• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6   :local:
7   :depth: 4
8
9Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55    %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76   prefix. For example, ``%foo``, ``@DivisionByZero``,
77   ``%a.really.long.identifier``. The actual regular expression used is
78   '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79   characters in their names can be surrounded with quotes. Special
80   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81   code for the character in hexadecimal. In this way, any character can
82   be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84   their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section  Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108    %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
114    %result = shl i32 %X, 3
115
116And the hard way:
117
118.. code-block:: llvm
119
120    %0 = add i32 %X, %X           ; yields i32:%0
121    %1 = add i32 %0, %0           ; yields i32:%1
122    %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129   not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially (using a per-function
131   incrementing counter, starting with 0). Note that basic blocks are
132   included in this numbering. For example, if the entry basic block is not
133   given a label name, then it will get number 0.
134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
154    ; Declare the string constant as a global constant.
155    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
156
157    ; External declaration of the puts function
158    declare i32 @puts(i8* nocapture) nounwind
159
160    ; Definition of main function
161    define i32 @main() {   ; i32()*
162      ; Convert [13 x i8]* to i8  *...
163      %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
165      ; Call puts function to write out the string to stdout.
166      call i32 @puts(i8* %cast210)
167      ret i32 0
168    }
169
170    ; Named metadata
171    !1 = metadata !{i32 42}
172    !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194    Global values with "``private``" linkage are only directly
195    accessible by objects in the current module. In particular, linking
196    code into a module with an private global value may cause the
197    private to be renamed as necessary to avoid collisions. Because the
198    symbol is private to the module, all references can be updated. This
199    doesn't show up in any symbol table in the object file.
200``internal``
201    Similar to private, but the value shows as a local symbol
202    (``STB_LOCAL`` in the case of ELF) in the object file. This
203    corresponds to the notion of the '``static``' keyword in C.
204``available_externally``
205    Globals with "``available_externally``" linkage are never emitted
206    into the object file corresponding to the LLVM module. They exist to
207    allow inlining and other optimizations to take place given knowledge
208    of the definition of the global, which is known to be somewhere
209    outside the module. Globals with ``available_externally`` linkage
210    are allowed to be discarded at will, and are otherwise the same as
211    ``linkonce_odr``. This linkage type is only allowed on definitions,
212    not declarations.
213``linkonce``
214    Globals with "``linkonce``" linkage are merged with other globals of
215    the same name when linkage occurs. This can be used to implement
216    some forms of inline functions, templates, or other code which must
217    be generated in each translation unit that uses it, but where the
218    body may be overridden with a more definitive definition later.
219    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
220    that ``linkonce`` linkage does not actually allow the optimizer to
221    inline the body of this function into callers because it doesn't
222    know if this definition of the function is the definitive definition
223    within the program or whether it will be overridden by a stronger
224    definition. To enable inlining and other optimizations, use
225    "``linkonce_odr``" linkage.
226``weak``
227    "``weak``" linkage has the same merging semantics as ``linkonce``
228    linkage, except that unreferenced globals with ``weak`` linkage may
229    not be discarded. This is used for globals that are declared "weak"
230    in C source code.
231``common``
232    "``common``" linkage is most similar to "``weak``" linkage, but they
233    are used for tentative definitions in C, such as "``int X;``" at
234    global scope. Symbols with "``common``" linkage are merged in the
235    same way as ``weak symbols``, and they may not be deleted if
236    unreferenced. ``common`` symbols may not have an explicit section,
237    must have a zero initializer, and may not be marked
238    ':ref:`constant <globalvars>`'. Functions and aliases may not have
239    common linkage.
240
241.. _linkage_appending:
242
243``appending``
244    "``appending``" linkage may only be applied to global variables of
245    pointer to array type. When two global variables with appending
246    linkage are linked together, the two global arrays are appended
247    together. This is the LLVM, typesafe, equivalent of having the
248    system linker append together "sections" with identical names when
249    .o files are linked.
250``extern_weak``
251    The semantics of this linkage follow the ELF object file model: the
252    symbol is weak until linked, if not linked, the symbol becomes null
253    instead of being an undefined reference.
254``linkonce_odr``, ``weak_odr``
255    Some languages allow differing globals to be merged, such as two
256    functions with different semantics. Other languages, such as
257    ``C++``, ensure that only equivalent globals are ever merged (the
258    "one definition rule" --- "ODR").  Such languages can use the
259    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
260    global will only be merged with equivalent globals. These linkage
261    types are otherwise the same as their non-``odr`` versions.
262``external``
263    If none of the above identifiers are used, the global is externally
264    visible, meaning that it participates in linkage and can be used to
265    resolve external symbol references.
266
267It is illegal for a function *declaration* to have any linkage type
268other than ``external`` or ``extern_weak``.
269
270.. _callingconv:
271
272Calling Conventions
273-------------------
274
275LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
276:ref:`invokes <i_invoke>` can all have an optional calling convention
277specified for the call. The calling convention of any pair of dynamic
278caller/callee must match, or the behavior of the program is undefined.
279The following calling conventions are supported by LLVM, and more may be
280added in the future:
281
282"``ccc``" - The C calling convention
283    This calling convention (the default if no other calling convention
284    is specified) matches the target C calling conventions. This calling
285    convention supports varargs function calls and tolerates some
286    mismatch in the declared prototype and implemented declaration of
287    the function (as does normal C).
288"``fastcc``" - The fast calling convention
289    This calling convention attempts to make calls as fast as possible
290    (e.g. by passing things in registers). This calling convention
291    allows the target to use whatever tricks it wants to produce fast
292    code for the target, without having to conform to an externally
293    specified ABI (Application Binary Interface). `Tail calls can only
294    be optimized when this, the GHC or the HiPE convention is
295    used. <CodeGenerator.html#id80>`_ This calling convention does not
296    support varargs and requires the prototype of all callees to exactly
297    match the prototype of the function definition.
298"``coldcc``" - The cold calling convention
299    This calling convention attempts to make code in the caller as
300    efficient as possible under the assumption that the call is not
301    commonly executed. As such, these calls often preserve all registers
302    so that the call does not break any live ranges in the caller side.
303    This calling convention does not support varargs and requires the
304    prototype of all callees to exactly match the prototype of the
305    function definition. Furthermore the inliner doesn't consider such function
306    calls for inlining.
307"``cc 10``" - GHC convention
308    This calling convention has been implemented specifically for use by
309    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
310    It passes everything in registers, going to extremes to achieve this
311    by disabling callee save registers. This calling convention should
312    not be used lightly but only for specific situations such as an
313    alternative to the *register pinning* performance technique often
314    used when implementing functional programming languages. At the
315    moment only X86 supports this convention and it has the following
316    limitations:
317
318    -  On *X86-32* only supports up to 4 bit type parameters. No
319       floating point types are supported.
320    -  On *X86-64* only supports up to 10 bit type parameters and 6
321       floating point parameters.
322
323    This calling convention supports `tail call
324    optimization <CodeGenerator.html#id80>`_ but requires both the
325    caller and callee are using it.
326"``cc 11``" - The HiPE calling convention
327    This calling convention has been implemented specifically for use by
328    the `High-Performance Erlang
329    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
330    native code compiler of the `Ericsson's Open Source Erlang/OTP
331    system <http://www.erlang.org/download.shtml>`_. It uses more
332    registers for argument passing than the ordinary C calling
333    convention and defines no callee-saved registers. The calling
334    convention properly supports `tail call
335    optimization <CodeGenerator.html#id80>`_ but requires that both the
336    caller and the callee use it. It uses a *register pinning*
337    mechanism, similar to GHC's convention, for keeping frequently
338    accessed runtime components pinned to specific hardware registers.
339    At the moment only X86 supports this convention (both 32 and 64
340    bit).
341"``webkit_jscc``" - WebKit's JavaScript calling convention
342    This calling convention has been implemented for `WebKit FTL JIT
343    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
344    stack right to left (as cdecl does), and returns a value in the
345    platform's customary return register.
346"``anyregcc``" - Dynamic calling convention for code patching
347    This is a special convention that supports patching an arbitrary code
348    sequence in place of a call site. This convention forces the call
349    arguments into registers but allows them to be dynamcially
350    allocated. This can currently only be used with calls to
351    llvm.experimental.patchpoint because only this intrinsic records
352    the location of its arguments in a side table. See :doc:`StackMaps`.
353"``preserve_mostcc``" - The `PreserveMost` calling convention
354    This calling convention attempts to make the code in the caller as little
355    intrusive as possible. This calling convention behaves identical to the `C`
356    calling convention on how arguments and return values are passed, but it
357    uses a different set of caller/callee-saved registers. This alleviates the
358    burden of saving and recovering a large register set before and after the
359    call in the caller. If the arguments are passed in callee-saved registers,
360    then they will be preserved by the callee across the call. This doesn't
361    apply for values returned in callee-saved registers.
362
363    - On X86-64 the callee preserves all general purpose registers, except for
364      R11. R11 can be used as a scratch register. Floating-point registers
365      (XMMs/YMMs) are not preserved and need to be saved by the caller.
366
367    The idea behind this convention is to support calls to runtime functions
368    that have a hot path and a cold path. The hot path is usually a small piece
369    of code that doesn't many registers. The cold path might need to call out to
370    another function and therefore only needs to preserve the caller-saved
371    registers, which haven't already been saved by the caller. The
372    `PreserveMost` calling convention is very similar to the `cold` calling
373    convention in terms of caller/callee-saved registers, but they are used for
374    different types of function calls. `coldcc` is for function calls that are
375    rarely executed, whereas `preserve_mostcc` function calls are intended to be
376    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
377    doesn't prevent the inliner from inlining the function call.
378
379    This calling convention will be used by a future version of the ObjectiveC
380    runtime and should therefore still be considered experimental at this time.
381    Although this convention was created to optimize certain runtime calls to
382    the ObjectiveC runtime, it is not limited to this runtime and might be used
383    by other runtimes in the future too. The current implementation only
384    supports X86-64, but the intention is to support more architectures in the
385    future.
386"``preserve_allcc``" - The `PreserveAll` calling convention
387    This calling convention attempts to make the code in the caller even less
388    intrusive than the `PreserveMost` calling convention. This calling
389    convention also behaves identical to the `C` calling convention on how
390    arguments and return values are passed, but it uses a different set of
391    caller/callee-saved registers. This removes the burden of saving and
392    recovering a large register set before and after the call in the caller. If
393    the arguments are passed in callee-saved registers, then they will be
394    preserved by the callee across the call. This doesn't apply for values
395    returned in callee-saved registers.
396
397    - On X86-64 the callee preserves all general purpose registers, except for
398      R11. R11 can be used as a scratch register. Furthermore it also preserves
399      all floating-point registers (XMMs/YMMs).
400
401    The idea behind this convention is to support calls to runtime functions
402    that don't need to call out to any other functions.
403
404    This calling convention, like the `PreserveMost` calling convention, will be
405    used by a future version of the ObjectiveC runtime and should be considered
406    experimental at this time.
407"``cc <n>``" - Numbered convention
408    Any calling convention may be specified by number, allowing
409    target-specific calling conventions to be used. Target specific
410    calling conventions start at 64.
411
412More calling conventions can be added/defined on an as-needed basis, to
413support Pascal conventions or any other well-known target-independent
414convention.
415
416.. _visibilitystyles:
417
418Visibility Styles
419-----------------
420
421All Global Variables and Functions have one of the following visibility
422styles:
423
424"``default``" - Default style
425    On targets that use the ELF object file format, default visibility
426    means that the declaration is visible to other modules and, in
427    shared libraries, means that the declared entity may be overridden.
428    On Darwin, default visibility means that the declaration is visible
429    to other modules. Default visibility corresponds to "external
430    linkage" in the language.
431"``hidden``" - Hidden style
432    Two declarations of an object with hidden visibility refer to the
433    same object if they are in the same shared object. Usually, hidden
434    visibility indicates that the symbol will not be placed into the
435    dynamic symbol table, so no other module (executable or shared
436    library) can reference it directly.
437"``protected``" - Protected style
438    On ELF, protected visibility indicates that the symbol will be
439    placed in the dynamic symbol table, but that references within the
440    defining module will bind to the local symbol. That is, the symbol
441    cannot be overridden by another module.
442
443A symbol with ``internal`` or ``private`` linkage must have ``default``
444visibility.
445
446.. _dllstorageclass:
447
448DLL Storage Classes
449-------------------
450
451All Global Variables, Functions and Aliases can have one of the following
452DLL storage class:
453
454``dllimport``
455    "``dllimport``" causes the compiler to reference a function or variable via
456    a global pointer to a pointer that is set up by the DLL exporting the
457    symbol. On Microsoft Windows targets, the pointer name is formed by
458    combining ``__imp_`` and the function or variable name.
459``dllexport``
460    "``dllexport``" causes the compiler to provide a global pointer to a pointer
461    in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
462    Microsoft Windows targets, the pointer name is formed by combining
463    ``__imp_`` and the function or variable name. Since this storage class
464    exists for defining a dll interface, the compiler, assembler and linker know
465    it is externally referenced and must refrain from deleting the symbol.
466
467.. _tls_model:
468
469Thread Local Storage Models
470---------------------------
471
472A variable may be defined as ``thread_local``, which means that it will
473not be shared by threads (each thread will have a separated copy of the
474variable). Not all targets support thread-local variables. Optionally, a
475TLS model may be specified:
476
477``localdynamic``
478    For variables that are only used within the current shared library.
479``initialexec``
480    For variables in modules that will not be loaded dynamically.
481``localexec``
482    For variables defined in the executable and only used within it.
483
484If no explicit model is given, the "general dynamic" model is used.
485
486The models correspond to the ELF TLS models; see `ELF Handling For
487Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
488more information on under which circumstances the different models may
489be used. The target may choose a different TLS model if the specified
490model is not supported, or if a better choice of model can be made.
491
492A model can also be specified in a alias, but then it only governs how
493the alias is accessed. It will not have any effect in the aliasee.
494
495.. _namedtypes:
496
497Structure Types
498---------------
499
500LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
501types <t_struct>`.  Literal types are uniqued structurally, but identified types
502are never uniqued.  An :ref:`opaque structural type <t_opaque>` can also be used
503to forward declare a type which is not yet available.
504
505An example of a identified structure specification is:
506
507.. code-block:: llvm
508
509    %mytype = type { %mytype*, i32 }
510
511Prior to the LLVM 3.0 release, identified types were structurally uniqued.  Only
512literal types are uniqued in recent versions of LLVM.
513
514.. _globalvars:
515
516Global Variables
517----------------
518
519Global variables define regions of memory allocated at compilation time
520instead of run-time.
521
522Global variables definitions must be initialized.
523
524Global variables in other translation units can also be declared, in which
525case they don't have an initializer.
526
527Either global variable definitions or declarations may have an explicit section
528to be placed in and may have an optional explicit alignment specified.
529
530A variable may be defined as a global ``constant``, which indicates that
531the contents of the variable will **never** be modified (enabling better
532optimization, allowing the global data to be placed in the read-only
533section of an executable, etc). Note that variables that need runtime
534initialization cannot be marked ``constant`` as there is a store to the
535variable.
536
537LLVM explicitly allows *declarations* of global variables to be marked
538constant, even if the final definition of the global is not. This
539capability can be used to enable slightly better optimization of the
540program, but requires the language definition to guarantee that
541optimizations based on the 'constantness' are valid for the translation
542units that do not include the definition.
543
544As SSA values, global variables define pointer values that are in scope
545(i.e. they dominate) all basic blocks in the program. Global variables
546always define a pointer to their "content" type because they describe a
547region of memory, and all memory objects in LLVM are accessed through
548pointers.
549
550Global variables can be marked with ``unnamed_addr`` which indicates
551that the address is not significant, only the content. Constants marked
552like this can be merged with other constants if they have the same
553initializer. Note that a constant with significant address *can* be
554merged with a ``unnamed_addr`` constant, the result being a constant
555whose address is significant.
556
557A global variable may be declared to reside in a target-specific
558numbered address space. For targets that support them, address spaces
559may affect how optimizations are performed and/or what target
560instructions are used to access the variable. The default address space
561is zero. The address space qualifier must precede any other attributes.
562
563LLVM allows an explicit section to be specified for globals. If the
564target supports it, it will emit globals to the section specified.
565Additionally, the global can placed in a comdat if the target has the necessary
566support.
567
568By default, global initializers are optimized by assuming that global
569variables defined within the module are not modified from their
570initial values before the start of the global initializer.  This is
571true even for variables potentially accessible from outside the
572module, including those with external linkage or appearing in
573``@llvm.used`` or dllexported variables. This assumption may be suppressed
574by marking the variable with ``externally_initialized``.
575
576An explicit alignment may be specified for a global, which must be a
577power of 2. If not present, or if the alignment is set to zero, the
578alignment of the global is set by the target to whatever it feels
579convenient. If an explicit alignment is specified, the global is forced
580to have exactly that alignment. Targets and optimizers are not allowed
581to over-align the global if the global has an assigned section. In this
582case, the extra alignment could be observable: for example, code could
583assume that the globals are densely packed in their section and try to
584iterate over them as an array, alignment padding would break this
585iteration.
586
587Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
588
589Variables and aliasaes can have a
590:ref:`Thread Local Storage Model <tls_model>`.
591
592Syntax::
593
594    [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
595                         [unnamed_addr] [AddrSpace] [ExternallyInitialized]
596                         <global | constant> <Type> [<InitializerConstant>]
597                         [, section "name"] [, align <Alignment>]
598
599For example, the following defines a global in a numbered address space
600with an initializer, section, and alignment:
601
602.. code-block:: llvm
603
604    @G = addrspace(5) constant float 1.0, section "foo", align 4
605
606The following example just declares a global variable
607
608.. code-block:: llvm
609
610   @G = external global i32
611
612The following example defines a thread-local global with the
613``initialexec`` TLS model:
614
615.. code-block:: llvm
616
617    @G = thread_local(initialexec) global i32 0, align 4
618
619.. _functionstructure:
620
621Functions
622---------
623
624LLVM function definitions consist of the "``define``" keyword, an
625optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
626style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
627an optional :ref:`calling convention <callingconv>`,
628an optional ``unnamed_addr`` attribute, a return type, an optional
629:ref:`parameter attribute <paramattrs>` for the return type, a function
630name, a (possibly empty) argument list (each with optional :ref:`parameter
631attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
632an optional section, an optional alignment,
633an optional :ref:`comdat <langref_comdats>`,
634an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
635curly brace, a list of basic blocks, and a closing curly brace.
636
637LLVM function declarations consist of the "``declare``" keyword, an
638optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
639style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
640an optional :ref:`calling convention <callingconv>`,
641an optional ``unnamed_addr`` attribute, a return type, an optional
642:ref:`parameter attribute <paramattrs>` for the return type, a function
643name, a possibly empty list of arguments, an optional alignment, an optional
644:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
645
646A function definition contains a list of basic blocks, forming the CFG (Control
647Flow Graph) for the function. Each basic block may optionally start with a label
648(giving the basic block a symbol table entry), contains a list of instructions,
649and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
650function return). If an explicit label is not provided, a block is assigned an
651implicit numbered label, using the next value from the same counter as used for
652unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
653entry block does not have an explicit label, it will be assigned label "%0",
654then the first unnamed temporary in that block will be "%1", etc.
655
656The first basic block in a function is special in two ways: it is
657immediately executed on entrance to the function, and it is not allowed
658to have predecessor basic blocks (i.e. there can not be any branches to
659the entry block of a function). Because the block can have no
660predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
661
662LLVM allows an explicit section to be specified for functions. If the
663target supports it, it will emit functions to the section specified.
664Additionally, the function can placed in a COMDAT.
665
666An explicit alignment may be specified for a function. If not present,
667or if the alignment is set to zero, the alignment of the function is set
668by the target to whatever it feels convenient. If an explicit alignment
669is specified, the function is forced to have at least that much
670alignment. All alignments must be a power of 2.
671
672If the ``unnamed_addr`` attribute is given, the address is know to not
673be significant and two identical functions can be merged.
674
675Syntax::
676
677    define [linkage] [visibility] [DLLStorageClass]
678           [cconv] [ret attrs]
679           <ResultType> @<FunctionName> ([argument list])
680           [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
681           [align N] [gc] [prefix Constant] { ... }
682
683.. _langref_aliases:
684
685Aliases
686-------
687
688Aliases, unlike function or variables, don't create any new data. They
689are just a new symbol and metadata for an existing position.
690
691Aliases have a name and an aliasee that is either a global value or a
692constant expression.
693
694Aliases may have an optional :ref:`linkage type <linkage>`, an optional
695:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
696<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
697
698Syntax::
699
700    @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee>
701
702The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
703``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
704might not correctly handle dropping a weak symbol that is aliased.
705
706Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
707the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
708to the same content.
709
710Since aliases are only a second name, some restrictions apply, of which
711some can only be checked when producing an object file:
712
713* The expression defining the aliasee must be computable at assembly
714  time. Since it is just a name, no relocations can be used.
715
716* No alias in the expression can be weak as the possibility of the
717  intermediate alias being overridden cannot be represented in an
718  object file.
719
720* No global value in the expression can be a declaration, since that
721  would require a relocation, which is not possible.
722
723.. _langref_comdats:
724
725Comdats
726-------
727
728Comdat IR provides access to COFF and ELF object file COMDAT functionality.
729
730Comdats have a name which represents the COMDAT key.  All global objects which
731specify this key will only end up in the final object file if the linker chooses
732that key over some other key.  Aliases are placed in the same COMDAT that their
733aliasee computes to, if any.
734
735Comdats have a selection kind to provide input on how the linker should
736choose between keys in two different object files.
737
738Syntax::
739
740    $<Name> = comdat SelectionKind
741
742The selection kind must be one of the following:
743
744``any``
745    The linker may choose any COMDAT key, the choice is arbitrary.
746``exactmatch``
747    The linker may choose any COMDAT key but the sections must contain the
748    same data.
749``largest``
750    The linker will choose the section containing the largest COMDAT key.
751``noduplicates``
752    The linker requires that only section with this COMDAT key exist.
753``samesize``
754    The linker may choose any COMDAT key but the sections must contain the
755    same amount of data.
756
757Note that the Mach-O platform doesn't support COMDATs and ELF only supports
758``any`` as a selection kind.
