check from disrupting sibling tail calls in Codegen. With this 9220intrinsic, we are able to generate the stack protector basic blocks late in 9221codegen after the tail call decision has occurred. 9222 9223'``llvm.objectsize``' Intrinsic 9224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9225 9226Syntax: 9227""""""" 9228 9229:: 9230 9231 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>) 9232 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>) 9233 9234Overview: 9235""""""""" 9236 9237The ``llvm.objectsize`` intrinsic is designed to provide information to 9238the optimizers to determine at compile time whether a) an operation 9239(like memcpy) will overflow a buffer that corresponds to an object, or 9240b) that a runtime check for overflow isn't necessary. An object in this 9241context means an allocation of a specific class, structure, array, or 9242other object. 9243 9244Arguments: 9245"""""""""" 9246 9247The ``llvm.objectsize`` intrinsic takes two arguments. The first 9248argument is a pointer to or into the ``object``. The second argument is 9249a boolean and determines whether ``llvm.objectsize`` returns 0 (if true) 9250or -1 (if false) when the object size is unknown. The second argument 9251only accepts constants. 9252 9253Semantics: 9254"""""""""" 9255 9256The ``llvm.objectsize`` intrinsic is lowered to a constant representing 9257the size of the object concerned. If the size cannot be determined at 9258compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending 9259on the ``min`` argument). 9260 9261'``llvm.expect``' Intrinsic 9262^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9263 9264Syntax: 9265""""""" 9266 9267This is an overloaded intrinsic. You can use ``llvm.expect`` on any 9268integer bit width. 9269 9270:: 9271 9272 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>) 9273 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>) 9274 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>) 9275 9276Overview: 9277""""""""" 9278 9279The ``llvm.expect`` intrinsic provides information about expected (the 9280most probable) value of ``val``, which can be used by optimizers. 9281 9282Arguments: 9283"""""""""" 9284 9285The ``llvm.expect`` intrinsic takes two arguments. The first argument is 9286a value. The second argument is an expected value, this needs to be a 9287constant value, variables are not allowed. 9288 9289Semantics: 9290"""""""""" 9291 9292This intrinsic is lowered to the ``val``. 9293 9294'``llvm.donothing``' Intrinsic 9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9296 9297Syntax: 9298""""""" 9299 9300:: 9301 9302 declare void @llvm.donothing() nounwind readnone 9303 9304Overview: 9305""""""""" 9306 9307The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the 9308only intrinsic that can be called with an invoke instruction. 9309 9310Arguments: 9311"""""""""" 9312 9313None. 9314 9315Semantics: 9316"""""""""" 9317 9318This intrinsic does nothing, and it's removed by optimizers and ignored 9319by codegen. 9320 9321Stack Map Intrinsics 9322-------------------- 9323 9324LLVM provides experimental intrinsics to support runtime patching 9325mechanisms commonly desired in dynamic language JITs. These intrinsics 9326are described in :doc:`StackMaps`. 9327