759
760Here is an example of a COMDAT group where a function will only be selected if
761the COMDAT key's section is the largest:
762
763.. code-block:: llvm
764
765   $foo = comdat largest
766   @foo = global i32 2, comdat $foo
767
768   define void @bar() comdat $foo {
769     ret void
770   }
771
772In a COFF object file, this will create a COMDAT section with selection kind
773``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
774and another COMDAT section with selection kind
775``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
776section and contains the contents of the ``@baz`` symbol.
777
778There are some restrictions on the properties of the global object.
779It, or an alias to it, must have the same name as the COMDAT group when
780targeting COFF.
781The contents and size of this object may be used during link-time to determine
782which COMDAT groups get selected depending on the selection kind.
783Because the name of the object must match the name of the COMDAT group, the
784linkage of the global object must not be local; local symbols can get renamed
785if a collision occurs in the symbol table.
786
787The combined use of COMDATS and section attributes may yield surprising results.
788For example:
789
790.. code-block:: llvm
791
792   $foo = comdat any
793   $bar = comdat any
794   @g1 = global i32 42, section "sec", comdat $foo
795   @g2 = global i32 42, section "sec", comdat $bar
796
797From the object file perspective, this requires the creation of two sections
798with the same name.  This is necessary because both globals belong to different
799COMDAT groups and COMDATs, at the object file level, are represented by
800sections.
801
802Note that certain IR constructs like global variables and functions may create
803COMDATs in the object file in addition to any which are specified using COMDAT
804IR.  This arises, for example, when a global variable has linkonce_odr linkage.
805
806.. _namedmetadatastructure:
807
808Named Metadata
809--------------
810
811Named metadata is a collection of metadata. :ref:`Metadata
812nodes <metadata>` (but not metadata strings) are the only valid
813operands for a named metadata.
814
815Syntax::
816
817    ; Some unnamed metadata nodes, which are referenced by the named metadata.
818    !0 = metadata !{metadata !"zero"}
819    !1 = metadata !{metadata !"one"}
820    !2 = metadata !{metadata !"two"}
821    ; A named metadata.
822    !name = !{!0, !1, !2}
823
824.. _paramattrs:
825
826Parameter Attributes
827--------------------
828
829The return type and each parameter of a function type may have a set of
830*parameter attributes* associated with them. Parameter attributes are
831used to communicate additional information about the result or
832parameters of a function. Parameter attributes are considered to be part
833of the function, not of the function type, so functions with different
834parameter attributes can have the same function type.
835
836Parameter attributes are simple keywords that follow the type specified.
837If multiple parameter attributes are needed, they are space separated.
838For example:
839
840.. code-block:: llvm
841
842    declare i32 @printf(i8* noalias nocapture, ...)
843    declare i32 @atoi(i8 zeroext)
844    declare signext i8 @returns_signed_char()
845
846Note that any attributes for the function result (``nounwind``,
847``readonly``) come immediately after the argument list.
848
849Currently, only the following parameter attributes are defined:
850
851``zeroext``
852    This indicates to the code generator that the parameter or return
853    value should be zero-extended to the extent required by the target's
854    ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
855    the caller (for a parameter) or the callee (for a return value).
856``signext``
857    This indicates to the code generator that the parameter or return
858    value should be sign-extended to the extent required by the target's
859    ABI (which is usually 32-bits) by the caller (for a parameter) or
860    the callee (for a return value).
861``inreg``
862    This indicates that this parameter or return value should be treated
863    in a special target-dependent fashion during while emitting code for
864    a function call or return (usually, by putting it in a register as
865    opposed to memory, though some targets use it to distinguish between
866    two different kinds of registers). Use of this attribute is
867    target-specific.
868``byval``
869    This indicates that the pointer parameter should really be passed by
870    value to the function. The attribute implies that a hidden copy of
871    the pointee is made between the caller and the callee, so the callee
872    is unable to modify the value in the caller. This attribute is only
873    valid on LLVM pointer arguments. It is generally used to pass
874    structs and arrays by value, but is also valid on pointers to
875    scalars. The copy is considered to belong to the caller not the
876    callee (for example, ``readonly`` functions should not write to
877    ``byval`` parameters). This is not a valid attribute for return
878    values.
879
880    The byval attribute also supports specifying an alignment with the
881    align attribute. It indicates the alignment of the stack slot to
882    form and the known alignment of the pointer specified to the call
883    site. If the alignment is not specified, then the code generator
884    makes a target-specific assumption.
885
886.. _attr_inalloca:
887
888``inalloca``
889
890    The ``inalloca`` argument attribute allows the caller to take the
891    address of outgoing stack arguments.  An ``inalloca`` argument must
892    be a pointer to stack memory produced by an ``alloca`` instruction.
893    The alloca, or argument allocation, must also be tagged with the
894    inalloca keyword.  Only the past argument may have the ``inalloca``
895    attribute, and that argument is guaranteed to be passed in memory.
896
897    An argument allocation may be used by a call at most once because
898    the call may deallocate it.  The ``inalloca`` attribute cannot be
899    used in conjunction with other attributes that affect argument
900    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``.  The
901    ``inalloca`` attribute also disables LLVM's implicit lowering of
902    large aggregate return values, which means that frontend authors
903    must lower them with ``sret`` pointers.
904
905    When the call site is reached, the argument allocation must have
906    been the most recent stack allocation that is still live, or the
907    results are undefined.  It is possible to allocate additional stack
908    space after an argument allocation and before its call site, but it
909    must be cleared off with :ref:`llvm.stackrestore
910    <int_stackrestore>`.
911
912    See :doc:`InAlloca` for more information on how to use this
913    attribute.
914
915``sret``
916    This indicates that the pointer parameter specifies the address of a
917    structure that is the return value of the function in the source
918    program. This pointer must be guaranteed by the caller to be valid:
919    loads and stores to the structure may be assumed by the callee
920    not to trap and to be properly aligned. This may only be applied to
921    the first parameter. This is not a valid attribute for return
922    values.
923
924.. _noalias:
925
926``noalias``
927    This indicates that pointer values :ref:`based <pointeraliasing>` on
928    the argument or return value do not alias pointer values which are
929    not *based* on it, ignoring certain "irrelevant" dependencies. For a
930    call to the parent function, dependencies between memory references
931    from before or after the call and from those during the call are
932    "irrelevant" to the ``noalias`` keyword for the arguments and return
933    value used in that call. The caller shares the responsibility with
934    the callee for ensuring that these requirements are met. For further
935    details, please see the discussion of the NoAlias response in :ref:`alias
936    analysis <Must, May, or No>`.
937
938    Note that this definition of ``noalias`` is intentionally similar
939    to the definition of ``restrict`` in C99 for function arguments,
940    though it is slightly weaker.
941
942    For function return values, C99's ``restrict`` is not meaningful,
943    while LLVM's ``noalias`` is.
944``nocapture``
945    This indicates that the callee does not make any copies of the
946    pointer that outlive the callee itself. This is not a valid
947    attribute for return values.
948
949.. _nest:
950
951``nest``
952    This indicates that the pointer parameter can be excised using the
953    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
954    attribute for return values and can only be applied to one parameter.
955
956``returned``
957    This indicates that the function always returns the argument as its return
958    value. This is an optimization hint to the code generator when generating
959    the caller, allowing tail call optimization and omission of register saves
960    and restores in some cases; it is not checked or enforced when generating
961    the callee. The parameter and the function return type must be valid
962    operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
963    valid attribute for return values and can only be applied to one parameter.
964
965``nonnull``
966    This indicates that the parameter or return pointer is not null. This
967    attribute may only be applied to pointer typed parameters. This is not
968    checked or enforced by LLVM, the caller must ensure that the pointer
969    passed in is non-null, or the callee must ensure that the returned pointer
970    is non-null.
971
972.. _gc:
973
974Garbage Collector Names
975-----------------------
976
977Each function may specify a garbage collector name, which is simply a
978string:
979
980.. code-block:: llvm
981
982    define void @f() gc "name" { ... }
983
984The compiler declares the supported values of *name*. Specifying a
985collector which will cause the compiler to alter its output in order to
986support the named garbage collection algorithm.
987
988.. _prefixdata:
989
990Prefix Data
991-----------
992
993Prefix data is data associated with a function which the code generator
994will emit immediately before the function body.  The purpose of this feature
995is to allow frontends to associate language-specific runtime metadata with
996specific functions and make it available through the function pointer while
997still allowing the function pointer to be called.  To access the data for a
998given function, a program may bitcast the function pointer to a pointer to
999the constant's type.  This implies that the IR symbol points to the start
1000of the prefix data.
1001
1002To maintain the semantics of ordinary function calls, the prefix data must
1003have a particular format.  Specifically, it must begin with a sequence of
1004bytes which decode to a sequence of machine instructions, valid for the
1005module's target, which transfer control to the point immediately succeeding
1006the prefix data, without performing any other visible action.  This allows
1007the inliner and other passes to reason about the semantics of the function
1008definition without needing to reason about the prefix data.  Obviously this
1009makes the format of the prefix data highly target dependent.
1010
1011Prefix data is laid out as if it were an initializer for a global variable
1012of the prefix data's type.  No padding is automatically placed between the
1013prefix data and the function body.  If padding is required, it must be part
1014of the prefix data.
1015
1016A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1017which encodes the ``nop`` instruction:
1018
1019.. code-block:: llvm
1020
1021    define void @f() prefix i8 144 { ... }
1022
1023Generally prefix data can be formed by encoding a relative branch instruction
1024which skips the metadata, as in this example of valid prefix data for the
1025x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1026
1027.. code-block:: llvm
1028
1029    %0 = type <{ i8, i8, i8* }>
1030
1031    define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1032
1033A function may have prefix data but no body.  This has similar semantics
1034to the ``available_externally`` linkage in that the data may be used by the
1035optimizers but will not be emitted in the object file.
1036
1037.. _attrgrp:
1038
1039Attribute Groups
1040----------------
1041
1042Attribute groups are groups of attributes that are referenced by objects within
1043the IR. They are important for keeping ``.ll`` files readable, because a lot of
1044functions will use the same set of attributes. In the degenerative case of a
1045``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1046group will capture the important command line flags used to build that file.
1047
1048An attribute group is a module-level object. To use an attribute group, an
1049object references the attribute group's ID (e.g. ``#37``). An object may refer
1050to more than one attribute group. In that situation, the attributes from the
1051different groups are merged.
1052
1053Here is an example of attribute groups for a function that should always be
1054inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1055
1056.. code-block:: llvm
1057
1058   ; Target-independent attributes:
1059   attributes #0 = { alwaysinline alignstack=4 }
1060
1061   ; Target-dependent attributes:
1062   attributes #1 = { "no-sse" }
1063
1064   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1065   define void @f() #0 #1 { ... }
1066
1067.. _fnattrs:
1068
1069Function Attributes
1070-------------------
1071
1072Function attributes are set to communicate additional information about
1073a function. Function attributes are considered to be part of the
1074function, not of the function type, so functions with different function
1075attributes can have the same function type.
1076
1077Function attributes are simple keywords that follow the type specified.
1078If multiple attributes are needed, they are space separated. For
1079example:
1080
1081.. code-block:: llvm
1082
1083    define void @f() noinline { ... }
1084    define void @f() alwaysinline { ... }
1085    define void @f() alwaysinline optsize { ... }
1086    define void @f() optsize { ... }
1087
1088``alignstack(<n>)``
1089    This attribute indicates that, when emitting the prologue and
1090    epilogue, the backend should forcibly align the stack pointer.
1091    Specify the desired alignment, which must be a power of two, in
1092    parentheses.
1093``alwaysinline``
1094    This attribute indicates that the inliner should attempt to inline
1095    this function into callers whenever possible, ignoring any active
1096    inlining size threshold for this caller.
1097``builtin``
1098    This indicates that the callee function at a call site should be
1099    recognized as a built-in function, even though the function's declaration
1100    uses the ``nobuiltin`` attribute. This is only valid at call sites for
1101    direct calls to functions which are declared with the ``nobuiltin``
1102    attribute.
1103``cold``
1104    This attribute indicates that this function is rarely called. When
1105    computing edge weights, basic blocks post-dominated by a cold
1106    function call are also considered to be cold; and, thus, given low
1107    weight.
1108``inlinehint``
1109    This attribute indicates that the source code contained a hint that
1110    inlining this function is desirable (such as the "inline" keyword in
1111    C/C++). It is just a hint; it imposes no requirements on the
1112    inliner.
1113``jumptable``
1114    This attribute indicates that the function should be added to a
1115    jump-instruction table at code-generation time, and that all address-taken
1116    references to this function should be replaced with a reference to the
1117    appropriate jump-instruction-table function pointer. Note that this creates
1118    a new pointer for the original function, which means that code that depends
1119    on function-pointer identity can break. So, any function annotated with
1120    ``jumptable`` must also be ``unnamed_addr``.
1121``minsize``
1122    This attribute suggests that optimization passes and code generator
1123    passes make choices that keep the code size of this function as small
1124    as possible and perform optimizations that may sacrifice runtime
1125    performance in order to minimize the size of the generated code.
1126``naked``
1127    This attribute disables prologue / epilogue emission for the
1128    function. This can have very system-specific consequences.
1129``nobuiltin``
1130    This indicates that the callee function at a call site is not recognized as
1131    a built-in function. LLVM will retain the original call and not replace it
1132    with equivalent code based on the semantics of the built-in function, unless
1133    the call site uses the ``builtin`` attribute. This is valid at call sites
1134    and on function declarations and definitions.
1135``noduplicate``
1136    This attribute indicates that calls to the function cannot be
1137    duplicated. A call to a ``noduplicate`` function may be moved
1138    within its parent function, but may not be duplicated within
1139    its parent function.
1140
1141    A function containing a ``noduplicate`` call may still
1142    be an inlining candidate, provided that the call is not
1143    duplicated by inlining. That implies that the function has
1144    internal linkage and only has one call site, so the original
1145    call is dead after inlining.
1146``noimplicitfloat``
1147    This attributes disables implicit floating point instructions.
1148``noinline``
1149    This attribute indicates that the inliner should never inline this
1150    function in any situation. This attribute may not be used together
1151    with the ``alwaysinline`` attribute.
1152``nonlazybind``
1153    This attribute suppresses lazy symbol binding for the function. This
1154    may make calls to the function faster, at the cost of extra program
1155    startup time if the function is not called during program startup.
1156``noredzone``
1157    This attribute indicates that the code generator should not use a
1158    red zone, even if the target-specific ABI normally permits it.
1159``noreturn``
1160    This function attribute indicates that the function never returns
1161    normally. This produces undefined behavior at runtime if the
1162    function ever does dynamically return.
1163``nounwind``
1164    This function attribute indicates that the function never returns
1165    with an unwind or exceptional control flow. If the function does
1166    unwind, its runtime behavior is undefined.
1167``optnone``
1168    This function attribute indicates that the function is not optimized
1169    by any optimization or code generator passes with the
1170    exception of interprocedural optimization passes.
1171    This attribute cannot be used together with the ``alwaysinline``
1172    attribute; this attribute is also incompatible
1173    with the ``minsize`` attribute and the ``optsize`` attribute.
1174
1175    This attribute requires the ``noinline`` attribute to be specified on
1176    the function as well, so the function is never inlined into any caller.
1177    Only functions with the ``alwaysinline`` attribute are valid
1178    candidates for inlining into the body of this function.
1179``optsize``
1180    This attribute suggests that optimization passes and code generator
1181    passes make choices that keep the code size of this function low,
1182    and otherwise do optimizations specifically to reduce code size as
1183    long as they do not significantly impact runtime performance.
1184``readnone``
1185    On a function, this attribute indicates that the function computes its
1186    result (or decides to unwind an exception) based strictly on its arguments,
1187    without dereferencing any pointer arguments or otherwise accessing
1188    any mutable state (e.g. memory, control registers, etc) visible to
1189    caller functions. It does not write through any pointer arguments
1190    (including ``byval`` arguments) and never changes any state visible
1191    to callers. This means that it cannot unwind exceptions by calling
1192    the ``C++`` exception throwing methods.
1193
1194    On an argument, this attribute indicates that the function does not
1195    dereference that pointer argument, even though it may read or write the
1196    memory that the pointer points to if accessed through other pointers.
1197``readonly``
1198    On a function, this attribute indicates that the function does not write
1199    through any pointer arguments (including ``byval`` arguments) or otherwise
1200    modify any state (e.g. memory, control registers, etc) visible to
1201    caller functions. It may dereference pointer arguments and read
1202    state that may be set in the caller. A readonly function always
1203    returns the same value (or unwinds an exception identically) when
1204    called with the same set of arguments and global state. It cannot
1205    unwind an exception by calling the ``C++`` exception throwing
1206    methods.
1207
1208    On an argument, this attribute indicates that the function does not write
1209    through this pointer argument, even though it may write to the memory that
1210    the pointer points to.
1211``returns_twice``
1212    This attribute indicates that this function can return twice. The C
1213    ``setjmp`` is an example of such a function. The compiler disables
1214    some optimizations (like tail calls) in the caller of these
1215    functions.
1216``sanitize_address``
1217    This attribute indicates that AddressSanitizer checks
1218    (dynamic address safety analysis) are enabled for this function.
1219``sanitize_memory``
1220    This attribute indicates that MemorySanitizer checks (dynamic detection
1221    of accesses to uninitialized memory) are enabled for this function.
1222``sanitize_thread``
1223    This attribute indicates that ThreadSanitizer checks
1224    (dynamic thread safety analysis) are enabled for this function.
1225``ssp``
1226    This attribute indicates that the function should emit a stack
1227    smashing protector. It is in the form of a "canary" --- a random value
1228    placed on the stack before the local variables that's checked upon
1229    return from the function to see if it has been overwritten. A
1230    heuristic is used to determine if a function needs stack protectors
1231    or not. The heuristic used will enable protectors for functions with:
1232
1233    - Character arrays larger than ``ssp-buffer-size`` (default 8).
1234    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1235    - Calls to alloca() with variable sizes or constant sizes greater than
1236      ``ssp-buffer-size``.
1237
1238    Variables that are identified as requiring a protector will be arranged
1239    on the stack such that they are adjacent to the stack protector guard.
1240
1241    If a function that has an ``ssp`` attribute is inlined into a
1242    function that doesn't have an ``ssp`` attribute, then the resulting
1243    function will have an ``ssp`` attribute.
1244``sspreq``
1245    This attribute indicates that the function should *always* emit a
1246    stack smashing protector. This overrides the ``ssp`` function
1247    attribute.
1248
1249    Variables that are identified as requiring a protector will be arranged
1250    on the stack such that they are adjacent to the stack protector guard.
1251    The specific layout rules are:
1252
1253    #. Large arrays and structures containing large arrays
1254       (``>= ssp-buffer-size``) are closest to the stack protector.
1255    #. Small arrays and structures containing small arrays
1256       (``< ssp-buffer-size``) are 2nd closest to the protector.
1257    #. Variables that have had their address taken are 3rd closest to the
1258       protector.
1259
1260    If a function that has an ``sspreq`` attribute is inlined into a
1261    function that doesn't have an ``sspreq`` attribute or which has an
1262    ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1263    an ``sspreq`` attribute.
1264``sspstrong``
1265    This attribute indicates that the function should emit a stack smashing
1266    protector. This attribute causes a strong heuristic to be used when
1267    determining if a function needs stack protectors.  The strong heuristic
1268    will enable protectors for functions with:
1269
1270    - Arrays of any size and type
1271    - Aggregates containing an array of any size and type.
1272    - Calls to alloca().
1273    - Local variables that have had their address taken.
1274
1275    Variables that are identified as requiring a protector will be arranged
1276    on the stack such that they are adjacent to the stack protector guard.
1277    The specific layout rules are:
1278
1279    #. Large arrays and structures containing large arrays
1280       (``>= ssp-buffer-size``) are closest to the stack protector.
1281    #. Small arrays and structures containing small arrays
1282       (``< ssp-buffer-size``) are 2nd closest to the protector.
1283    #. Variables that have had their address taken are 3rd closest to the
1284       protector.
1285
1286    This overrides the ``ssp`` function attribute.
1287
1288    If a function that has an ``sspstrong`` attribute is inlined into a
1289    function that doesn't have an ``sspstrong`` attribute, then the
1290    resulting function will have an ``sspstrong`` attribute.
1291``uwtable``
1292    This attribute indicates that the ABI being targeted requires that
1293    an unwind table entry be produce for this function even if we can
1294    show that no exceptions passes by it. This is normally the case for
1295    the ELF x86-64 abi, but it can be disabled for some compilation
1296    units.
1297
1298.. _moduleasm:
1299
1300Module-Level Inline Assembly
1301----------------------------
1302
1303Modules may contain "module-level inline asm" blocks, which corresponds
1304to the GCC "file scope inline asm" blocks. These blocks are internally
1305concatenated by LLVM and treated as a single unit, but may be separated
1306in the ``.ll`` file if desired. The syntax is very simple:
1307
1308.. code-block:: llvm
1309
1310    module asm "inline asm code goes here"
1311    module asm "more can go here"
1312
1313The strings can contain any character by escaping non-printable
1314characters. The escape sequence used is simply "\\xx" where "xx" is the
1315two digit hex code for the number.
1316
1317The inline asm code is simply printed to the machine code .s file when
1318assembly code is generated.
1319
1320.. _langref_datalayout:
1321
1322Data Layout
1323-----------
1324
1325A module may specify a target specific data layout string that specifies
1326how data is to be laid out in memory. The syntax for the data layout is
1327simply:
1328
1329.. code-block:: llvm
1330
1331    target datalayout = "layout specification"
1332
1333The *layout specification* consists of a list of specifications
1334separated by the minus sign character ('-'). Each specification starts
1335with a letter and may include other information after the letter to
1336define some aspect of the data layout. The specifications accepted are
1337as follows:
1338
1339``E``
1340    Specifies that the target lays out data in big-endian form. That is,
1341    the bits with the most significance have the lowest address
1342    location.
1343``e``
1344    Specifies that the target lays out data in little-endian form. That
1345    is, the bits with the least significance have the lowest address
1346    location.
1347``S<size>``
1348    Specifies the natural alignment of the stack in bits. Alignment
1349    promotion of stack variables is limited to the natural stack
1350    alignment to avoid dynamic stack realignment. The stack alignment
1351    must be a multiple of 8-bits. If omitted, the natural stack
1352    alignment defaults to "unspecified", which does not prevent any
1353    alignment promotions.
1354``p[n]:<size>:<abi>:<pref>``
1355    This specifies the *size* of a pointer and its ``<abi>`` and
1356    ``<pref>``\erred alignments for address space ``n``. All sizes are in
1357    bits. The address space, ``n`` is optional, and if not specified,
1358    denotes the default address space 0.  The value of ``n`` must be
1359    in the range [1,2^23).
1360``i<size>:<abi>:<pref>``
1361    This specifies the alignment for an integer type of a given bit
1362    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1363``v<size>:<abi>:<pref>``
1364    This specifies the alignment for a vector type of a given bit
1365    ``<size>``.
1366``f<size>:<abi>:<pref>``
1367    This specifies the alignment for a floating point type of a given bit
1368    ``<size>``. Only values of ``<size>`` that are supported by the target
1369    will work. 32 (float) and 64 (double) are supported on all targets; 80
1370    or 128 (different flavors of long double) are also supported on some
1371    targets.
1372``a:<abi>:<pref>``
1373    This specifies the alignment for an object of aggregate type.
1374``m:<mangling>``
1375    If present, specifies that llvm names are mangled in the output. The
1376    options are
1377
1378    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1379    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1380    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1381      symbols get a ``_`` prefix.
1382    * ``w``: Windows COFF prefix:  Similar to Mach-O, but stdcall and fastcall
1383      functions also get a suffix based on the frame size.
1384``n<size1>:<size2>:<size3>...``
1385    This specifies a set of native integer widths for the target CPU in
1386    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1387    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1388    this set are considered to support most general arithmetic operations
1389    efficiently.
1390
1391On every specification that takes a ``<abi>:<pref>``, specifying the
1392``<pref>`` alignment is optional. If omitted, the preceding ``:``
1393should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1394
1395When constructing the data layout for a given target, LLVM starts with a
1396default set of specifications which are then (possibly) overridden by
1397the specifications in the ``datalayout`` keyword. The default
1398specifications are given in this list:
1399
1400-  ``E`` - big endian
1401-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1402-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1403   same as the default address space.
1404-  ``S0`` - natural stack alignment is unspecified
1405-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
1406-  ``i8:8:8`` - i8 is 8-bit (byte) aligned
1407-  ``i16:16:16`` - i16 is 16-bit aligned
1408-  ``i32:32:32`` - i32 is 32-bit aligned
1409-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1410   alignment of 64-bits
1411-  ``f16:16:16`` - half is 16-bit aligned
1412-  ``f32:32:32`` - float is 32-bit aligned
1413-  ``f64:64:64`` - double is 64-bit aligned
1414-  ``f128:128:128`` - quad is 128-bit aligned
1415-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
1416-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
1417-  ``a:0:64`` - aggregates are 64-bit aligned
1418
1419When LLVM is determining the alignment for a given type, it uses the
1420following rules:
1421
1422#. If the type sought is an exact match for one of the specifications,
1423   that specification is used.
1424#. If no match is found, and the type sought is an integer type, then
1425   the smallest integer type that is larger than the bitwidth of the
1426   sought type is used. If none of the specifications are larger than
1427   the bitwidth then the largest integer type is used. For example,
1428   given the default specifications above, the i7 type will use the
1429   alignment of i8 (next largest) while both i65 and i256 will use the
1430   alignment of i64 (largest specified).
1431#. If no match is found, and the type sought is a vector type, then the
1432   largest vector type that is smaller than the sought vector type will
1433   be used as a fall back. This happens because <128 x double> can be
1434   implemented in terms of 64 <2 x double>, for example.
1435
1436The function of the data layout string may not be what you expect.
1437Notably, this is not a specification from the frontend of what alignment
1438the code generator should use.
1439
1440Instead, if specified, the target data layout is required to match what
1441the ultimate *code generator* expects. This string is used by the
1442mid-level optimizers to improve code, and this only works if it matches
1443what the ultimate code generator uses. If you would like to generate IR
1444that does not embed this target-specific detail into the IR, then you
1445don't have to specify the string. This will disable some optimizations
1446that require precise layout information, but this also prevents those
1447optimizations from introducing target specificity into the IR.
1448
1449.. _langref_triple:
1450
1451Target Triple
1452-------------
1453
1454A module may specify a target triple string that describes the target
1455host. The syntax for the target triple is simply:
1456
1457.. code-block:: llvm
1458
1459    target triple = "x86_64-apple-macosx10.7.0"
1460
1461The *target triple* string consists of a series of identifiers delimited
1462by the minus sign character ('-'). The canonical forms are:
1463
1464::
1465
1466    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1467    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1468
1469This information is passed along to the backend so that it generates
1470code for the proper architecture. It's possible to override this on the
1471command line with the ``-mtriple`` command line option.
1472
1473.. _pointeraliasing:
1474
1475Pointer Aliasing Rules
1476----------------------
1477
1478Any memory access must be done through a pointer value associated with
1479an address range of the memory access, otherwise the behavior is
1480undefined. Pointer values are associated with address ranges according
1481to the following rules:
1482
1483-  A pointer value is associated with the addresses associated with any
1484   value it is *based* on.
1485-  An address of a global variable is associated with the address range
1486   of the variable's storage.
1487-  The result value of an allocation instruction is associated with the
1488   address range of the allocated storage.
1489-  A null pointer in the default address-space is associated with no
1490   address.
1491-  An integer constant other than zero or a pointer value returned from
1492   a function not defined within LLVM may be associated with address
1493   ranges allocated through mechanisms other than those provided by
1494   LLVM. Such ranges shall not overlap with any ranges of addresses
1495   allocated by mechanisms provided by LLVM.
1496
1497A pointer value is *based* on another pointer value according to the
1498following rules:
1499
1500-  A pointer value formed from a ``getelementptr`` operation is *based*
1501   on the first operand of the ``getelementptr``.
1502-  The result value of a ``bitcast`` is *based* on the operand of the
1503   ``bitcast``.
1504-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
1505   values that contribute (directly or indirectly) to the computation of
1506   the pointer's value.
1507-  The "*based* on" relationship is transitive.
1508
1509Note that this definition of *"based"* is intentionally similar to the
1510definition of *"based"* in C99, though it is slightly weaker.
1511
1512LLVM IR does not associate types with memory. The result type of a
1513``load`` merely indicates the size and alignment of the memory from
1514which to load, as well as the interpretation of the value. The first
1515operand type of a ``store`` similarly only indicates the size and
1516alignment of the store.
1517
1518Consequently, type-based alias analysis, aka TBAA, aka
1519``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1520:ref:`Metadata <metadata>` may be used to encode additional information
1521which specialized optimization passes may use to implement type-based
1522alias analysis.
1523
1524.. _volatile:
1525
1526Volatile Memory Accesses
1527------------------------
1528
1529Certain memory accesses, such as :ref:`load <i_load>`'s,
1530:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1531marked ``volatile``. The optimizers must not change the number of
1532volatile operations or change their order of execution relative to other
1533volatile operations. The optimizers *may* change the order of volatile
1534operations relative to non-volatile operations. This is not Java's
1535"volatile" and has no cross-thread synchronization behavior.
1536
1537IR-level volatile loads and stores cannot safely be optimized into
1538llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1539flagged volatile. Likewise, the backend should never split or merge
1540target-legal volatile load/store instructions.
1541
1542.. admonition:: Rationale
1543
1544 Platforms may rely on volatile loads and stores of natively supported
1545 data width to be executed as single instruction. For example, in C
1546 this holds for an l-value of volatile primitive type with native
1547 hardware support, but not necessarily for aggregate types. The
1548 frontend upholds these expectations, which are intentionally
1549 unspecified in the IR. The rules above ensure that IR transformation
1550 do not violate the frontend's contract with the language.
1551
1552.. _memmodel:
1553
1554Memory Model for Concurrent Operations
1555--------------------------------------
1556
1557The LLVM IR does not define any way to start parallel threads of
1558execution or to register signal handlers. Nonetheless, there are
1559platform-specific ways to create them, and we define LLVM IR's behavior
1560in their presence. This model is inspired by the C++0x memory model.
1561
1562For a more informal introduction to this model, see the :doc:`Atomics`.
1563
1564We define a *happens-before* partial order as the least partial order
1565that
1566
1567-  Is a superset of single-thread program order, and
1568-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1569   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1570   techniques, like pthread locks, thread creation, thread joining,
1571   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1572   Constraints <ordering>`).
1573
1574Note that program order does not introduce *happens-before* edges
1575between a thread and signals executing inside that thread.
1576
1577Every (defined) read operation (load instructions, memcpy, atomic
1578loads/read-modify-writes, etc.) R reads a series of bytes written by
1579(defined) write operations (store instructions, atomic
1580stores/read-modify-writes, memcpy, etc.). For the purposes of this
1581section, initialized globals are considered to have a write of the
1582initializer which is atomic and happens before any other read or write
1583of the memory in question. For each byte of a read R, R\ :sub:`byte`
1584may see any write to the same byte, except:
1585
1586-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
1587   write\ :sub:`2` happens before R\ :sub:`byte`, then
1588   R\ :sub:`byte` does not see write\ :sub:`1`.
1589-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
1590   R\ :sub:`byte` does not see write\ :sub:`3`.
1591
1592Given that definition, R\ :sub:`byte` is defined as follows:
1593
1594-  If R is volatile, the result is target-dependent. (Volatile is
1595   supposed to give guarantees which can support ``sig_atomic_t`` in
1596   C/C++, and may be used for accesses to addresses which do not behave
1597   like normal memory. It does not generally provide cross-thread
1598   synchronization.)
1599-  Otherwise, if there is no write to the same byte that happens before
1600   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1601-  Otherwise, if R\ :sub:`byte` may see exactly one write,
1602   R\ :sub:`byte` returns the value written by that write.
1603-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1604   see are atomic, it chooses one of the values written. See the :ref:`Atomic
1605   Memory Ordering Constraints <ordering>` section for additional
1606   constraints on how the choice is made.
1607-  Otherwise R\ :sub:`byte` returns ``undef``.
1608
1609R returns the value composed of the series of bytes it read. This
1610implies that some bytes within the value may be ``undef`` **without**
1611the entire value being ``undef``. Note that this only defines the
1612semantics of the operation; it doesn't mean that targets will emit more
1613than one instruction to read the series of bytes.
1614
1615Note that in cases where none of the atomic intrinsics are used, this
1616model places only one restriction on IR transformations on top of what
1617is required for single-threaded execution: introducing a store to a byte
1618which might not otherwise be stored is not allowed in general.
1619(Specifically, in the case where another thread might write to and read
1620from an address, introducing a store can change a load that may see
1621exactly one write into a load that may see multiple writes.)
1622
1623.. _ordering:
1624
1625Atomic Memory Ordering Constraints
1626----------------------------------
1627
1628Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1629:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1630:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1631ordering parameters that determine which other atomic instructions on
1632the same address they *synchronize with*. These semantics are borrowed
1633from Java and C++0x, but are somewhat more colloquial. If these
1634descriptions aren't precise enough, check those specs (see spec
1635references in the :doc:`atomics guide <Atomics>`).
1636:ref:`fence <i_fence>` instructions treat these orderings somewhat
1637differently since they don't take an address. See that instruction's
1638documentation for details.
1639
1640For a simpler introduction to the ordering constraints, see the
1641:doc:`Atomics`.
1642
1643``unordered``
1644    The set of values that can be read is governed by the happens-before
1645    partial order. A value cannot be read unless some operation wrote
1646    it. This is intended to provide a guarantee strong enough to model
1647    Java's non-volatile shared variables. This ordering cannot be
1648    specified for read-modify-write operations; it is not strong enough
1649    to make them atomic in any interesting way.
1650``monotonic``
1651    In addition to the guarantees of ``unordered``, there is a single
1652    total order for modifications by ``monotonic`` operations on each
1653    address. All modification orders must be compatible with the
1654    happens-before order. There is no guarantee that the modification
1655    orders can be combined to a global total order for the whole program
1656    (and this often will not be possible). The read in an atomic
1657    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1658    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1659    order immediately before the value it writes. If one atomic read
1660    happens before another atomic read of the same address, the later
1661    read must see the same value or a later value in the address's
1662    modification order. This disallows reordering of ``monotonic`` (or
1663    stronger) operations on the same address. If an address is written
1664    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1665    read that address repeatedly, the other threads must eventually see
1666    the write. This corresponds to the C++0x/C1x
1667    ``memory_order_relaxed``.
1668``acquire``
1669    In addition to the guarantees of ``monotonic``, a
1670    *synchronizes-with* edge may be formed with a ``release`` operation.
1671    This is intended to model C++'s ``memory_order_acquire``.
1672``release``
1673    In addition to the guarantees of ``monotonic``, if this operation
1674    writes a value which is subsequently read by an ``acquire``
1675    operation, it *synchronizes-with* that operation. (This isn't a
1676    complete description; see the C++0x definition of a release
1677    sequence.) This corresponds to the C++0x/C1x
1678    ``memory_order_release``.
1679``acq_rel`` (acquire+release)
1680    Acts as both an ``acquire`` and ``release`` operation on its
1681    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1682``seq_cst`` (sequentially consistent)
1683    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1684    operation which only reads, ``release`` for an operation which only
1685    writes), there is a global total order on all
1686    sequentially-consistent operations on all addresses, which is
1687    consistent with the *happens-before* partial order and with the
1688    modification orders of all the affected addresses. Each
1689    sequentially-consistent read sees the last preceding write to the
1690    same address in this global order. This corresponds to the C++0x/C1x
1691    ``memory_order_seq_cst`` and Java volatile.
1692
1693.. _singlethread:
1694
1695If an atomic operation is marked ``singlethread``, it only *synchronizes
1696with* or participates in modification and seq\_cst total orderings with
1697other operations running in the same thread (for example, in signal
1698handlers).
1699
1700.. _fastmath:
1701
1702Fast-Math Flags
1703---------------
1704
1705LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1706:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1707:ref:`frem <i_frem>`) have the following flags that can set to enable
1708otherwise unsafe floating point operations
1709
1710``nnan``
1711   No NaNs - Allow optimizations to assume the arguments and result are not
1712   NaN. Such optimizations are required to retain defined behavior over
1713   NaNs, but the value of the result is undefined.
1714
1715``ninf``
1716   No Infs - Allow optimizations to assume the arguments and result are not
1717   +/-Inf. Such optimizations are required to retain defined behavior over
1718   +/-Inf, but the value of the result is undefined.
1719
1720``nsz``
1721   No Signed Zeros - Allow optimizations to treat the sign of a zero
1722   argument or result as insignificant.
1723
1724``arcp``
1725   Allow Reciprocal - Allow optimizations to use the reciprocal of an
1726   argument rather than perform division.
1727
1728``fast``
1729   Fast - Allow algebraically equivalent transformations that may
1730   dramatically change results in floating point (e.g. reassociate). This
1731   flag implies all the others.
1732
1733.. _typesystem:
1734
1735Type System
1736===========
1737
1738The LLVM type system is one of the most important features of the
1739intermediate representation. Being typed enables a number of
1740optimizations to be performed on the intermediate representation
1741directly, without having to do extra analyses on the side before the
1742transformation. A strong type system makes it easier to read the
1743generated code and enables novel analyses and transformations that are
1744not feasible to perform on normal three address code representations.
1745
1746.. _t_void:
1747
1748Void Type
1749---------
1750
1751:Overview:
1752
1753
1754The void type does not represent any value and has no size.
1755
1756:Syntax:
1757
1758
1759::
1760
1761      void
1762
1763
1764.. _t_function:
1765
1766Function Type
1767-------------
1768
1769:Overview:
1770
1771
1772The function type can be thought of as a function signature. It consists of a
1773return type and a list of formal parameter types. The return type of a function
1774type is a void type or first class type --- except for :ref:`label <t_label>`
1775and :ref:`metadata <t_metadata>` types.
1776
1777:Syntax:
1778
1779::
1780
1781      <returntype> (<parameter list>)
1782
1783...where '``<parameter list>``' is a comma-separated list of type
1784specifiers. Optionally, the parameter list may include a type ``...``, which
1785indicates that the function takes a variable number of arguments.  Variable
1786argument functions can access their arguments with the :ref:`variable argument
1787handling intrinsic <int_varargs>` functions.  '``<returntype>``' is any type
1788except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
1789
1790:Examples:
1791
1792+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1793| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
1794+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1795| ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
1796+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1797| ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1798+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1799| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
1800+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1801
1802.. _t_firstclass:
1803
1804First Class Types
1805-----------------
1806
1807The :ref:`first class <t_firstclass>` types are perhaps the most important.
1808Values of these types are the only ones which can be produced by
1809instructions.
1810
1811.. _t_single_value:
1812
1813Single Value Types
1814^^^^^^^^^^^^^^^^^^
1815
1816These are the types that are valid in registers from CodeGen's perspective.
1817
1818.. _t_integer:
1819
1820Integer Type
1821""""""""""""
1822
1823:Overview:
1824
1825The integer type is a very simple type that simply specifies an
1826arbitrary bit width for the integer type desired. Any bit width from 1
1827bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1828
1829:Syntax:
1830
1831::
1832
1833      iN
1834
1835The number of bits the integer will occupy is specified by the ``N``
1836value.
1837
1838Examples:
1839*********
1840
1841+----------------+------------------------------------------------+
1842| ``i1``         | a single-bit integer.                          |
1843+----------------+------------------------------------------------+
1844| ``i32``        | a 32-bit integer.                              |
1845+----------------+------------------------------------------------+
1846| ``i1942652``   | a really big integer of over 1 million bits.   |
1847+----------------+------------------------------------------------+
1848
1849.. _t_floating:
1850
1851Floating Point Types
1852""""""""""""""""""""
1853
1854.. list-table::
1855   :header-rows: 1
1856
1857   * - Type
1858     - Description
1859
1860   * - ``half``
1861     - 16-bit floating point value
1862
1863   * - ``float``
1864     - 32-bit floating point value
1865
1866   * - ``double``
1867     - 64-bit floating point value
1868
1869   * - ``fp128``
1870     - 128-bit floating point value (112-bit mantissa)
1871
1872   * - ``x86_fp80``
1873     -  80-bit floating point value (X87)
1874
1875   * - ``ppc_fp128``
1876     - 128-bit floating point value (two 64-bits)
1877
1878X86_mmx Type
1879""""""""""""
1880
1881:Overview:
1882
1883The x86_mmx type represents a value held in an MMX register on an x86
1884machine. The operations allowed on it are quite limited: parameters and
1885return values, load and store, and bitcast. User-specified MMX
1886instructions are represented as intrinsic or asm calls with arguments
1887and/or results of this type. There are no arrays, vectors or constants
1888of this type.
1889
1890:Syntax:
1891
1892::
1893
1894      x86_mmx
1895
1896
1897.. _t_pointer:
1898
1899Pointer Type
1900""""""""""""
1901
1902:Overview:
1903
1904The pointer type is used to specify memory locations. Pointers are
1905commonly used to reference objects in memory.
1906
1907Pointer types may have an optional address space attribute defining the
1908numbered address space where the pointed-to object resides. The default
1909address space is number zero. The semantics of non-zero address spaces
1910are target-specific.
1911
1912Note that LLVM does not permit pointers to void (``void*``) nor does it
1913permit pointers to labels (``label*``). Use ``i8*`` instead.
1914
1915:Syntax:
1916
1917::
1918
1919      <type> *
1920
1921:Examples:
1922
1923+-------------------------+--------------------------------------------------------------------------------------------------------------+
1924| ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
1925+-------------------------+--------------------------------------------------------------------------------------------------------------+
1926| ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1927+-------------------------+--------------------------------------------------------------------------------------------------------------+
1928| ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
1929+-------------------------+--------------------------------------------------------------------------------------------------------------+
1930
1931.. _t_vector:
1932
1933Vector Type
1934"""""""""""
1935
1936:Overview:
1937
1938A vector type is a simple derived type that represents a vector of
1939elements. Vector types are used when multiple primitive data are
1940operated in parallel using a single instruction (SIMD). A vector type
1941requires a size (number of elements) and an underlying primitive data
1942type. Vector types are considered :ref:`first class <t_firstclass>`.
1943
1944:Syntax:
1945
1946::
1947
1948      < <# elements> x <elementtype> >
1949
1950The number of elements is a constant integer value larger than 0;
1951elementtype may be any integer or floating point type, or a pointer to
1952these types. Vectors of size zero are not allowed.
1953
1954:Examples:
1955
1956+-------------------+--------------------------------------------------+
1957| ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
1958+-------------------+--------------------------------------------------+
1959| ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
1960+-------------------+--------------------------------------------------+
1961| ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
1962+-------------------+--------------------------------------------------+
1963| ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
1964+-------------------+--------------------------------------------------+
1965
1966.. _t_label:
1967
1968Label Type
1969^^^^^^^^^^
1970
1971:Overview:
1972
1973The label type represents code labels.
1974
1975:Syntax:
1976
1977::
1978
1979      label
1980
1981.. _t_metadata:
1982
1983Metadata Type
1984^^^^^^^^^^^^^
1985
1986:Overview:
1987
1988The metadata type represents embedded metadata. No derived types may be
1989created from metadata except for :ref:`function <t_function>` arguments.
1990
1991:Syntax:
1992
1993::
1994
1995      metadata
1996
1997.. _t_aggregate:
1998
1999Aggregate Types
2000^^^^^^^^^^^^^^^
2001
2002Aggregate Types are a subset of derived types that can contain multiple
2003member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2004aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2005aggregate types.
2006
2007.. _t_array:
2008
2009Array Type
2010""""""""""
2011
2012:Overview:
2013
2014The array type is a very simple derived type that arranges elements
2015sequentially in memory. The array type requires a size (number of
2016elements) and an underlying data type.
2017
2018:Syntax:
2019
2020::
2021
2022      [<# elements> x <elementtype>]
2023
2024The number of elements is a constant integer value; ``elementtype`` may
2025be any type with a size.
2026
2027:Examples:
2028
2029+------------------+--------------------------------------+
2030| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
2031+------------------+--------------------------------------+
2032| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
2033+------------------+--------------------------------------+
2034| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
2035+------------------+--------------------------------------+
2036
2037Here are some examples of multidimensional arrays:
2038
2039+-----------------------------+----------------------------------------------------------+
2040| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
2041+-----------------------------+----------------------------------------------------------+
2042| ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
2043+-----------------------------+----------------------------------------------------------+
2044| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
2045+-----------------------------+----------------------------------------------------------+
2046
2047There is no restriction on indexing beyond the end of the array implied
2048by a static type (though there are restrictions on indexing beyond the
2049bounds of an allocated object in some cases). This means that
2050single-dimension 'variable sized array' addressing can be implemented in
2051LLVM with a zero length array type. An implementation of 'pascal style
2052arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2053example.
2054
2055.. _t_struct:
2056
2057Structure Type
2058""""""""""""""
2059
2060:Overview:
2061
2062The structure type is used to represent a collection of data members
2063together in memory. The elements of a structure may be any type that has
2064a size.
2065
2066Structures in memory are accessed using '``load``' and '``store``' by
2067getting a pointer to a field with the '``getelementptr``' instruction.
2068Structures in registers are accessed using the '``extractvalue``' and
2069'``insertvalue``' instructions.
2070
2071Structures may optionally be "packed" structures, which indicate that
2072the alignment of the struct is one byte, and that there is no padding
2073between the elements. In non-packed structs, padding between field types
2074is inserted as defined by the DataLayout string in the module, which is
2075required to match what the underlying code generator expects.
2076
2077Structures can either be "literal" or "identified". A literal structure
2078is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2079identified types are always defined at the top level with a name.
2080Literal types are uniqued by their contents and can never be recursive
2081or opaque since there is no way to write one. Identified types can be
2082recursive, can be opaqued, and are never uniqued.
2083
2084:Syntax:
2085
2086::
2087
2088      %T1 = type { <type list> }     ; Identified normal struct type
2089      %T2 = type <{ <type list> }>   ; Identified packed struct type
2090
2091:Examples:
2092
2093+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2094| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
2095+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2096| ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
2097+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2098| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
2099+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2100
2101.. _t_opaque:
2102
2103Opaque Structure Types
2104""""""""""""""""""""""
2105
2106:Overview:
2107
2108Opaque structure types are used to represent named structure types that
2109do not have a body specified. This corresponds (for example) to the C
2110notion of a forward declared structure.
2111
2112:Syntax:
2113
2114::
2115
2116      %X = type opaque
2117      %52 = type opaque
2118
2119:Examples:
2120
2121+--------------+-------------------+
2122| ``opaque``   | An opaque type.   |
2123+--------------+-------------------+
2124
2125.. _constants:
2126
2127Constants
2128=========
2129
2130LLVM has several different basic types of constants. This section
2131describes them all and their syntax.
2132
2133Simple Constants
2134----------------
2135
2136**Boolean constants**
2137    The two strings '``true``' and '``false``' are both valid constants
2138    of the ``i1`` type.
2139**Integer constants**
2140    Standard integers (such as '4') are constants of the
2141    :ref:`integer <t_integer>` type. Negative numbers may be used with
2142    integer types.
2143**Floating point constants**
2144    Floating point constants use standard decimal notation (e.g.
2145    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2146    hexadecimal notation (see below). The assembler requires the exact
2147    decimal value of a floating-point constant. For example, the
2148    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2149    decimal in binary. Floating point constants must have a :ref:`floating
2150    point <t_floating>` type.
2151**Null pointer constants**
2152    The identifier '``null``' is recognized as a null pointer constant
2153    and must be of :ref:`pointer type <t_pointer>`.
2154
2155The one non-intuitive notation for constants is the hexadecimal form of
2156floating point constants. For example, the form
2157'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
2158than) '``double 4.5e+15``'. The only time hexadecimal floating point
2159constants are required (and the only time that they are generated by the
2160disassembler) is when a floating point constant must be emitted but it
2161cannot be represented as a decimal floating point number in a reasonable
2162number of digits. For example, NaN's, infinities, and other special
2163values are represented in their IEEE hexadecimal format so that assembly
2164and disassembly do not cause any bits to change in the constants.
2165
2166When using the hexadecimal form, constants of types half, float, and
2167double are represented using the 16-digit form shown above (which
2168matches the IEEE754 representation for double); half and float values
2169must, however, be exactly representable as IEEE 754 half and single
2170precision, respectively. Hexadecimal format is always used for long
2171double, and there are three forms of long double. The 80-bit format used
2172by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2173128-bit format used by PowerPC (two adjacent doubles) is represented by
2174``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
2175represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2176will only work if they match the long double format on your target.
2177The IEEE 16-bit format (half precision) is represented by ``0xH``
2178followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2179(sign bit at the left).
2180
2181There are no constants of type x86_mmx.
2182
2183.. _complexconstants:
2184
2185Complex Constants
2186-----------------
2187
2188Complex constants are a (potentially recursive) combination of simple
2189constants and smaller complex constants.
2190
2191**Structure constants**
2192    Structure constants are represented with notation similar to
2193    structure type definitions (a comma separated list of elements,
2194    surrounded by braces (``{}``)). For example:
2195    "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2196    "``@G = external global i32``". Structure constants must have
2197    :ref:`structure type <t_struct>`, and the number and types of elements
2198    must match those specified by the type.
2199**Array constants**
2200    Array constants are represented with notation similar to array type
2201    definitions (a comma separated list of elements, surrounded by
2202    square brackets (``[]``)). For example:
2203    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2204    :ref:`array type <t_array>`, and the number and types of elements must
2205    match those specified by the type.
2206**Vector constants**
2207    Vector constants are represented with notation similar to vector
2208    type definitions (a comma separated list of elements, surrounded by
2209    less-than/greater-than's (``<>``)). For example:
2210    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2211    must have :ref:`vector type <t_vector>`, and the number and types of
2212    elements must match those specified by the type.
2213**Zero initialization**
2214    The string '``zeroinitializer``' can be used to zero initialize a
2215    value to zero of *any* type, including scalar and
2216    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2217    having to print large zero initializers (e.g. for large arrays) and
2218    is always exactly equivalent to using explicit zero initializers.
2219**Metadata node**
2220    A metadata node is a structure-like constant with :ref:`metadata
2221    type <t_metadata>`. For example:
2222    "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2223    constants that are meant to be interpreted as part of the
2224    instruction stream, metadata is a place to attach additional
2225    information such as debug info.
2226
2227Global Variable and Function Addresses
2228--------------------------------------
2229
2230The addresses of :ref:`global variables <globalvars>` and
2231:ref:`functions <functionstructure>` are always implicitly valid
2232(link-time) constants. These constants are explicitly referenced when
2233the :ref:`identifier for the global <identifiers>` is used and always have
2234:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2235file:
2236
2237.. code-block:: llvm
2238
2239    @X = global i32 17
2240    @Y = global i32 42
2241    @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2242
2243.. _undefvalues:
2244
2245Undefined Values
2246----------------
2247
2248The string '``undef``' can be used anywhere a constant is expected, and
2249indicates that the user of the value may receive an unspecified
2250bit-pattern. Undefined values may be of any type (other than '``label``'
2251or '``void``') and be used anywhere a constant is permitted.
2252
2253Undefined values are useful because they indicate to the compiler that
2254the program is well defined no matter what value is used. This gives the
2255compiler more freedom to optimize. Here are some examples of
2256(potentially surprising) transformations that are valid (in pseudo IR):
2257
2258.. code-block:: llvm
2259
2260      %A = add %X, undef
2261      %B = sub %X, undef
2262      %C = xor %X, undef
2263    Safe:
2264      %A = undef
2265      %B = undef
2266      %C = undef
2267
2268This is safe because all of the output bits are affected by the undef
2269bits. Any output bit can have a zero or one depending on the input bits.
2270
2271.. code-block:: llvm
2272
2273      %A = or %X, undef
2274      %B = and %X, undef
2275    Safe:
2276      %A = -1
2277      %B = 0
2278    Unsafe:
2279      %A = undef
2280      %B = undef
2281
2282These logical operations have bits that are not always affected by the
2283input. For example, if ``%X`` has a zero bit, then the output of the
2284'``and``' operation will always be a zero for that bit, no matter what
2285the corresponding bit from the '``undef``' is. As such, it is unsafe to
2286optimize or assume that the result of the '``and``' is '``undef``'.
2287However, it is safe to assume that all bits of the '``undef``' could be
22880, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2289all the bits of the '``undef``' operand to the '``or``' could be set,
2290allowing the '``or``' to be folded to -1.
2291
2292.. code-block:: llvm
2293
2294      %A = select undef, %X, %Y
2295      %B = select undef, 42, %Y
2296      %C = select %X, %Y, undef
2297    Safe:
2298      %A = %X     (or %Y)
2299      %B = 42     (or %Y)
2300      %C = %Y
2301    Unsafe:
2302      %A = undef
2303      %B = undef
2304      %C = undef
2305
2306This set of examples shows that undefined '``select``' (and conditional
2307branch) conditions can go *either way*, but they have to come from one
2308of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2309both known to have a clear low bit, then ``%A`` would have to have a
2310cleared low bit. However, in the ``%C`` example, the optimizer is
2311allowed to assume that the '``undef``' operand could be the same as
2312``%Y``, allowing the whole '``select``' to be eliminated.
2313
2314.. code-block:: llvm
2315
2316      %A = xor undef, undef
2317
2318      %B = undef
2319      %C = xor %B, %B
2320
2321      %D = undef
2322      %E = icmp lt %D, 4
2323      %F = icmp gte %D, 4
2324
2325    Safe:
2326      %A = undef
2327      %B = undef
2328      %C = undef
2329      %D = undef
2330      %E = undef
2331      %F = undef
2332
2333This example points out that two '``undef``' operands are not
2334necessarily the same. This can be surprising to people (and also matches
2335C semantics) where they assume that "``X^X``" is always zero, even if
2336``X`` is undefined. This isn't true for a number of reasons, but the
2337short answer is that an '``undef``' "variable" can arbitrarily change
2338its value over its "live range". This is true because the variable
2339doesn't actually *have a live range*. Instead, the value is logically
2340read from arbitrary registers that happen to be around when needed, so
2341the value is not necessarily consistent over time. In fact, ``%A`` and
2342``%C`` need to have the same semantics or the core LLVM "replace all
2343uses with" concept would not hold.
2344
2345.. code-block:: llvm
2346
2347      %A = fdiv undef, %X
2348      %B = fdiv %X, undef
2349    Safe:
2350      %A = undef
2351    b: unreachable
2352
2353These examples show the crucial difference between an *undefined value*
2354and *undefined behavior*. An undefined value (like '``undef``') is
2355allowed to have an arbitrary bit-pattern. This means that the ``%A``
2356operation can be constant folded to '``undef``', because the '``undef``'
2357could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2358However, in the second example, we can make a more aggressive
2359assumption: because the ``undef`` is allowed to be an arbitrary value,
2360we are allowed to assume that it could be zero. Since a divide by zero
2361has *undefined behavior*, we are allowed to assume that the operation
2362does not execute at all. This allows us to delete the divide and all
2363code after it. Because the undefined operation "can't happen", the
2364optimizer can assume that it occurs in dead code.
2365
2366.. code-block:: llvm
2367
2368    a:  store undef -> %X
2369    b:  store %X -> undef
2370    Safe:
2371    a: <deleted>
2372    b: unreachable
2373
2374These examples reiterate the ``fdiv`` example: a store *of* an undefined
2375value can be assumed to not have any effect; we can assume that the
2376value is overwritten with bits that happen to match what was already
2377there. However, a store *to* an undefined location could clobber
2378arbitrary memory, therefore, it has undefined behavior.
2379
2380.. _poisonvalues:
2381
2382Poison Values
2383-------------
2384
2385Poison values are similar to :ref:`undef values <undefvalues>`, however
2386they also represent the fact that an instruction or constant expression
2387which cannot evoke side effects has nevertheless detected a condition
2388which results in undefined behavior.
2389
2390There is currently no way of representing a poison value in the IR; they
2391only exist when produced by operations such as :ref:`add <i_add>` with
2392the ``nsw`` flag.
2393
2394Poison value behavior is defined in terms of value *dependence*:
2395
2396-  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2397-  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2398   their dynamic predecessor basic block.
2399-  Function arguments depend on the corresponding actual argument values
2400   in the dynamic callers of their functions.
2401-  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2402   instructions that dynamically transfer control back to them.
2403-  :ref:`Invoke <i_invoke>` instructions depend on the
2404   :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2405   call instructions that dynamically transfer control back to them.
2406-  Non-volatile loads and stores depend on the most recent stores to all
2407   of the referenced memory addresses, following the order in the IR
2408   (including loads and stores implied by intrinsics such as
2409   :ref:`@llvm.memcpy <int_memcpy>`.)
2410-  An instruction with externally visible side effects depends on the
2411   most recent preceding instruction with externally visible side
2412   effects, following the order in the IR. (This includes :ref:`volatile
2413   operations <volatile>`.)
2414-  An instruction *control-depends* on a :ref:`terminator
2415   instruction <terminators>` if the terminator instruction has
2416   multiple successors and the instruction is always executed when
2417   control transfers to one of the successors, and may not be executed
2418   when control is transferred to another.
2419-  Additionally, an instruction also *control-depends* on a terminator
2420   instruction if the set of instructions it otherwise depends on would
2421   be different if the terminator had transferred control to a different
2422   successor.
2423-  Dependence is transitive.
2424
2425Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2426with the additional affect that any instruction which has a *dependence*
2427on a poison value has undefined behavior.
2428
2429Here are some examples:
2430
2431.. code-block:: llvm
2432
2433    entry:
2434      %poison = sub nuw i32 0, 1           ; Results in a poison value.
2435      %still_poison = and i32 %poison, 0   ; 0, but also poison.
2436      %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2437      store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2438
2439      store i32 %poison, i32* @g           ; Poison value stored to memory.
2440      %poison2 = load i32* @g              ; Poison value loaded back from memory.
2441
2442      store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2443
2444      %narrowaddr = bitcast i32* @g to i16*
2445      %wideaddr = bitcast i32* @g to i64*
2446      %poison3 = load i16* %narrowaddr     ; Returns a poison value.
2447      %poison4 = load i64* %wideaddr       ; Returns a poison value.
2448
2449      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2450      br i1 %cmp, label %true, label %end  ; Branch to either destination.
2451
2452    true:
2453      store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2454                                           ; it has undefined behavior.
2455      br label %end
2456
2457    end:
2458      %p = phi i32 [ 0, %entry ], [ 1, %true ]
2459                                           ; Both edges into this PHI are
2460                                           ; control-dependent on %cmp, so this
2461                                           ; always results in a poison value.
2462
2463      store volatile i32 0, i32* @g        ; This would depend on the store in %true
2464                                           ; if %cmp is true, or the store in %entry
2465                                           ; otherwise, so this is undefined behavior.
2466
2467      br i1 %cmp, label %second_true, label %second_end
2468                                           ; The same branch again, but this time the
2469                                           ; true block doesn't have side effects.
2470
2471    second_true:
2472      ; No side effects!
2473      ret void
2474
2475    second_end:
2476      store volatile i32 0, i32* @g        ; This time, the instruction always depends
2477                                           ; on the store in %end. Also, it is
2478                                           ; control-equivalent to %end, so this is
2479                                           ; well-defined (ignoring earlier undefined
2480                                           ; behavior in this example).
2481
2482.. _blockaddress:
2483
2484Addresses of Basic Blocks
2485-------------------------
2486
2487``blockaddress(@function, %block)``
2488
2489The '``blockaddress``' constant computes the address of the specified
2490basic block in the specified function, and always has an ``i8*`` type.
2491Taking the address of the entry block is illegal.
2492
2493This value only has defined behavior when used as an operand to the
2494':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2495against null. Pointer equality tests between labels addresses results in
2496undefined behavior --- though, again, comparison against null is ok, and
2497no label is equal to the null pointer. This may be passed around as an
2498opaque pointer sized value as long as the bits are not inspected. This
2499allows ``ptrtoint`` and arithmetic to be performed on these values so
2500long as the original value is reconstituted before the ``indirectbr``
2501instruction.
2502
2503Finally, some targets may provide defined semantics when using the value
2504as the operand to an inline assembly, but that is target specific.
2505
2506.. _constantexprs:
2507
2508Constant Expressions
2509--------------------
2510
2511Constant expressions are used to allow expressions involving other
2512constants to be used as constants. Constant expressions may be of any
2513:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2514that does not have side effects (e.g. load and call are not supported).
2515The following is the syntax for constant expressions:
2516
2517``trunc (CST to TYPE)``
2518    Truncate a constant to another type. The bit size of CST must be
2519    larger than the bit size of TYPE. Both types must be integers.
2520``zext (CST to TYPE)``
2521    Zero extend a constant to another type. The bit size of CST must be
2522    smaller than the bit size of TYPE. Both types must be integers.
2523``sext (CST to TYPE)``
2524    Sign extend a constant to another type. The bit size of CST must be
2525    smaller than the bit size of TYPE. Both types must be integers.
2526``fptrunc (CST to TYPE)``
2527    Truncate a floating point constant to another floating point type.
2528    The size of CST must be larger than the size of TYPE. Both types
2529    must be floating point.
2530``fpext (CST to TYPE)``
2531    Floating point extend a constant to another type. The size of CST
2532    must be smaller or equal to the size of TYPE. Both types must be
2533    floating point.
2534``fptoui (CST to TYPE)``
2535    Convert a floating point constant to the corresponding unsigned
2536    integer constant. TYPE must be a scalar or vector integer type. CST
2537    must be of scalar or vector floating point type. Both CST and TYPE
2538    must be scalars, or vectors of the same number of elements. If the
2539    value won't fit in the integer type, the results are undefined.
2540``fptosi (CST to TYPE)``
2541    Convert a floating point constant to the corresponding signed
2542    integer constant. TYPE must be a scalar or vector integer type. CST
2543    must be of scalar or vector floating point type. Both CST and TYPE
2544    must be scalars, or vectors of the same number of elements. If the
2545    value won't fit in the integer type, the results are undefined.
2546``uitofp (CST to TYPE)``
2547    Convert an unsigned integer constant to the corresponding floating
2548    point constant. TYPE must be a scalar or vector floating point type.
2549    CST must be of scalar or vector integer type. Both CST and TYPE must
2550    be scalars, or vectors of the same number of elements. If the value
2551    won't fit in the floating point type, the results are undefined.
2552``sitofp (CST to TYPE)``
2553    Convert a signed integer constant to the corresponding floating
2554    point constant. TYPE must be a scalar or vector floating point type.
2555    CST must be of scalar or vector integer type. Both CST and TYPE must
2556    be scalars, or vectors of the same number of elements. If the value
2557    won't fit in the floating point type, the results are undefined.
2558``ptrtoint (CST to TYPE)``
2559    Convert a pointer typed constant to the corresponding integer
2560    constant. ``TYPE`` must be an integer type. ``CST`` must be of
2561    pointer type. The ``CST`` value is zero extended, truncated, or
2562    unchanged to make it fit in ``TYPE``.
2563``inttoptr (CST to TYPE)``
2564    Convert an integer constant to a pointer constant. TYPE must be a
2565    pointer type. CST must be of integer type. The CST value is zero
2566    extended, truncated, or unchanged to make it fit in a pointer size.
2567    This one is *really* dangerous!
2568``bitcast (CST to TYPE)``
2569    Convert a constant, CST, to another TYPE. The constraints of the
2570    operands are the same as those for the :ref:`bitcast
2571    instruction <i_bitcast>`.
2572``addrspacecast (CST to TYPE)``
2573    Convert a constant pointer or constant vector of pointer, CST, to another
2574    TYPE in a different address space. The constraints of the operands are the
2575    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
2576``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2577    Perform the :ref:`getelementptr operation <i_getelementptr>` on
2578    constants. As with the :ref:`getelementptr <i_getelementptr>`
2579    instruction, the index list may have zero or more indexes, which are
2580    required to make sense for the type of "CSTPTR".
2581``select (COND, VAL1, VAL2)``
2582    Perform the :ref:`select operation <i_select>` on constants.
2583``icmp COND (VAL1, VAL2)``
2584    Performs the :ref:`icmp operation <i_icmp>` on constants.
2585``fcmp COND (VAL1, VAL2)``
2586    Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2587``extractelement (VAL, IDX)``
2588    Perform the :ref:`extractelement operation <i_extractelement>` on
2589    constants.
2590``insertelement (VAL, ELT, IDX)``
2591    Perform the :ref:`insertelement operation <i_insertelement>` on
2592    constants.
2593``shufflevector (VEC1, VEC2, IDXMASK)``
2594    Perform the :ref:`shufflevector operation <i_shufflevector>` on
2595    constants.
2596``extractvalue (VAL, IDX0, IDX1, ...)``
2597    Perform the :ref:`extractvalue operation <i_extractvalue>` on
2598    constants. The index list is interpreted in a similar manner as
2599    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2600    least one index value must be specified.
2601``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2602    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2603    The index list is interpreted in a similar manner as indices in a
2604    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2605    value must be specified.
2606``OPCODE (LHS, RHS)``
2607    Perform the specified operation of the LHS and RHS constants. OPCODE
2608    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2609    binary <bitwiseops>` operations. The constraints on operands are
2610    the same as those for the corresponding instruction (e.g. no bitwise
2611    operations on floating point values are allowed).
2612
2613Other Values
2614============
2615
2616.. _inlineasmexprs:
2617
2618Inline Assembler Expressions
2619----------------------------
2620
2621LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2622Inline Assembly <moduleasm>`) through the use of a special value. This
2623value represents the inline assembler as a string (containing the
2624instructions to emit), a list of operand constraints (stored as a
2625string), a flag that indicates whether or not the inline asm expression
2626has side effects, and a flag indicating whether the function containing
2627the asm needs to align its stack conservatively. An example inline
2628assembler expression is:
2629
2630.. code-block:: llvm
2631
2632    i32 (i32) asm "bswap $0", "=r,r"
2633
2634Inline assembler expressions may **only** be used as the callee operand
2635of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2636Thus, typically we have:
2637
2638.. code-block:: llvm
2639
2640    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2641
2642Inline asms with side effects not visible in the constraint list must be
2643marked as having side effects. This is done through the use of the
2644'``sideeffect``' keyword, like so:
2645
2646.. code-block:: llvm
2647
2648    call void asm sideeffect "eieio", ""()
2649
2650In some cases inline asms will contain code that will not work unless
2651the stack is aligned in some way, such as calls or SSE instructions on
2652x86, yet will not contain code that does that alignment within the asm.
2653The compiler should make conservative assumptions about what the asm
2654might contain and should generate its usual stack alignment code in the
2655prologue if the '``alignstack``' keyword is present:
2656
2657.. code-block:: llvm
2658
2659    call void asm alignstack "eieio", ""()
2660
2661Inline asms also support using non-standard assembly dialects. The
2662assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2663the inline asm is using the Intel dialect. Currently, ATT and Intel are
2664the only supported dialects. An example is:
2665
2666.. code-block:: llvm
2667
2668    call void asm inteldialect "eieio", ""()
2669
2670If multiple keywords appear the '``sideeffect``' keyword must come
2671first, the '``alignstack``' keyword second and the '``inteldialect``'
2672keyword last.
2673
2674Inline Asm Metadata
2675^^^^^^^^^^^^^^^^^^^
2676
2677The call instructions that wrap inline asm nodes may have a
2678"``!srcloc``" MDNode attached to it that contains a list of constant
2679integers. If present, the code generator will use the integer as the
2680location cookie value when report errors through the ``LLVMContext``
2681error reporting mechanisms. This allows a front-end to correlate backend
2682errors that occur with inline asm back to the source code that produced
2683it. For example:
2684
2685.. code-block:: llvm
2686
2687    call void asm sideeffect "something bad", ""(), !srcloc !42
2688    ...
2689    !42 = !{ i32 1234567 }
2690
2691It is up to the front-end to make sense of the magic numbers it places
2692in the IR. If the MDNode contains multiple constants, the code generator
2693will use the one that corresponds to the line of the asm that the error
2694occurs on.
2695
2696.. _metadata:
2697
2698Metadata Nodes and Metadata Strings
2699-----------------------------------
2700
2701LLVM IR allows metadata to be attached to instructions in the program
2702that can convey extra information about the code to the optimizers and
2703code generator. One example application of metadata is source-level
2704debug information. There are two metadata primitives: strings and nodes.
2705All metadata has the ``metadata`` type and is identified in syntax by a
2706preceding exclamation point ('``!``').
2707
2708A metadata string is a string surrounded by double quotes. It can
2709contain any character by escaping non-printable characters with
2710"``\xx``" where "``xx``" is the two digit hex code. For example:
2711"``!"test\00"``".
2712
2713Metadata nodes are represented with notation similar to structure
2714constants (a comma separated list of elements, surrounded by braces and
2715preceded by an exclamation point). Metadata nodes can have any values as
2716their operand. For example:
2717
2718.. code-block:: llvm
2719
2720    !{ metadata !"test\00", i32 10}
2721
2722A :ref:`named metadata <namedmetadatastructure>` is a collection of
2723metadata nodes, which can be looked up in the module symbol table. For
2724example:
2725
2726.. code-block:: llvm
2727
2728    !foo =  metadata !{!4, !3}
2729
2730Metadata can be used as function arguments. Here ``llvm.dbg.value``
2731function is using two metadata arguments:
2732
2733.. code-block:: llvm
2734
2735    call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2736
2737Metadata can be attached with an instruction. Here metadata ``!21`` is
2738attached to the ``add`` instruction using the ``!dbg`` identifier:
2739
2740.. code-block:: llvm
2741
2742    %indvar.next = add i64 %indvar, 1, !dbg !21
2743
2744More information about specific metadata nodes recognized by the
2745optimizers and code generator is found below.
2746
2747'``tbaa``' Metadata
2748^^^^^^^^^^^^^^^^^^^
2749
2750In LLVM IR, memory does not have types, so LLVM's own type system is not
2751suitable for doing TBAA. Instead, metadata is added to the IR to
2752describe a type system of a higher level language. This can be used to
2753implement typical C/C++ TBAA, but it can also be used to implement
2754custom alias analysis behavior for other languages.
2755
2756The current metadata format is very simple. TBAA metadata nodes have up
2757to three fields, e.g.:
2758
2759.. code-block:: llvm
2760
2761    !0 = metadata !{ metadata !"an example type tree" }
2762    !1 = metadata !{ metadata !"int", metadata !0 }
2763    !2 = metadata !{ metadata !"float", metadata !0 }
2764    !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2765
2766The first field is an identity field. It can be any value, usually a
2767metadata string, which uniquely identifies the type. The most important
2768name in the tree is the name of the root node. Two trees with different
2769root node names are entirely disjoint, even if they have leaves with
2770common names.
2771
2772The second field identifies the type's parent node in the tree, or is
2773null or omitted for a root node. A type is considered to alias all of
2774its descendants and all of its ancestors in the tree. Also, a type is
2775considered to alias all types in other trees, so that bitcode produced
2776from multiple front-ends is handled conservatively.
2777
2778If the third field is present, it's an integer which if equal to 1
2779indicates that the type is "constant" (meaning
2780``pointsToConstantMemory`` should return true; see `other useful
2781AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2782
2783'``tbaa.struct``' Metadata
2784^^^^^^^^^^^^^^^^^^^^^^^^^^
2785
2786The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2787aggregate assignment operations in C and similar languages, however it
2788is defined to copy a contiguous region of memory, which is more than
2789strictly necessary for aggregate types which contain holes due to
2790padding. Also, it doesn't contain any TBAA information about the fields
2791of the aggregate.
2792
2793``!tbaa.struct`` metadata can describe which memory subregions in a
2794memcpy are padding and what the TBAA tags of the struct are.
2795
2796The current metadata format is very simple. ``!tbaa.struct`` metadata
2797nodes are a list of operands which are in conceptual groups of three.
2798For each group of three, the first operand gives the byte offset of a
2799field in bytes, the second gives its size in bytes, and the third gives
2800its tbaa tag. e.g.:
2801
2802.. code-block:: llvm
2803
2804    !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2805
2806This describes a struct with two fields. The first is at offset 0 bytes
2807with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2808and has size 4 bytes and has tbaa tag !2.
2809
2810Note that the fields need not be contiguous. In this example, there is a
28114 byte gap between the two fields. This gap represents padding which
2812does not carry useful data and need not be preserved.
2813
2814'``fpmath``' Metadata
2815^^^^^^^^^^^^^^^^^^^^^
2816
2817``fpmath`` metadata may be attached to any instruction of floating point
2818type. It can be used to express the maximum acceptable error in the
2819result of that instruction, in ULPs, thus potentially allowing the
2820compiler to use a more efficient but less accurate method of computing
2821it. ULP is defined as follows:
2822
2823    If ``x`` is a real number that lies between two finite consecutive
2824    floating-point numbers ``a`` and ``b``, without being equal to one
2825    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2826    distance between the two non-equal finite floating-point numbers
2827    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2828
2829The metadata node shall consist of a single positive floating point
2830number representing the maximum relative error, for example:
2831
2832.. code-block:: llvm
2833
2834    !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2835
2836'``range``' Metadata
2837^^^^^^^^^^^^^^^^^^^^
2838
2839``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2840integer types. It expresses the possible ranges the loaded value or the value
2841returned by the called function at this call site is in. The ranges are
2842represented with a flattened list of integers. The loaded value or the value
2843returned is known to be in the union of the ranges defined by each consecutive
2844pair. Each pair has the following properties:
2845
2846-  The type must match the type loaded by the instruction.
2847-  The pair ``a,b`` represents the range ``[a,b)``.
2848-  Both ``a`` and ``b`` are constants.
2849-  The range is allowed to wrap.
2850-  The range should not represent the full or empty set. That is,
2851   ``a!=b``.
2852
2853In addition, the pairs must be in signed order of the lower bound and
2854they must be non-contiguous.
2855
2856Examples:
2857
2858.. code-block:: llvm
2859
2860      %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2861      %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2862      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
2863      %d = invoke i8 @bar() to label %cont
2864             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
2865    ...
2866    !0 = metadata !{ i8 0, i8 2 }
2867    !1 = metadata !{ i8 255, i8 2 }
2868    !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2869    !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2870
2871'``llvm.loop``'
2872^^^^^^^^^^^^^^^
2873
2874It is sometimes useful to attach information to loop constructs. Currently,
2875loop metadata is implemented as metadata attached to the branch instruction
2876in the loop latch block. This type of metadata refer to a metadata node that is
2877guaranteed to be separate for each loop. The loop identifier metadata is
2878specified with the name ``llvm.loop``.
2879
2880The loop identifier metadata is implemented using a metadata that refers to
2881itself to avoid merging it with any other identifier metadata, e.g.,
2882during module linkage or function inlining. That is, each loop should refer
2883to their own identification metadata even if they reside in separate functions.
2884The following example contains loop identifier metadata for two separate loop
2885constructs:
2886
2887.. code-block:: llvm
2888
2889    !0 = metadata !{ metadata !0 }
2890    !1 = metadata !{ metadata !1 }
2891
2892The loop identifier metadata can be used to specify additional per-loop
2893metadata. Any operands after the first operand can be treated as user-defined
2894metadata. For example the ``llvm.loop.vectorize.unroll`` metadata is understood
2895by the loop vectorizer to indicate how many times to unroll the loop:
2896
2897.. code-block:: llvm
2898
2899      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2900    ...
2901    !0 = metadata !{ metadata !0, metadata !1 }
2902    !1 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 2 }
2903
2904'``llvm.mem``'
2905^^^^^^^^^^^^^^^
2906
2907Metadata types used to annotate memory accesses with information helpful
2908for optimizations are prefixed with ``llvm.mem``.
2909
2910'``llvm.mem.parallel_loop_access``' Metadata
2911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2912
2913The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
2914or metadata containing a list of loop identifiers for nested loops.
2915The metadata is attached to memory accessing instructions and denotes that
2916no loop carried memory dependence exist between it and other instructions denoted
2917with the same loop identifier.
2918
2919Precisely, given two instructions ``m1`` and ``m2`` that both have the
2920``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
2921set of loops associated with that metadata, respectively, then there is no loop
2922carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
2923``L2``.
2924
2925As a special case, if all memory accessing instructions in a loop have
2926``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
2927loop has no loop carried memory dependences and is considered to be a parallel
2928loop.
2929
2930Note that if not all memory access instructions have such metadata referring to
2931the loop, then the loop is considered not being trivially parallel. Additional
2932memory dependence analysis is required to make that determination.  As a fail
2933safe mechanism, this causes loops that were originally parallel to be considered
2934sequential (if optimization passes that are unaware of the parallel semantics
2935insert new memory instructions into the loop body).
2936
2937Example of a loop that is considered parallel due to its correct use of
2938both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
2939metadata types that refer to the same loop identifier metadata.
2940
2941.. code-block:: llvm
2942
2943   for.body:
2944     ...
2945     %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
2946     ...
2947     store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
2948     ...
2949     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
2950
2951   for.end:
2952   ...
2953   !0 = metadata !{ metadata !0 }
2954
2955It is also possible to have nested parallel loops. In that case the
2956memory accesses refer to a list of loop identifier metadata nodes instead of
2957the loop identifier metadata node directly:
2958
2959.. code-block:: llvm
2960
2961   outer.for.body:
2962     ...
2963     %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
2964     ...
2965     br label %inner.for.body
2966
2967   inner.for.body:
2968     ...
2969     %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
2970     ...
2971     store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
2972     ...
2973     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
2974
2975   inner.for.end:
2976     ...
2977     store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
2978     ...
2979     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
2980
2981   outer.for.end:                                          ; preds = %for.body
2982   ...
2983   !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2984   !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2985   !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
2986
2987'``llvm.loop.vectorize``'
2988^^^^^^^^^^^^^^^^^^^^^^^^^
2989
2990Metadata prefixed with ``llvm.loop.vectorize`` is used to control per-loop
2991vectorization parameters such as vectorization factor and unroll factor.
2992
2993``llvm.loop.vectorize`` metadata should be used in conjunction with
2994``llvm.loop`` loop identification metadata.
2995
2996'``llvm.loop.vectorize.unroll``' Metadata
2997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2998
2999This metadata instructs the loop vectorizer to unroll the specified
3000loop exactly ``N`` times.
3001
3002The first operand is the string ``llvm.loop.vectorize.unroll`` and the second
3003operand is an integer specifying the unroll factor. For example:
3004
3005.. code-block:: llvm
3006
3007   !0 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 4 }
3008
3009Note that setting ``llvm.loop.vectorize.unroll`` to 1 disables
3010unrolling of the loop.
3011
3012If ``llvm.loop.vectorize.unroll`` is set to 0 then the amount of
3013unrolling will be determined automatically.
3014
3015'``llvm.loop.vectorize.width``' Metadata
3016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3017
3018This metadata sets the target width of the vectorizer to ``N``. Without
3019this metadata, the vectorizer will choose a width automatically.
3020Regardless of this metadata, the vectorizer will only vectorize loops if
3021it believes it is valid to do so.
3022
3023The first operand is the string ``llvm.loop.vectorize.width`` and the
3024second operand is an integer specifying the width. For example:
3025
3026.. code-block:: llvm
3027
3028   !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3029
3030Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3031vectorization of the loop.
3032
3033If ``llvm.loop.vectorize.width`` is set to 0 then the width will be
3034determined automatically.
3035
3036Module Flags Metadata
3037=====================
3038
3039Information about the module as a whole is difficult to convey to LLVM's
3040subsystems. The LLVM IR isn't sufficient to transmit this information.
3041The ``llvm.module.flags`` named metadata exists in order to facilitate
3042this. These flags are in the form of key / value pairs --- much like a
3043dictionary --- making it easy for any subsystem who cares about a flag to
3044look it up.
3045
3046The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3047Each triplet has the following form:
3048
3049-  The first element is a *behavior* flag, which specifies the behavior
3050   when two (or more) modules are merged together, and it encounters two
3051   (or more) metadata with the same ID. The supported behaviors are
3052   described below.
3053-  The second element is a metadata string that is a unique ID for the
3054   metadata. Each module may only have one flag entry for each unique ID (not
3055   including entries with the **Require** behavior).
3056-  The third element is the value of the flag.
3057
3058When two (or more) modules are merged together, the resulting
3059``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3060each unique metadata ID string, there will be exactly one entry in the merged
3061modules ``llvm.module.flags`` metadata table, and the value for that entry will
3062be determined by the merge behavior flag, as described below. The only exception
3063is that entries with the *Require* behavior are always preserved.
3064
3065The following behaviors are supported:
3066
3067.. list-table::
3068   :header-rows: 1
3069   :widths: 10 90
3070
3071   * - Value
3072     - Behavior
3073
3074   * - 1
3075     - **Error**
3076           Emits an error if two values disagree, otherwise the resulting value
3077           is that of the operands.
3078
3079   * - 2
3080     - **Warning**
3081           Emits a warning if two values disagree. The result value will be the
3082           operand for the flag from the first module being linked.
3083
3084   * - 3
3085     - **Require**
3086           Adds a requirement that another module flag be present and have a
3087           specified value after linking is performed. The value must be a
3088           metadata pair, where the first element of the pair is the ID of the
3089           module flag to be restricted, and the second element of the pair is
3090           the value the module flag should be restricted to. This behavior can
3091           be used to restrict the allowable results (via triggering of an
3092           error) of linking IDs with the **Override** behavior.
3093
3094   * - 4
3095     - **Override**
3096           Uses the specified value, regardless of the behavior or value of the
3097           other module. If both modules specify **Override**, but the values
3098           differ, an error will be emitted.
3099
3100   * - 5
3101     - **Append**
3102           Appends the two values, which are required to be metadata nodes.
3103
3104   * - 6
3105     - **AppendUnique**
3106           Appends the two values, which are required to be metadata
3107           nodes. However, duplicate entries in the second list are dropped
3108           during the append operation.
3109
3110It is an error for a particular unique flag ID to have multiple behaviors,
3111except in the case of **Require** (which adds restrictions on another metadata
3112value) or **Override**.
3113
3114An example of module flags:
3115
3116.. code-block:: llvm
3117
3118    !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3119    !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3120    !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3121    !3 = metadata !{ i32 3, metadata !"qux",
3122      metadata !{
3123        metadata !"foo", i32 1
3124      }
3125    }
3126    !llvm.module.flags = !{ !0, !1, !2, !3 }
3127
3128-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3129   if two or more ``!"foo"`` flags are seen is to emit an error if their
3130   values are not equal.
3131
3132-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3133   behavior if two or more ``!"bar"`` flags are seen is to use the value
3134   '37'.
3135
3136-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3137   behavior if two or more ``!"qux"`` flags are seen is to emit a
3138   warning if their values are not equal.
3139
3140-  Metadata ``!3`` has the ID ``!"qux"`` and the value:
3141
3142   ::
3143
3144       metadata !{ metadata !"foo", i32 1 }
3145
3146   The behavior is to emit an error if the ``llvm.module.flags`` does not
3147   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3148   performed.
3149
3150Objective-C Garbage Collection Module Flags Metadata
3151----------------------------------------------------
3152
3153On the Mach-O platform, Objective-C stores metadata about garbage
3154collection in a special section called "image info". The metadata
3155consists of a version number and a bitmask specifying what types of
3156garbage collection are supported (if any) by the file. If two or more
3157modules are linked together their garbage collection metadata needs to
3158be merged rather than appended together.
3159
3160The Objective-C garbage collection module flags metadata consists of the
3161following key-value pairs:
3162
3163.. list-table::
3164   :header-rows: 1
3165   :widths: 30 70
3166
3167   * - Key
3168     - Value
3169
3170   * - ``Objective-C Version``
3171     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
3172
3173   * - ``Objective-C Image Info Version``
3174     - **[Required]** --- The version of the image info section. Currently
3175       always 0.
3176
3177   * - ``Objective-C Image Info Section``
3178     - **[Required]** --- The section to place the metadata. Valid values are
3179       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3180       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3181       Objective-C ABI version 2.
3182
3183   * - ``Objective-C Garbage Collection``
3184     - **[Required]** --- Specifies whether garbage collection is supported or
3185       not. Valid values are 0, for no garbage collection, and 2, for garbage
3186       collection supported.
3187
3188   * - ``Objective-C GC Only``
3189     - **[Optional]** --- Specifies that only garbage collection is supported.
3190       If present, its value must be 6. This flag requires that the
3191       ``Objective-C Garbage Collection`` flag have the value 2.
3192
3193Some important flag interactions:
3194
3195-  If a module with ``Objective-C Garbage Collection`` set to 0 is
3196   merged with a module with ``Objective-C Garbage Collection`` set to
3197   2, then the resulting module has the
3198   ``Objective-C Garbage Collection`` flag set to 0.
3199-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3200   merged with a module with ``Objective-C GC Only`` set to 6.
3201
3202Automatic Linker Flags Module Flags Metadata
3203--------------------------------------------
3204
3205Some targets support embedding flags to the linker inside individual object
3206files. Typically this is used in conjunction with language extensions which
3207allow source files to explicitly declare the libraries they depend on, and have
3208these automatically be transmitted to the linker via object files.
3209
3210These flags are encoded in the IR using metadata in the module flags section,
3211using the ``Linker Options`` key. The merge behavior for this flag is required
3212to be ``AppendUnique``, and the value for the key is expected to be a metadata
3213node which should be a list of other metadata nodes, each of which should be a
3214list of metadata strings defining linker options.
3215
3216For example, the following metadata section specifies two separate sets of
3217linker options, presumably to link against ``libz`` and the ``Cocoa``
3218framework::
3219
3220    !0 = metadata !{ i32 6, metadata !"Linker Options",
3221       metadata !{
3222          metadata !{ metadata !"-lz" },
3223          metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
3224    !llvm.module.flags = !{ !0 }
3225
3226The metadata encoding as lists of lists of options, as opposed to a collapsed
3227list of options, is chosen so that the IR encoding can use multiple option
3228strings to specify e.g., a single library, while still having that specifier be
3229preserved as an atomic element that can be recognized by a target specific
3230assembly writer or object file emitter.
3231
3232Each individual option is required to be either a valid option for the target's
3233linker, or an option that is reserved by the target specific assembly writer or
3234object file emitter. No other aspect of these options is defined by the IR.
3235
3236C type width Module Flags Metadata
3237----------------------------------
3238
3239The ARM backend emits a section into each generated object file describing the
3240options that it was compiled with (in a compiler-independent way) to prevent
3241linking incompatible objects, and to allow automatic library selection. Some
3242of these options are not visible at the IR level, namely wchar_t width and enum
3243width.
3244
3245To pass this information to the backend, these options are encoded in module
3246flags metadata, using the following key-value pairs:
3247
3248.. list-table::
3249   :header-rows: 1
3250   :widths: 30 70
3251
3252   * - Key
3253     - Value
3254
3255   * - short_wchar
3256     - * 0 --- sizeof(wchar_t) == 4
3257       * 1 --- sizeof(wchar_t) == 2
3258
3259   * - short_enum
3260     - * 0 --- Enums are at least as large as an ``int``.
3261       * 1 --- Enums are stored in the smallest integer type which can
3262         represent all of its values.
3263
3264For example, the following metadata section specifies that the module was
3265compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3266enum is the smallest type which can represent all of its values::
3267
3268    !llvm.module.flags = !{!0, !1}
3269    !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3270    !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3271
3272.. _intrinsicglobalvariables:
3273
3274Intrinsic Global Variables
3275==========================
3276
3277LLVM has a number of "magic" global variables that contain data that
3278affect code generation or other IR semantics. These are documented here.
3279All globals of this sort should have a section specified as
3280"``llvm.metadata``". This section and all globals that start with
3281"``llvm.``" are reserved for use by LLVM.
3282
3283.. _gv_llvmused:
3284
3285The '``llvm.used``' Global Variable
3286-----------------------------------
3287
3288The ``@llvm.used`` global is an array which has
3289:ref:`appending linkage <linkage_appending>`. This array contains a list of
3290pointers to named global variables, functions and aliases which may optionally
3291have a pointer cast formed of bitcast or getelementptr. For example, a legal
3292use of it is:
3293
3294.. code-block:: llvm
3295
3296    @X = global i8 4
3297    @Y = global i32 123
3298
3299    @llvm.used = appending global [2 x i8*] [
3300       i8* @X,
3301       i8* bitcast (i32* @Y to i8*)
3302    ], section "llvm.metadata"
3303
3304If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3305and linker are required to treat the symbol as if there is a reference to the
3306symbol that it cannot see (which is why they have to be named). For example, if
3307a variable has internal linkage and no references other than that from the
3308``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3309references from inline asms and other things the compiler cannot "see", and
3310corresponds to "``attribute((used))``" in GNU C.
3311
3312On some targets, the code generator must emit a directive to the
3313assembler or object file to prevent the assembler and linker from
3314molesting the symbol.
3315
3316.. _gv_llvmcompilerused:
3317
3318The '``llvm.compiler.used``' Global Variable
3319--------------------------------------------
3320
3321The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3322directive, except that it only prevents the compiler from touching the
3323symbol. On targets that support it, this allows an intelligent linker to
3324optimize references to the symbol without being impeded as it would be
3325by ``@llvm.used``.
3326
3327This is a rare construct that should only be used in rare circumstances,
3328and should not be exposed to source languages.
3329
3330.. _gv_llvmglobalctors:
3331
3332The '``llvm.global_ctors``' Global Variable
3333-------------------------------------------
3334
3335.. code-block:: llvm
3336
3337    %0 = type { i32, void ()*, i8* }
3338    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
3339
3340The ``@llvm.global_ctors`` array contains a list of constructor
3341functions, priorities, and an optional associated global or function.
3342The functions referenced by this array will be called in ascending order
3343of priority (i.e. lowest first) when the module is loaded. The order of
3344functions with the same priority is not defined.
3345
3346If the third field is present, non-null, and points to a global variable
3347or function, the initializer function will only run if the associated
3348data from the current module is not discarded.
3349
3350.. _llvmglobaldtors:
3351
3352The '``llvm.global_dtors``' Global Variable
3353-------------------------------------------
3354
3355.. code-block:: llvm
3356
3357    %0 = type { i32, void ()*, i8* }
3358    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
3359
3360The ``@llvm.global_dtors`` array contains a list of destructor
3361functions, priorities, and an optional associated global or function.
3362The functions referenced by this array will be called in descending
3363order of priority (i.e. highest first) when the module is unloaded. The
3364order of functions with the same priority is not defined.
3365
3366If the third field is present, non-null, and points to a global variable
3367or function, the destructor function will only run if the associated
3368data from the current module is not discarded.
3369
3370Instruction Reference
3371=====================
3372
3373The LLVM instruction set consists of several different classifications
3374of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3375instructions <binaryops>`, :ref:`bitwise binary
3376instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3377:ref:`other instructions <otherops>`.
3378
3379.. _terminators:
3380
3381Terminator Instructions
3382-----------------------
3383
3384As mentioned :ref:`previously <functionstructure>`, every basic block in a
3385program ends with a "Terminator" instruction, which indicates which
3386block should be executed after the current block is finished. These
3387terminator instructions typically yield a '``void``' value: they produce
3388control flow, not values (the one exception being the
3389':ref:`invoke <i_invoke>`' instruction).
3390
3391The terminator instructions are: ':ref:`ret <i_ret>`',
3392':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3393':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3394':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3395
3396.. _i_ret:
3397
3398'``ret``' Instruction
3399^^^^^^^^^^^^^^^^^^^^^
3400
3401Syntax:
3402"""""""
3403
3404::
3405
3406      ret <type> <value>       ; Return a value from a non-void function
3407      ret void                 ; Return from void function
3408
3409Overview:
3410"""""""""
3411
3412The '``ret``' instruction is used to return control flow (and optionally
3413a value) from a function back to the caller.
3414
3415There are two forms of the '``ret``' instruction: one that returns a
3416value and then causes control flow, and one that just causes control
3417flow to occur.
3418
3419Arguments:
3420""""""""""
3421
3422The '``ret``' instruction optionally accepts a single argument, the
3423return value. The type of the return value must be a ':ref:`first
3424class <t_firstclass>`' type.
3425
3426A function is not :ref:`well formed <wellformed>` if it it has a non-void
3427return type and contains a '``ret``' instruction with no return value or
3428a return value with a type that does not match its type, or if it has a
3429void return type and contains a '``ret``' instruction with a return
3430value.
3431
3432Semantics:
3433""""""""""
3434
3435When the '``ret``' instruction is executed, control flow returns back to
3436the calling function's context. If the caller is a
3437":ref:`call <i_call>`" instruction, execution continues at the
3438instruction after the call. If the caller was an
3439":ref:`invoke <i_invoke>`" instruction, execution continues at the
3440beginning of the "normal" destination block. If the instruction returns
3441a value, that value shall set the call or invoke instruction's return
3442value.
3443
3444Example:
3445""""""""
3446
3447.. code-block:: llvm
3448
3449      ret i32 5                       ; Return an integer value of 5
3450      ret void                        ; Return from a void function
3451      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3452
3453.. _i_br:
3454
3455'``br``' Instruction
3456^^^^^^^^^^^^^^^^^^^^
3457
3458Syntax:
3459"""""""
3460
3461::
3462
3463      br i1 <cond>, label <iftrue>, label <iffalse>
3464      br label <dest>          ; Unconditional branch
3465
3466Overview:
3467"""""""""
3468
3469The '``br``' instruction is used to cause control flow to transfer to a
3470different basic block in the current function. There are two forms of
3471this instruction, corresponding to a conditional branch and an
3472unconditional branch.
3473
3474Arguments:
3475""""""""""
3476
3477The conditional branch form of the '``br``' instruction takes a single
3478'``i1``' value and two '``label``' values. The unconditional form of the
3479'``br``' instruction takes a single '``label``' value as a target.
3480
3481Semantics:
3482""""""""""
3483
3484Upon execution of a conditional '``br``' instruction, the '``i1``'
3485argument is evaluated. If the value is ``true``, control flows to the
3486'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3487to the '``iffalse``' ``label`` argument.
3488
3489Example:
3490""""""""
3491
3492.. code-block:: llvm
3493
3494    Test:
3495      %cond = icmp eq i32 %a, %b
3496      br i1 %cond, label %IfEqual, label %IfUnequal
3497    IfEqual:
3498      ret i32 1
3499    IfUnequal:
3500      ret i32 0
3501
3502.. _i_switch:
3503
3504'``switch``' Instruction
3505^^^^^^^^^^^^^^^^^^^^^^^^
3506
3507Syntax:
3508"""""""
3509
3510::
3511
3512      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3513
3514Overview:
3515"""""""""
3516
3517The '``switch``' instruction is used to transfer control flow to one of
3518several different places. It is a generalization of the '``br``'
3519instruction, allowing a branch to occur to one of many possible
3520destinations.
3521
3522Arguments:
3523""""""""""
3524
3525The '``switch``' instruction uses three parameters: an integer
3526comparison value '``value``', a default '``label``' destination, and an
3527array of pairs of comparison value constants and '``label``'s. The table
3528is not allowed to contain duplicate constant entries.
3529
3530Semantics:
3531""""""""""
3532
3533The ``switch`` instruction specifies a table of values and destinations.
3534When the '``switch``' instruction is executed, this table is searched
3535for the given value. If the value is found, control flow is transferred
3536to the corresponding destination; otherwise, control flow is transferred
3537to the default destination.
3538
3539Implementation:
3540"""""""""""""""
3541
3542Depending on properties of the target machine and the particular
3543``switch`` instruction, this instruction may be code generated in
3544different ways. For example, it could be generated as a series of
3545chained conditional branches or with a lookup table.
3546
3547Example:
3548""""""""
3549
3550.. code-block:: llvm
3551
3552     ; Emulate a conditional br instruction
3553     %Val = zext i1 %value to i32
3554     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3555
3556     ; Emulate an unconditional br instruction
3557     switch i32 0, label %dest [ ]
3558
3559     ; Implement a jump table:
3560     switch i32 %val, label %otherwise [ i32 0, label %onzero
3561                                         i32 1, label %onone
3562                                         i32 2, label %ontwo ]
3563
3564.. _i_indirectbr:
3565
3566'``indirectbr``' Instruction
3567^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3568
3569Syntax:
3570"""""""
3571
3572::
3573
3574      indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3575
3576Overview:
3577"""""""""
3578
3579The '``indirectbr``' instruction implements an indirect branch to a
3580label within the current function, whose address is specified by
3581"``address``". Address must be derived from a
3582:ref:`blockaddress <blockaddress>` constant.
3583
3584Arguments:
3585""""""""""
3586
3587The '``address``' argument is the address of the label to jump to. The
3588rest of the arguments indicate the full set of possible destinations
3589that the address may point to. Blocks are allowed to occur multiple
3590times in the destination list, though this isn't particularly useful.
3591
3592This destination list is required so that dataflow analysis has an
3593accurate understanding of the CFG.
3594
3595Semantics:
3596""""""""""
3597
3598Control transfers to the block specified in the address argument. All
3599possible destination blocks must be listed in the label list, otherwise
3600this instruction has undefined behavior. This implies that jumps to
3601labels defined in other functions have undefined behavior as well.
3602
3603Implementation:
3604"""""""""""""""
3605
3606This is typically implemented with a jump through a register.
3607
3608Example:
3609""""""""
3610
3611.. code-block:: llvm
3612
3613     indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3614
3615.. _i_invoke:
3616
3617'``invoke``' Instruction
3618^^^^^^^^^^^^^^^^^^^^^^^^
3619
3620Syntax:
3621"""""""
3622
3623::
3624
3625      <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3626                    to label <normal label> unwind label <exception label>
3627
3628Overview:
3629"""""""""
3630
3631The '``invoke``' instruction causes control to transfer to a specified
3632function, with the possibility of control flow transfer to either the
3633'``normal``' label or the '``exception``' label. If the callee function
3634returns with the "``ret``" instruction, control flow will return to the
3635"normal" label. If the callee (or any indirect callees) returns via the
3636":ref:`resume <i_resume>`" instruction or other exception handling
3637mechanism, control is interrupted and continued at the dynamically
3638nearest "exception" label.
3639
3640The '``exception``' label is a `landing
3641pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3642'``exception``' label is required to have the
3643":ref:`landingpad <i_landingpad>`" instruction, which contains the
3644information about the behavior of the program after unwinding happens,
3645as its first non-PHI instruction. The restrictions on the
3646"``landingpad``" instruction's tightly couples it to the "``invoke``"
3647instruction, so that the important information contained within the
3648"``landingpad``" instruction can't be lost through normal code motion.
3649
3650Arguments:
3651""""""""""
3652
3653This instruction requires several arguments:
3654
3655#. The optional "cconv" marker indicates which :ref:`calling
3656   convention <callingconv>` the call should use. If none is
3657   specified, the call defaults to using C calling conventions.
3658#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3659   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3660   are valid here.
3661#. '``ptr to function ty``': shall be the signature of the pointer to
3662   function value being invoked. In most cases, this is a direct
3663   function invocation, but indirect ``invoke``'s are just as possible,
3664   branching off an arbitrary pointer to function value.
3665#. '``function ptr val``': An LLVM value containing a pointer to a
3666   function to be invoked.
3667#. '``function args``': argument list whose types match the function
3668   signature argument types and parameter attributes. All arguments must
3669   be of :ref:`first class <t_firstclass>` type. If the function signature
3670   indicates the function accepts a variable number of arguments, the
3671   extra arguments can be specified.
3672#. '``normal label``': the label reached when the called function
3673   executes a '``ret``' instruction.
3674#. '``exception label``': the label reached when a callee returns via
3675   the :ref:`resume <i_resume>` instruction or other exception handling
3676   mechanism.
3677#. The optional :ref:`function attributes <fnattrs>` list. Only
3678   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3679   attributes are valid here.
3680
3681Semantics:
3682""""""""""
3683
3684This instruction is designed to operate as a standard '``call``'
3685instruction in most regards. The primary difference is that it
3686establishes an association with a label, which is used by the runtime
3687library to unwind the stack.
3688
3689This instruction is used in languages with destructors to ensure that
3690proper cleanup is performed in the case of either a ``longjmp`` or a
3691thrown exception. Additionally, this is important for implementation of
3692'``catch``' clauses in high-level languages that support them.
3693
3694For the purposes of the SSA form, the definition of the value returned
3695by the '``invoke``' instruction is deemed to occur on the edge from the
3696current block to the "normal" label. If the callee unwinds then no
3697return value is available.
3698
3699Example:
3700""""""""
3701
3702.. code-block:: llvm
3703
3704      %retval = invoke i32 @Test(i32 15) to label %Continue
3705                  unwind label %TestCleanup              ; i32:retval set
3706      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3707                  unwind label %TestCleanup              ; i32:retval set
3708
3709.. _i_resume:
3710
3711'``resume``' Instruction
3712^^^^^^^^^^^^^^^^^^^^^^^^
3713
3714Syntax:
3715"""""""
3716
3717::
3718
3719      resume <type> <value>
3720
3721Overview:
3722"""""""""
3723
3724The '``resume``' instruction is a terminator instruction that has no
3725successors.
3726
3727Arguments:
3728""""""""""
3729
3730The '``resume``' instruction requires one argument, which must have the
3731same type as the result of any '``landingpad``' instruction in the same
3732function.
3733
3734Semantics:
3735""""""""""
3736
3737The '``resume``' instruction resumes propagation of an existing
3738(in-flight) exception whose unwinding was interrupted with a
3739:ref:`landingpad <i_landingpad>` instruction.
3740
3741Example:
3742""""""""
3743
3744.. code-block:: llvm
3745
3746      resume { i8*, i32 } %exn
3747
3748.. _i_unreachable:
3749
3750'``unreachable``' Instruction
3751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3752
3753Syntax:
3754"""""""
3755
3756::
3757
3758      unreachable
3759
3760Overview:
3761"""""""""
3762
3763The '``unreachable``' instruction has no defined semantics. This
3764instruction is used to inform the optimizer that a particular portion of
3765the code is not reachable. This can be used to indicate that the code
3766after a no-return function cannot be reached, and other facts.
3767
3768Semantics:
3769""""""""""
3770
3771The '``unreachable``' instruction has no defined semantics.
3772
3773.. _binaryops:
3774
3775Binary Operations
3776-----------------
3777
3778Binary operators are used to do most of the computation in a program.
3779They require two operands of the same type, execute an operation on
3780them, and produce a single value. The operands might represent multiple
3781data, as is the case with the :ref:`vector <t_vector>` data type. The
3782result value has the same type as its operands.
3783
3784There are several different binary operators:
3785
3786.. _i_add:
3787
3788'``add``' Instruction
3789^^^^^^^^^^^^^^^^^^^^^
3790
3791Syntax:
3792"""""""
3793
3794::
3795
3796      <result> = add <ty> <op1>, <op2>          ; yields ty:result
3797      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
3798      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
3799      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
3800
3801Overview:
3802"""""""""
3803
3804The '``add``' instruction returns the sum of its two operands.
3805
3806Arguments:
3807""""""""""
3808
3809The two arguments to the '``add``' instruction must be
3810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3811arguments must have identical types.
3812
3813Semantics:
3814""""""""""
3815
3816The value produced is the integer sum of the two operands.
3817
3818If the sum has unsigned overflow, the result returned is the
3819mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3820the result.
3821
3822Because LLVM integers use a two's complement representation, this
3823instruction is appropriate for both signed and unsigned integers.
3824
3825``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3826respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3827result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3828unsigned and/or signed overflow, respectively, occurs.
3829
3830Example:
3831""""""""
3832
3833.. code-block:: llvm
3834
3835      <result> = add i32 4, %var          ; yields i32:result = 4 + %var
3836
3837.. _i_fadd:
3838
3839'``fadd``' Instruction
3840^^^^^^^^^^^^^^^^^^^^^^
3841
3842Syntax:
3843"""""""
3844
3845::
3846
3847      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
3848
3849Overview:
3850"""""""""
3851
3852The '``fadd``' instruction returns the sum of its two operands.
3853
3854Arguments:
3855""""""""""
3856
3857The two arguments to the '``fadd``' instruction must be :ref:`floating
3858point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3859Both arguments must have identical types.
3860
3861Semantics:
3862""""""""""
3863
3864The value produced is the floating point sum of the two operands. This
3865instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3866which are optimization hints to enable otherwise unsafe floating point
3867optimizations:
3868
3869Example:
3870""""""""
3871
3872.. code-block:: llvm
3873
3874      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
3875
3876'``sub``' Instruction
3877^^^^^^^^^^^^^^^^^^^^^
3878
3879Syntax:
3880"""""""
3881
3882::
3883
3884      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
3885      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
3886      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
3887      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
3888
3889Overview:
3890"""""""""
3891
3892The '``sub``' instruction returns the difference of its two operands.
3893
3894Note that the '``sub``' instruction is used to represent the '``neg``'
3895instruction present in most other intermediate representations.
3896
3897Arguments:
3898""""""""""
3899
3900The two arguments to the '``sub``' instruction must be
3901:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3902arguments must have identical types.
3903
3904Semantics:
3905""""""""""
3906
3907The value produced is the integer difference of the two operands.
3908
3909If the difference has unsigned overflow, the result returned is the
3910mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3911the result.
3912
3913Because LLVM integers use a two's complement representation, this
3914instruction is appropriate for both signed and unsigned integers.
3915
3916``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3917respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3918result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3919unsigned and/or signed overflow, respectively, occurs.
3920
3921Example:
3922""""""""
3923
3924.. code-block:: llvm
3925
3926      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
3927      <result> = sub i32 0, %val          ; yields i32:result = -%var
3928
3929.. _i_fsub:
3930
3931'``fsub``' Instruction
3932^^^^^^^^^^^^^^^^^^^^^^
3933
3934Syntax:
3935"""""""
3936
3937::
3938
3939      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
3940
3941Overview:
3942"""""""""
3943
3944The '``fsub``' instruction returns the difference of its two operands.
3945
3946Note that the '``fsub``' instruction is used to represent the '``fneg``'
3947instruction present in most other intermediate representations.
3948
3949Arguments:
3950""""""""""
3951
3952The two arguments to the '``fsub``' instruction must be :ref:`floating
3953point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3954Both arguments must have identical types.
3955
3956Semantics:
3957""""""""""
3958
3959The value produced is the floating point difference of the two operands.
3960This instruction can also take any number of :ref:`fast-math
3961flags <fastmath>`, which are optimization hints to enable otherwise
3962unsafe floating point optimizations:
3963
3964Example:
3965""""""""
3966
3967.. code-block:: llvm
3968
3969      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
3970      <result> = fsub float -0.0, %val          ; yields float:result = -%var
3971
3972'``mul``' Instruction
3973^^^^^^^^^^^^^^^^^^^^^
3974
3975Syntax:
3976"""""""
3977
3978::
3979
3980      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
3981      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
3982      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
3983      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
3984
3985Overview:
3986"""""""""
3987
3988The '``mul``' instruction returns the product of its two operands.
3989
3990Arguments:
3991""""""""""
3992
3993The two arguments to the '``mul``' instruction must be
3994:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3995arguments must have identical types.
3996
3997Semantics:
3998""""""""""
3999
4000The value produced is the integer product of the two operands.
4001
4002If the result of the multiplication has unsigned overflow, the result
4003returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4004bit width of the result.
4005
4006Because LLVM integers use a two's complement representation, and the
4007result is the same width as the operands, this instruction returns the
4008correct result for both signed and unsigned integers. If a full product
4009(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4010sign-extended or zero-extended as appropriate to the width of the full
4011product.
4012
4013``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4014respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4015result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4016unsigned and/or signed overflow, respectively, occurs.
4017
4018Example:
4019""""""""
4020
4021.. code-block:: llvm
4022
4023      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
4024
4025.. _i_fmul:
4026
4027'``fmul``' Instruction
4028^^^^^^^^^^^^^^^^^^^^^^
4029
4030Syntax:
4031"""""""
4032
4033::
4034
4035      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4036
4037Overview:
4038"""""""""
4039
4040The '``fmul``' instruction returns the product of its two operands.
4041
4042Arguments:
4043""""""""""
4044
4045The two arguments to the '``fmul``' instruction must be :ref:`floating
4046point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4047Both arguments must have identical types.
4048
4049Semantics:
4050""""""""""
4051
4052The value produced is the floating point product of the two operands.
4053This instruction can also take any number of :ref:`fast-math
4054flags <fastmath>`, which are optimization hints to enable otherwise
4055unsafe floating point optimizations:
4056
4057Example:
4058""""""""
4059
4060.. code-block:: llvm
4061
4062      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
4063
4064'``udiv``' Instruction
4065^^^^^^^^^^^^^^^^^^^^^^
4066
4067Syntax:
4068"""""""
4069
4070::
4071
4072      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
4073      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
4074
4075Overview:
4076"""""""""
4077
4078The '``udiv``' instruction returns the quotient of its two operands.
4079
4080Arguments:
4081""""""""""
4082
4083The two arguments to the '``udiv``' instruction must be
4084:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4085arguments must have identical types.
4086
4087Semantics:
4088""""""""""
4089
4090The value produced is the unsigned integer quotient of the two operands.
4091
4092Note that unsigned integer division and signed integer division are
4093distinct operations; for signed integer division, use '``sdiv``'.
4094
4095Division by zero leads to undefined behavior.
4096
4097If the ``exact`` keyword is present, the result value of the ``udiv`` is
4098a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4099such, "((a udiv exact b) mul b) == a").
4100
4101Example:
4102""""""""
4103
4104.. code-block:: llvm
4105
4106      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
4107
4108'``sdiv``' Instruction
4109^^^^^^^^^^^^^^^^^^^^^^
4110
4111Syntax:
4112"""""""
4113
4114::
4115
4116      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
4117      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
4118
4119Overview:
4120"""""""""
4121
4122The '``sdiv``' instruction returns the quotient of its two operands.
4123
4124Arguments:
4125""""""""""
4126
4127The two arguments to the '``sdiv``' instruction must be
4128:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4129arguments must have identical types.
4130
4131Semantics:
4132""""""""""
4133
4134The value produced is the signed integer quotient of the two operands
4135rounded towards zero.
4136
4137Note that signed integer division and unsigned integer division are
4138distinct operations; for unsigned integer division, use '``udiv``'.
4139
4140Division by zero leads to undefined behavior. Overflow also leads to
4141undefined behavior; this is a rare case, but can occur, for example, by
4142doing a 32-bit division of -2147483648 by -1.
4143
4144If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4145a :ref:`poison value <poisonvalues>` if the result would be rounded.
4146
4147Example:
4148""""""""
4149
4150.. code-block:: llvm
4151
4152      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
4153
4154.. _i_fdiv:
4155
4156'``fdiv``' Instruction
4157^^^^^^^^^^^^^^^^^^^^^^
4158
4159Syntax:
4160"""""""
4161
4162::
4163
4164      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4165
4166Overview:
4167"""""""""
4168
4169The '``fdiv``' instruction returns the quotient of its two operands.
4170
4171Arguments:
4172""""""""""
4173
4174The two arguments to the '``fdiv``' instruction must be :ref:`floating
4175point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4176Both arguments must have identical types.
4177
4178Semantics:
4179""""""""""
4180
4181The value produced is the floating point quotient of the two operands.
4182This instruction can also take any number of :ref:`fast-math
4183flags <fastmath>`, which are optimization hints to enable otherwise
4184unsafe floating point optimizations:
4185
4186Example:
4187""""""""
4188
4189.. code-block:: llvm
4190
4191      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
4192
4193'``urem``' Instruction
4194^^^^^^^^^^^^^^^^^^^^^^
4195
4196Syntax:
4197"""""""
4198
4199::
4200
4201      <result> = urem <ty> <op1>, <op2>   ; yields ty:result
4202
4203Overview:
4204"""""""""
4205
4206The '``urem``' instruction returns the remainder from the unsigned
4207division of its two arguments.
4208
4209Arguments:
4210""""""""""
4211
4212The two arguments to the '``urem``' instruction must be
4213:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4214arguments must have identical types.
4215
4216Semantics:
4217""""""""""
4218
4219This instruction returns the unsigned integer *remainder* of a division.
4220This instruction always performs an unsigned division to get the
4221remainder.
4222
4223Note that unsigned integer remainder and signed integer remainder are
4224distinct operations; for signed integer remainder, use '``srem``'.
4225
4226Taking the remainder of a division by zero leads to undefined behavior.
4227
4228Example:
4229""""""""
4230
4231.. code-block:: llvm
4232
4233      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
4234
4235'``srem``' Instruction
4236^^^^^^^^^^^^^^^^^^^^^^
4237
4238Syntax:
4239"""""""
4240
4241::
4242
4243      <result> = srem <ty> <op1>, <op2>   ; yields ty:result
4244
4245Overview:
4246"""""""""
4247
4248The '``srem``' instruction returns the remainder from the signed
4249division of its two operands. This instruction can also take
4250:ref:`vector <t_vector>` versions of the values in which case the elements
4251must be integers.
4252
4253Arguments:
4254""""""""""
4255
4256The two arguments to the '``srem``' instruction must be
4257:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4258arguments must have identical types.
4259
4260Semantics:
4261""""""""""
4262
4263This instruction returns the *remainder* of a division (where the result
4264is either zero or has the same sign as the dividend, ``op1``), not the
4265*modulo* operator (where the result is either zero or has the same sign
4266as the divisor, ``op2``) of a value. For more information about the
4267difference, see `The Math
4268Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4269table of how this is implemented in various languages, please see
4270`Wikipedia: modulo
4271operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4272
4273Note that signed integer remainder and unsigned integer remainder are
4274distinct operations; for unsigned integer remainder, use '``urem``'.
4275
4276Taking the remainder of a division by zero leads to undefined behavior.
4277Overflow also leads to undefined behavior; this is a rare case, but can
4278occur, for example, by taking the remainder of a 32-bit division of
4279-2147483648 by -1. (The remainder doesn't actually overflow, but this
4280rule lets srem be implemented using instructions that return both the
4281result of the division and the remainder.)
4282
4283Example:
4284""""""""
4285
4286.. code-block:: llvm
4287
4288      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
4289
4290.. _i_frem:
4291
4292'``frem``' Instruction
4293^^^^^^^^^^^^^^^^^^^^^^
4294
4295Syntax:
4296"""""""
4297
4298::
4299
4300      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
4301
4302Overview:
4303"""""""""
4304
4305The '``frem``' instruction returns the remainder from the division of
4306its two operands.
4307
4308Arguments:
4309""""""""""
4310
4311The two arguments to the '``frem``' instruction must be :ref:`floating
4312point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4313Both arguments must have identical types.
4314
4315Semantics:
4316""""""""""
4317
4318This instruction returns the *remainder* of a division. The remainder
4319has the same sign as the dividend. This instruction can also take any
4320number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4321to enable otherwise unsafe floating point optimizations:
4322
4323Example:
4324""""""""
4325
4326.. code-block:: llvm
4327
4328      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
4329
4330.. _bitwiseops:
4331
4332Bitwise Binary Operations
4333-------------------------
4334
4335Bitwise binary operators are used to do various forms of bit-twiddling
4336in a program. They are generally very efficient instructions and can
4337commonly be strength reduced from other instructions. They require two
4338operands of the same type, execute an operation on them, and produce a
4339single value. The resulting value is the same type as its operands.
4340
4341'``shl``' Instruction
4342^^^^^^^^^^^^^^^^^^^^^
4343
4344Syntax:
4345"""""""
4346
4347::
4348
4349      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
4350      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
4351      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
4352      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
4353
4354Overview:
4355"""""""""
4356
4357The '``shl``' instruction returns the first operand shifted to the left
4358a specified number of bits.
4359
4360Arguments:
4361""""""""""
4362
4363Both arguments to the '``shl``' instruction must be the same
4364:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4365'``op2``' is treated as an unsigned value.
4366
4367Semantics:
4368""""""""""
4369
4370The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4371where ``n`` is the width of the result. If ``op2`` is (statically or
4372dynamically) negative or equal to or larger than the number of bits in
4373``op1``, the result is undefined. If the arguments are vectors, each
4374vector element of ``op1`` is shifted by the corresponding shift amount
4375in ``op2``.
4376
4377If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4378value <poisonvalues>` if it shifts out any non-zero bits. If the
4379``nsw`` keyword is present, then the shift produces a :ref:`poison
4380value <poisonvalues>` if it shifts out any bits that disagree with the
4381resultant sign bit. As such, NUW/NSW have the same semantics as they
4382would if the shift were expressed as a mul instruction with the same
4383nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4384
4385Example:
4386""""""""
4387
4388.. code-block:: llvm
4389
4390      <result> = shl i32 4, %var   ; yields i32: 4 << %var
4391      <result> = shl i32 4, 2      ; yields i32: 16
4392      <result> = shl i32 1, 10     ; yields i32: 1024
4393      <result> = shl i32 1, 32     ; undefined
4394      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
4395
4396'``lshr``' Instruction
4397^^^^^^^^^^^^^^^^^^^^^^
4398
4399Syntax:
4400"""""""
4401
4402::
4403
4404      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
4405      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
4406
4407Overview:
4408"""""""""
4409
4410The '``lshr``' instruction (logical shift right) returns the first
4411operand shifted to the right a specified number of bits with zero fill.
4412
4413Arguments:
4414""""""""""
4415
4416Both arguments to the '``lshr``' instruction must be the same
4417:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4418'``op2``' is treated as an unsigned value.
4419
4420Semantics:
4421""""""""""
4422
4423This instruction always performs a logical shift right operation. The
4424most significant bits of the result will be filled with zero bits after
4425the shift. If ``op2`` is (statically or dynamically) equal to or larger
4426than the number of bits in ``op1``, the result is undefined. If the
4427arguments are vectors, each vector element of ``op1`` is shifted by the
4428corresponding shift amount in ``op2``.
4429
4430If the ``exact`` keyword is present, the result value of the ``lshr`` is
4431a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4432non-zero.
4433
4434Example:
4435""""""""
4436
4437.. code-block:: llvm
4438
4439      <result> = lshr i32 4, 1   ; yields i32:result = 2
4440      <result> = lshr i32 4, 2   ; yields i32:result = 1
4441      <result> = lshr i8  4, 3   ; yields i8:result = 0
4442      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
4443      <result> = lshr i32 1, 32  ; undefined
4444      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4445
4446'``ashr``' Instruction
4447^^^^^^^^^^^^^^^^^^^^^^
4448
4449Syntax:
4450"""""""
4451
4452::
4453
4454      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
4455      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
4456
4457Overview:
4458"""""""""
4459
4460The '``ashr``' instruction (arithmetic shift right) returns the first
4461operand shifted to the right a specified number of bits with sign
4462extension.
4463
4464Arguments:
4465""""""""""
4466
4467Both arguments to the '``ashr``' instruction must be the same
4468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4469'``op2``' is treated as an unsigned value.
4470
4471Semantics:
4472""""""""""
4473
4474This instruction always performs an arithmetic shift right operation,
4475The most significant bits of the result will be filled with the sign bit
4476of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4477than the number of bits in ``op1``, the result is undefined. If the
4478arguments are vectors, each vector element of ``op1`` is shifted by the
4479corresponding shift amount in ``op2``.
4480
4481If the ``exact`` keyword is present, the result value of the ``ashr`` is
4482a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4483non-zero.
4484
4485Example:
4486""""""""
4487
4488.. code-block:: llvm
4489
4490      <result> = ashr i32 4, 1   ; yields i32:result = 2
4491      <result> = ashr i32 4, 2   ; yields i32:result = 1
4492      <result> = ashr i8  4, 3   ; yields i8:result = 0
4493      <result> = ashr i8 -2, 1   ; yields i8:result = -1
4494      <result> = ashr i32 1, 32  ; undefined
4495      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
4496
4497'``and``' Instruction
4498^^^^^^^^^^^^^^^^^^^^^
4499
4500Syntax:
4501"""""""
4502
4503::
4504
4505      <result> = and <ty> <op1>, <op2>   ; yields ty:result
4506
4507Overview:
4508"""""""""
4509
4510The '``and``' instruction returns the bitwise logical and of its two
4511operands.
4512
4513Arguments:
4514""""""""""
4515
4516The two arguments to the '``and``' instruction must be
4517:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4518arguments must have identical types.
4519
4520Semantics:
4521""""""""""
4522
4523The truth table used for the '``and``' instruction is:
4524
4525+-----+-----+-----+
4526| In0 | In1 | Out |
4527+-----+-----+-----+
4528|   0 |   0 |   0 |
4529+-----+-----+-----+
4530|   0 |   1 |   0 |
4531+-----+-----+-----+
4532|   1 |   0 |   0 |
4533+-----+-----+-----+
4534|   1 |   1 |   1 |
4535+-----+-----+-----+
4536
4537Example:
4538""""""""
4539
4540.. code-block:: llvm
4541
4542      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
4543      <result> = and i32 15, 40          ; yields i32:result = 8
4544      <result> = and i32 4, 8            ; yields i32:result = 0
4545
4546'``or``' Instruction
4547^^^^^^^^^^^^^^^^^^^^
4548
4549Syntax:
4550"""""""
4551
4552::
4553
4554      <result> = or <ty> <op1>, <op2>   ; yields ty:result
4555
4556Overview:
4557"""""""""
4558
4559The '``or``' instruction returns the bitwise logical inclusive or of its
4560two operands.
4561
4562Arguments:
4563""""""""""
4564
4565The two arguments to the '``or``' instruction must be
4566:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4567arguments must have identical types.
4568
4569Semantics:
4570""""""""""
4571
4572The truth table used for the '``or``' instruction is:
4573
4574+-----+-----+-----+
4575| In0 | In1 | Out |
4576+-----+-----+-----+
4577|   0 |   0 |   0 |
4578+-----+-----+-----+
4579|   0 |   1 |   1 |
4580+-----+-----+-----+
4581|   1 |   0 |   1 |
4582+-----+-----+-----+
4583|   1 |   1 |   1 |
4584+-----+-----+-----+
4585
4586Example:
4587""""""""
4588
4589::
4590
4591      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
4592      <result> = or i32 15, 40          ; yields i32:result = 47
4593      <result> = or i32 4, 8            ; yields i32:result = 12
4594
4595'``xor``' Instruction
4596^^^^^^^^^^^^^^^^^^^^^
4597
4598Syntax:
4599"""""""
4600
4601::
4602
4603      <result> = xor <ty> <op1>, <op2>   ; yields ty:result
4604
4605Overview:
4606"""""""""
4607
4608The '``xor``' instruction returns the bitwise logical exclusive or of
4609its two operands. The ``xor`` is used to implement the "one's
4610complement" operation, which is the "~" operator in C.
4611
4612Arguments:
4613""""""""""
4614
4615The two arguments to the '``xor``' instruction must be
4616:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4617arguments must have identical types.
4618
4619Semantics:
4620""""""""""
4621
4622The truth table used for the '``xor``' instruction is:
4623
4624+-----+-----+-----+
4625| In0 | In1 | Out |
4626+-----+-----+-----+
4627|   0 |   0 |   0 |
4628+-----+-----+-----+
4629|   0 |   1 |   1 |
4630+-----+-----+-----+
4631|   1 |   0 |   1 |
4632+-----+-----+-----+
4633|   1 |   1 |   0 |
4634+-----+-----+-----+
4635
4636Example:
4637""""""""
4638
4639.. code-block:: llvm
4640
4641      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
4642      <result> = xor i32 15, 40          ; yields i32:result = 39
4643      <result> = xor i32 4, 8            ; yields i32:result = 12
4644      <result> = xor i32 %V, -1          ; yields i32:result = ~%V
4645
4646Vector Operations
4647-----------------
4648
4649LLVM supports several instructions to represent vector operations in a
4650target-independent manner. These instructions cover the element-access
4651and vector-specific operations needed to process vectors effectively.
4652While LLVM does directly support these vector operations, many
4653sophisticated algorithms will want to use target-specific intrinsics to
4654take full advantage of a specific target.
4655
4656.. _i_extractelement:
4657
4658'``extractelement``' Instruction
4659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4660
4661Syntax:
4662"""""""
4663
4664::
4665
4666      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
4667
4668Overview:
4669"""""""""
4670
4671The '``extractelement``' instruction extracts a single scalar element
4672from a vector at a specified index.
4673
4674Arguments:
4675""""""""""
4676
4677The first operand of an '``extractelement``' instruction is a value of
4678:ref:`vector <t_vector>` type. The second operand is an index indicating
4679the position from which to extract the element. The index may be a
4680variable of any integer type.
4681
4682Semantics:
4683""""""""""
4684
4685The result is a scalar of the same type as the element type of ``val``.
4686Its value is the value at position ``idx`` of ``val``. If ``idx``
4687exceeds the length of ``val``, the results are undefined.
4688
4689Example:
4690""""""""
4691
4692.. code-block:: llvm
4693
4694      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
4695
4696.. _i_insertelement:
4697
4698'``insertelement``' Instruction
4699^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4700
4701Syntax:
4702"""""""
4703
4704::
4705
4706      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
4707
4708Overview:
4709"""""""""
4710
4711The '``insertelement``' instruction inserts a scalar element into a
4712vector at a specified index.
4713
4714Arguments:
4715""""""""""
4716
4717The first operand of an '``insertelement``' instruction is a value of
4718:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4719type must equal the element type of the first operand. The third operand
4720is an index indicating the position at which to insert the value. The
4721index may be a variable of any integer type.
4722
4723Semantics:
4724""""""""""
4725
4726The result is a vector of the same type as ``val``. Its element values
4727are those of ``val`` except at position ``idx``, where it gets the value
4728``elt``. If ``idx`` exceeds the length of ``val``, the results are
4729undefined.
4730
4731Example:
4732""""""""
4733
4734.. code-block:: llvm
4735
4736      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
4737
4738.. _i_shufflevector:
4739
4740'``shufflevector``' Instruction
4741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4742
4743Syntax:
4744"""""""
4745
4746::
4747
4748      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
4749
4750Overview:
4751"""""""""
4752
4753The '``shufflevector``' instruction constructs a permutation of elements
4754from two input vectors, returning a vector with the same element type as
4755the input and length that is the same as the shuffle mask.
4756
4757Arguments:
4758""""""""""
4759
4760The first two operands of a '``shufflevector``' instruction are vectors
4761with the same type. The third argument is a shuffle mask whose element
4762type is always 'i32'. The result of the instruction is a vector whose
4763length is the same as the shuffle mask and whose element type is the
4764same as the element type of the first two operands.
4765
4766The shuffle mask operand is required to be a constant vector with either
4767constant integer or undef values.
4768
4769Semantics:
4770""""""""""
4771
4772The elements of the two input vectors are numbered from left to right
4773across both of the vectors. The shuffle mask operand specifies, for each
4774element of the result vector, which element of the two input vectors the
4775result element gets. The element selector may be undef (meaning "don't
4776care") and the second operand may be undef if performing a shuffle from
4777only one vector.
4778
4779Example:
4780""""""""
4781
4782.. code-block:: llvm
4783
4784      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4785                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
4786      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4787                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
4788      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4789                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
4790      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4791                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
4792
4793Aggregate Operations
4794--------------------
4795
4796LLVM supports several instructions for working with
4797:ref:`aggregate <t_aggregate>` values.
4798
4799.. _i_extractvalue:
4800
4801'``extractvalue``' Instruction
4802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4803
4804Syntax:
4805"""""""
4806
4807::
4808
4809      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4810
4811Overview:
4812"""""""""
4813
4814The '``extractvalue``' instruction extracts the value of a member field
4815from an :ref:`aggregate <t_aggregate>` value.
4816
4817Arguments:
4818""""""""""
4819
4820The first operand of an '``extractvalue``' instruction is a value of
4821:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4822constant indices to specify which value to extract in a similar manner
4823as indices in a '``getelementptr``' instruction.
4824
4825The major differences to ``getelementptr`` indexing are:
4826
4827-  Since the value being indexed is not a pointer, the first index is
4828   omitted and assumed to be zero.
4829-  At least one index must be specified.
4830-  Not only struct indices but also array indices must be in bounds.
4831
4832Semantics:
4833""""""""""
4834
4835The result is the value at the position in the aggregate specified by
4836the index operands.
4837
4838Example:
4839""""""""
4840
4841.. code-block:: llvm
4842
4843      <result> = extractvalue {i32, float} %agg, 0    ; yields i32
4844
4845.. _i_insertvalue:
4846
4847'``insertvalue``' Instruction
4848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4849
4850Syntax:
4851"""""""
4852
4853::
4854
4855      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
4856
4857Overview:
4858"""""""""
4859
4860The '``insertvalue``' instruction inserts a value into a member field in
4861an :ref:`aggregate <t_aggregate>` value.
4862
4863Arguments:
4864""""""""""
4865
4866The first operand of an '``insertvalue``' instruction is a value of
4867:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4868a first-class value to insert. The following operands are constant
4869indices indicating the position at which to insert the value in a
4870similar manner as indices in a '``extractvalue``' instruction. The value
4871to insert must have the same type as the value identified by the
4872indices.
4873
4874Semantics:
4875""""""""""
4876
4877The result is an aggregate of the same type as ``val``. Its value is
4878that of ``val`` except that the value at the position specified by the
4879indices is that of ``elt``.
4880
4881Example:
4882""""""""
4883
4884.. code-block:: llvm
4885
4886      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
4887      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
4888      %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    ; yields {i32 1, float %val}
4889
4890.. _memoryops:
4891
4892Memory Access and Addressing Operations
4893---------------------------------------
4894
4895A key design point of an SSA-based representation is how it represents
4896memory. In LLVM, no memory locations are in SSA form, which makes things
4897very simple. This section describes how to read, write, and allocate
4898memory in LLVM.
4899
4900.. _i_alloca:
4901
4902'``alloca``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>]     ; yields type*:result
4911
4912Overview:
4913"""""""""
4914
4915The '``alloca``' instruction allocates memory on the stack frame of the
4916currently executing function, to be automatically released when this
4917function returns to its caller. The object is always allocated in the
4918generic address space (address space zero).
4919
4920Arguments:
4921""""""""""
4922
4923The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4924bytes of memory on the runtime stack, returning a pointer of the
4925appropriate type to the program. If "NumElements" is specified, it is
4926the number of elements allocated, otherwise "NumElements" is defaulted
4927to be one. If a constant alignment is specified, the value result of the
4928allocation is guaranteed to be aligned to at least that boundary. If not
4929specified, or if zero, the target can choose to align the allocation on
4930any convenient boundary compatible with the type.
4931
4932'``type``' may be any sized type.
4933
4934Semantics:
4935""""""""""
4936
4937Memory is allocated; a pointer is returned. The operation is undefined
4938if there is insufficient stack space for the allocation. '``alloca``'d
4939memory is automatically released when the function returns. The
4940'``alloca``' instruction is commonly used to represent automatic
4941variables that must have an address available. When the function returns
4942(either with the ``ret`` or ``resume`` instructions), the memory is
4943reclaimed. Allocating zero bytes is legal, but the result is undefined.
4944The order in which memory is allocated (ie., which way the stack grows)
4945is not specified.
4946
4947Example:
4948""""""""
4949
4950.. code-block:: llvm
4951
4952      %ptr = alloca i32                             ; yields i32*:ptr
4953      %ptr = alloca i32, i32 4                      ; yields i32*:ptr
4954      %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
4955      %ptr = alloca i32, align 1024                 ; yields i32*:ptr
4956
4957.. _i_load:
4958
4959'``load``' Instruction
4960^^^^^^^^^^^^^^^^^^^^^^
4961
4962Syntax:
4963"""""""
4964
4965::
4966
4967      <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4968      <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4969      !<index> = !{ i32 1 }
4970
4971Overview:
4972"""""""""
4973
4974The '``load``' instruction is used to read from memory.
4975
4976Arguments:
4977""""""""""
4978
4979The argument to the ``load`` instruction specifies the memory address
4980from which to load. The pointer must point to a :ref:`first
4981class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4982then the optimizer is not allowed to modify the number or order of
4983execution of this ``load`` with other :ref:`volatile
4984operations <volatile>`.
4985
4986If the ``load`` is marked as ``atomic``, it takes an extra
4987:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4988``release`` and ``acq_rel`` orderings are not valid on ``load``
4989instructions. Atomic loads produce :ref:`defined <memmodel>` results
4990when they may see multiple atomic stores. The type of the pointee must
4991be an integer type whose bit width is a power of two greater than or
4992equal to eight and less than or equal to a target-specific size limit.
4993``align`` must be explicitly specified on atomic loads, and the load has
4994undefined behavior if the alignment is not set to a value which is at
4995least the size in bytes of the pointee. ``!nontemporal`` does not have
4996any defined semantics for atomic loads.
4997
4998The optional constant ``align`` argument specifies the alignment of the
4999operation (that is, the alignment of the memory address). A value of 0
5000or an omitted ``align`` argument means that the operation has the ABI
5001alignment for the target. It is the responsibility of the code emitter
5002to ensure that the alignment information is correct. Overestimating the
5003alignment results in undefined behavior. Underestimating the alignment
5004may produce less efficient code. An alignment of 1 is always safe.
5005
5006The optional ``!nontemporal`` metadata must reference a single
5007metadata name ``<index>`` corresponding to a metadata node with one
5008``i32`` entry of value 1. The existence of the ``!nontemporal``
5009metadata on the instruction tells the optimizer and code generator
5010that this load is not expected to be reused in the cache. The code
5011generator may select special instructions to save cache bandwidth, such
5012as the ``MOVNT`` instruction on x86.
5013
5014The optional ``!invariant.load`` metadata must reference a single
5015metadata name ``<index>`` corresponding to a metadata node with no
5016entries. The existence of the ``!invariant.load`` metadata on the
5017instruction tells the optimizer and code generator that this load
5018address points to memory which does not change value during program
5019execution. The optimizer may then move this load around, for example, by
5020hoisting it out of loops using loop invariant code motion.
5021
5022Semantics:
5023""""""""""
5024
5025The location of memory pointed to is loaded. If the value being loaded
5026is of scalar type then the number of bytes read does not exceed the
5027minimum number of bytes needed to hold all bits of the type. For
5028example, loading an ``i24`` reads at most three bytes. When loading a
5029value of a type like ``i20`` with a size that is not an integral number
5030of bytes, the result is undefined if the value was not originally
5031written using a store of the same type.
5032
5033Examples:
5034"""""""""
5035
5036.. code-block:: llvm
5037
5038      %ptr = alloca i32                               ; yields i32*:ptr
5039      store i32 3, i32* %ptr                          ; yields void
5040      %val = load i32* %ptr                           ; yields i32:val = i32 3
5041
5042.. _i_store:
5043
5044'``store``' Instruction
5045^^^^^^^^^^^^^^^^^^^^^^^
5046
5047Syntax:
5048"""""""
5049
5050::
5051
5052      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields void
5053      store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields void
5054
5055Overview:
5056"""""""""
5057
5058The '``store``' instruction is used to write to memory.
5059
5060Arguments:
5061""""""""""
5062
5063There are two arguments to the ``store`` instruction: a value to store
5064and an address at which to store it. The type of the ``<pointer>``
5065operand must be a pointer to the :ref:`first class <t_firstclass>` type of
5066the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
5067then the optimizer is not allowed to modify the number or order of
5068execution of this ``store`` with other :ref:`volatile
5069operations <volatile>`.
5070
5071If the ``store`` is marked as ``atomic``, it takes an extra
5072:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5073``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5074instructions. Atomic loads produce :ref:`defined <memmodel>` results
5075when they may see multiple atomic stores. The type of the pointee must
5076be an integer type whose bit width is a power of two greater than or
5077equal to eight and less than or equal to a target-specific size limit.
5078``align`` must be explicitly specified on atomic stores, and the store
5079has undefined behavior if the alignment is not set to a value which is
5080at least the size in bytes of the pointee. ``!nontemporal`` does not
5081have any defined semantics for atomic stores.
5082
5083The optional constant ``align`` argument specifies the alignment of the
5084operation (that is, the alignment of the memory address). A value of 0
5085or an omitted ``align`` argument means that the operation has the ABI
5086alignment for the target. It is the responsibility of the code emitter
5087to ensure that the alignment information is correct. Overestimating the
5088alignment results in undefined behavior. Underestimating the
5089alignment may produce less efficient code. An alignment of 1 is always
5090safe.
5091
5092The optional ``!nontemporal`` metadata must reference a single metadata
5093name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
5094value 1. The existence of the ``!nontemporal`` metadata on the instruction
5095tells the optimizer and code generator that this load is not expected to
5096be reused in the cache. The code generator may select special
5097instructions to save cache bandwidth, such as the MOVNT instruction on
5098x86.
5099
5100Semantics:
5101""""""""""
5102
5103The contents of memory are updated to contain ``<value>`` at the
5104location specified by the ``<pointer>`` operand. If ``<value>`` is
5105of scalar type then the number of bytes written does not exceed the
5106minimum number of bytes needed to hold all bits of the type. For
5107example, storing an ``i24`` writes at most three bytes. When writing a
5108value of a type like ``i20`` with a size that is not an integral number
5109of bytes, it is unspecified what happens to the extra bits that do not
5110belong to the type, but they will typically be overwritten.
5111
5112Example:
5113""""""""
5114
5115.. code-block:: llvm
5116
5117      %ptr = alloca i32                               ; yields i32*:ptr
5118      store i32 3, i32* %ptr                          ; yields void
5119      %val = load i32* %ptr                           ; yields i32:val = i32 3
5120
5121.. _i_fence:
5122
5123'``fence``' Instruction
5124^^^^^^^^^^^^^^^^^^^^^^^
5125
5126Syntax:
5127"""""""
5128
5129::
5130
5131      fence [singlethread] <ordering>                   ; yields void
5132
5133Overview:
5134"""""""""
5135
5136The '``fence``' instruction is used to introduce happens-before edges
5137between operations.
5138
5139Arguments:
5140""""""""""
5141
5142'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5143defines what *synchronizes-with* edges they add. They can only be given
5144``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5145
5146Semantics:
5147""""""""""
5148
5149A fence A which has (at least) ``release`` ordering semantics
5150*synchronizes with* a fence B with (at least) ``acquire`` ordering
5151semantics if and only if there exist atomic operations X and Y, both
5152operating on some atomic object M, such that A is sequenced before X, X
5153modifies M (either directly or through some side effect of a sequence
5154headed by X), Y is sequenced before B, and Y observes M. This provides a
5155*happens-before* dependency between A and B. Rather than an explicit
5156``fence``, one (but not both) of the atomic operations X or Y might
5157provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5158still *synchronize-with* the explicit ``fence`` and establish the
5159*happens-before* edge.
5160
5161A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5162``acquire`` and ``release`` semantics specified above, participates in
5163the global program order of other ``seq_cst`` operations and/or fences.
5164
5165The optional ":ref:`singlethread <singlethread>`" argument specifies
5166that the fence only synchronizes with other fences in the same thread.
5167(This is useful for interacting with signal handlers.)
5168
5169Example:
5170""""""""
5171
5172.. code-block:: llvm
5173
5174      fence acquire                          ; yields void
5175      fence singlethread seq_cst             ; yields void
5176
5177.. _i_cmpxchg:
5178
5179'``cmpxchg``' Instruction
5180^^^^^^^^^^^^^^^^^^^^^^^^^
5181
5182Syntax:
5183"""""""
5184
5185::
5186
5187      cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields  { ty, i1 }
5188
5189Overview:
5190"""""""""
5191
5192The '``cmpxchg``' instruction is used to atomically modify memory. It
5193loads a value in memory and compares it to a given value. If they are
5194equal, it tries to store a new value into the memory.
5195
5196Arguments:
5197""""""""""
5198
5199There are three arguments to the '``cmpxchg``' instruction: an address
5200to operate on, a value to compare to the value currently be at that
5201address, and a new value to place at that address if the compared values
5202are equal. The type of '<cmp>' must be an integer type whose bit width
5203is a power of two greater than or equal to eight and less than or equal
5204to a target-specific size limit. '<cmp>' and '<new>' must have the same
5205type, and the type of '<pointer>' must be a pointer to that type. If the
5206``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5207to modify the number or order of execution of this ``cmpxchg`` with
5208other :ref:`volatile operations <volatile>`.
5209
5210The success and failure :ref:`ordering <ordering>` arguments specify how this
5211``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5212must be at least ``monotonic``, the ordering constraint on failure must be no
5213stronger than that on success, and the failure ordering cannot be either
5214``release`` or ``acq_rel``.
5215
5216The optional "``singlethread``" argument declares that the ``cmpxchg``
5217is only atomic with respect to code (usually signal handlers) running in
5218the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5219respect to all other code in the system.
5220
5221The pointer passed into cmpxchg must have alignment greater than or
5222equal to the size in memory of the operand.
5223
5224Semantics:
5225""""""""""
5226
5227The contents of memory at the location specified by the '``<pointer>``' operand
5228is read and compared to '``<cmp>``'; if the read value is the equal, the
5229'``<new>``' is written. The original value at the location is returned, together
5230with a flag indicating success (true) or failure (false).
5231
5232If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5233permitted: the operation may not write ``<new>`` even if the comparison
5234matched.
5235
5236If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5237if the value loaded equals ``cmp``.
5238
5239A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5240identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5241load with an ordering parameter determined the second ordering parameter.
5242
5243Example:
5244""""""""
5245
5246.. code-block:: llvm
5247
5248    entry:
5249      %orig = atomic load i32* %ptr unordered                   ; yields i32
5250      br label %loop
5251
5252    loop:
5253      %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5254      %squared = mul i32 %cmp, %cmp
5255      %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
5256      %value_loaded = extractvalue { i32, i1 } %val_success, 0
5257      %success = extractvalue { i32, i1 } %val_success, 1
5258      br i1 %success, label %done, label %loop
5259
5260    done:
5261      ...
5262
5263.. _i_atomicrmw:
5264
5265'``atomicrmw``' Instruction
5266^^^^^^^^^^^^^^^^^^^^^^^^^^^
5267
5268Syntax:
5269"""""""
5270
5271::
5272
5273      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields ty
5274
5275Overview:
5276"""""""""
5277
5278The '``atomicrmw``' instruction is used to atomically modify memory.
5279
5280Arguments:
5281""""""""""
5282
5283There are three arguments to the '``atomicrmw``' instruction: an
5284operation to apply, an address whose value to modify, an argument to the
5285operation. The operation must be one of the following keywords:
5286
5287-  xchg
5288-  add
5289-  sub
5290-  and
5291-  nand
5292-  or
5293-  xor
5294-  max
5295-  min
5296-  umax
5297-  umin
5298
5299The type of '<value>' must be an integer type whose bit width is a power
5300of two greater than or equal to eight and less than or equal to a
5301target-specific size limit. The type of the '``<pointer>``' operand must
5302be a pointer to that type. If the ``atomicrmw`` is marked as
5303``volatile``, then the optimizer is not allowed to modify the number or
5304order of execution of this ``atomicrmw`` with other :ref:`volatile
5305operations <volatile>`.
5306
5307Semantics:
5308""""""""""
5309
5310The contents of memory at the location specified by the '``<pointer>``'
5311operand are atomically read, modified, and written back. The original
5312value at the location is returned. The modification is specified by the
5313operation argument:
5314
5315-  xchg: ``*ptr = val``
5316-  add: ``*ptr = *ptr + val``
5317-  sub: ``*ptr = *ptr - val``
5318-  and: ``*ptr = *ptr & val``
5319-  nand: ``*ptr = ~(*ptr & val)``
5320-  or: ``*ptr = *ptr | val``
5321-  xor: ``*ptr = *ptr ^ val``
5322-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5323-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5324-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5325   comparison)
5326-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5327   comparison)
5328
5329Example:
5330""""""""
5331
5332.. code-block:: llvm
5333
5334      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
5335
5336.. _i_getelementptr:
5337
5338'``getelementptr``' Instruction
5339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5340
5341Syntax:
5342"""""""
5343
5344::
5345
5346      <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5347      <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5348      <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5349
5350Overview:
5351"""""""""
5352
5353The '``getelementptr``' instruction is used to get the address of a
5354subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5355address calculation only and does not access memory.
5356
5357Arguments:
5358""""""""""
5359
5360The first argument is always a pointer or a vector of pointers, and
5361forms the basis of the calculation. The remaining arguments are indices
5362that indicate which of the elements of the aggregate object are indexed.
5363The interpretation of each index is dependent on the type being indexed
5364into. The first index always indexes the pointer value given as the
5365first argument, the second index indexes a value of the type pointed to
5366(not necessarily the value directly pointed to, since the first index
5367can be non-zero), etc. The first type indexed into must be a pointer
5368value, subsequent types can be arrays, vectors, and structs. Note that
5369subsequent types being indexed into can never be pointers, since that
5370would require loading the pointer before continuing calculation.
5371
5372The type of each index argument depends on the type it is indexing into.
5373When indexing into a (optionally packed) structure, only ``i32`` integer
5374**constants** are allowed (when using a vector of indices they must all
5375be the **same** ``i32`` integer constant). When indexing into an array,
5376pointer or vector, integers of any width are allowed, and they are not
5377required to be constant. These integers are treated as signed values
5378where relevant.
5379
5380For example, let's consider a C code fragment and how it gets compiled
5381to LLVM:
5382
5383.. code-block:: c
5384
5385    struct RT {
5386      char A;
5387      int B[10][20];
5388      char C;
5389    };
5390    struct ST {
5391      int X;
5392      double Y;
5393      struct RT Z;
5394    };
5395
5396    int *foo(struct ST *s) {
5397      return &s[1].Z.B[5][13];
5398    }
5399
5400The LLVM code generated by Clang is:
5401
5402.. code-block:: llvm
5403
5404    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5405    %struct.ST = type { i32, double, %struct.RT }
5406
5407    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5408    entry:
5409      %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5410      ret i32* %arrayidx
5411    }
5412
5413Semantics:
5414""""""""""
5415
5416In the example above, the first index is indexing into the
5417'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5418= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5419indexes into the third element of the structure, yielding a
5420'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5421structure. The third index indexes into the second element of the
5422structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5423dimensions of the array are subscripted into, yielding an '``i32``'
5424type. The '``getelementptr``' instruction returns a pointer to this
5425element, thus computing a value of '``i32*``' type.
5426
5427Note that it is perfectly legal to index partially through a structure,
5428returning a pointer to an inner element. Because of this, the LLVM code
5429for the given testcase is equivalent to:
5430
5431.. code-block:: llvm
5432
5433    define i32* @foo(%struct.ST* %s) {
5434      %t1 = getelementptr %struct.ST* %s, i32 1                 ; yields %struct.ST*:%t1
5435      %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         ; yields %struct.RT*:%t2
5436      %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         ; yields [10 x [20 x i32]]*:%t3
5437      %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
5438      %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        ; yields i32*:%t5
5439      ret i32* %t5
5440    }
5441
5442If the ``inbounds`` keyword is present, the result value of the
5443``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5444pointer is not an *in bounds* address of an allocated object, or if any
5445of the addresses that would be formed by successive addition of the
5446offsets implied by the indices to the base address with infinitely
5447precise signed arithmetic are not an *in bounds* address of that
5448allocated object. The *in bounds* addresses for an allocated object are
5449all the addresses that point into the object, plus the address one byte
5450past the end. In cases where the base is a vector of pointers the
5451``inbounds`` keyword applies to each of the computations element-wise.
5452
5453If the ``inbounds`` keyword is not present, the offsets are added to the
5454base address with silently-wrapping two's complement arithmetic. If the
5455offsets have a different width from the pointer, they are sign-extended
5456or truncated to the width of the pointer. The result value of the
5457``getelementptr`` may be outside the object pointed to by the base
5458pointer. The result value may not necessarily be used to access memory
5459though, even if it happens to point into allocated storage. See the
5460:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5461information.
5462
5463The getelementptr instruction is often confusing. For some more insight
5464into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5465
5466Example:
5467""""""""
5468
5469.. code-block:: llvm
5470
5471        ; yields [12 x i8]*:aptr
5472        %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5473        ; yields i8*:vptr
5474        %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5475        ; yields i8*:eptr
5476        %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5477        ; yields i32*:iptr
5478        %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5479
5480In cases where the pointer argument is a vector of pointers, each index
5481must be a vector with the same number of elements. For example:
5482
5483.. code-block:: llvm
5484
5485     %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5486
5487Conversion Operations
5488---------------------
5489
5490The instructions in this category are the conversion instructions
5491(casting) which all take a single operand and a type. They perform
5492various bit conversions on the operand.
5493
5494'``trunc .. to``' Instruction
5495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5496
5497Syntax:
5498"""""""
5499
5500::
5501
5502      <result> = trunc <ty> <value> to <ty2>             ; yields ty2
5503
5504Overview:
5505"""""""""
5506
5507The '``trunc``' instruction truncates its operand to the type ``ty2``.
5508
5509Arguments:
5510""""""""""
5511
5512The '``trunc``' instruction takes a value to trunc, and a type to trunc
5513it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5514of the same number of integers. The bit size of the ``value`` must be
5515larger than the bit size of the destination type, ``ty2``. Equal sized
5516types are not allowed.
5517
5518Semantics:
5519""""""""""
5520
5521The '``trunc``' instruction truncates the high order bits in ``value``
5522and converts the remaining bits to ``ty2``. Since the source size must
5523be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5524It will always truncate bits.
5525
5526Example:
5527""""""""
5528
5529.. code-block:: llvm
5530
5531      %X = trunc i32 257 to i8                        ; yields i8:1
5532      %Y = trunc i32 123 to i1                        ; yields i1:true
5533      %Z = trunc i32 122 to i1                        ; yields i1:false
5534      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5535
5536'``zext .. to``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
5544      <result> = zext <ty> <value> to <ty2>             ; yields ty2
5545
5546Overview:
5547"""""""""
5548
5549The '``zext``' instruction zero extends its operand to type ``ty2``.
5550
5551Arguments:
5552""""""""""
5553
5554The '``zext``' instruction takes a value to cast, and a type to cast it
5555to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5556the same number of integers. The bit size of the ``value`` must be
5557smaller than the bit size of the destination type, ``ty2``.
5558
5559Semantics:
5560""""""""""
5561
5562The ``zext`` fills the high order bits of the ``value`` with zero bits
5563until it reaches the size of the destination type, ``ty2``.
5564
5565When zero extending from i1, the result will always be either 0 or 1.
5566
5567Example:
5568""""""""
5569
5570.. code-block:: llvm
5571
5572      %X = zext i32 257 to i64              ; yields i64:257
5573      %Y = zext i1 true to i32              ; yields i32:1
5574      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5575
5576'``sext .. to``' Instruction
5577^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5578
5579Syntax:
5580"""""""
5581
5582::
5583
5584      <result> = sext <ty> <value> to <ty2>             ; yields ty2
5585
5586Overview:
5587"""""""""
5588
5589The '``sext``' sign extends ``value`` to the type ``ty2``.
5590
5591Arguments:
5592""""""""""
5593
5594The '``sext``' instruction takes a value to cast, and a type to cast it
5595to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5596the same number of integers. The bit size of the ``value`` must be
5597smaller than the bit size of the destination type, ``ty2``.
5598
5599Semantics:
5600""""""""""
5601
5602The '``sext``' instruction performs a sign extension by copying the sign
5603bit (highest order bit) of the ``value`` until it reaches the bit size
5604of the type ``ty2``.
5605
5606When sign extending from i1, the extension always results in -1 or 0.
5607
5608Example:
5609""""""""
5610
5611.. code-block:: llvm
5612
5613      %X = sext i8  -1 to i16              ; yields i16   :65535
5614      %Y = sext i1 true to i32             ; yields i32:-1
5615      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5616
5617'``fptrunc .. to``' Instruction
5618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5619
5620Syntax:
5621"""""""
5622
5623::
5624
5625      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
5626
5627Overview:
5628"""""""""
5629
5630The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5631
5632Arguments:
5633""""""""""
5634
5635The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5636value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5637The size of ``value`` must be larger than the size of ``ty2``. This
5638implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5639
5640Semantics:
5641""""""""""
5642
5643The '``fptrunc``' instruction truncates a ``value`` from a larger
5644:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5645point <t_floating>` type. If the value cannot fit within the
5646destination type, ``ty2``, then the results are undefined.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653      %X = fptrunc double 123.0 to float         ; yields float:123.0
5654      %Y = fptrunc double 1.0E+300 to float      ; yields undefined
5655
5656'``fpext .. to``' Instruction
5657^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5658
5659Syntax:
5660"""""""
5661
5662::
5663
5664      <result> = fpext <ty> <value> to <ty2>             ; yields ty2
5665
5666Overview:
5667"""""""""
5668
5669The '``fpext``' extends a floating point ``value`` to a larger floating
5670point value.
5671
5672Arguments:
5673""""""""""
5674
5675The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5676``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5677to. The source type must be smaller than the destination type.
5678
5679Semantics:
5680""""""""""
5681
5682The '``fpext``' instruction extends the ``value`` from a smaller
5683:ref:`floating point <t_floating>` type to a larger :ref:`floating
5684point <t_floating>` type. The ``fpext`` cannot be used to make a
5685*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5686*no-op cast* for a floating point cast.
5687
5688Example:
5689""""""""
5690
5691.. code-block:: llvm
5692
5693      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
5694      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
5695
5696'``fptoui .. to``' Instruction
5697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5698
5699Syntax:
5700"""""""
5701
5702::
5703
5704      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
5705
5706Overview:
5707"""""""""
5708
5709The '``fptoui``' converts a floating point ``value`` to its unsigned
5710integer equivalent of type ``ty2``.
5711
5712Arguments:
5713""""""""""
5714
5715The '``fptoui``' instruction takes a value to cast, which must be a
5716scalar or vector :ref:`floating point <t_floating>` value, and a type to
5717cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5718``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5719type with the same number of elements as ``ty``
5720
5721Semantics:
5722""""""""""
5723
5724The '``fptoui``' instruction converts its :ref:`floating
5725point <t_floating>` operand into the nearest (rounding towards zero)
5726unsigned integer value. If the value cannot fit in ``ty2``, the results
5727are undefined.
5728
5729Example:
5730""""""""
5731
5732.. code-block:: llvm
5733
5734      %X = fptoui double 123.0 to i32      ; yields i32:123
5735      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
5736      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
5737
5738'``fptosi .. to``' Instruction
5739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5740
5741Syntax:
5742"""""""
5743
5744::
5745
5746      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
5747
5748Overview:
5749"""""""""
5750
5751The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5752``value`` to type ``ty2``.
5753
5754Arguments:
5755""""""""""
5756
5757The '``fptosi``' instruction takes a value to cast, which must be a
5758scalar or vector :ref:`floating point <t_floating>` value, and a type to
5759cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5760``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5761type with the same number of elements as ``ty``
5762
5763Semantics:
5764""""""""""
5765
5766The '``fptosi``' instruction converts its :ref:`floating
5767point <t_floating>` operand into the nearest (rounding towards zero)
5768signed integer value. If the value cannot fit in ``ty2``, the results
5769are undefined.
5770
5771Example:
5772""""""""
5773
5774.. code-block:: llvm
5775
5776      %X = fptosi double -123.0 to i32      ; yields i32:-123
5777      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
5778      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
5779
5780'``uitofp .. to``' Instruction
5781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5782
5783Syntax:
5784"""""""
5785
5786::
5787
5788      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
5789
5790Overview:
5791"""""""""
5792
5793The '``uitofp``' instruction regards ``value`` as an unsigned integer
5794and converts that value to the ``ty2`` type.
5795
5796Arguments:
5797""""""""""
5798
5799The '``uitofp``' instruction takes a value to cast, which must be a
5800scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5801``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5802``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5803type with the same number of elements as ``ty``
5804
5805Semantics:
5806""""""""""
5807
5808The '``uitofp``' instruction interprets its operand as an unsigned
5809integer quantity and converts it to the corresponding floating point
5810value. If the value cannot fit in the floating point value, the results
5811are undefined.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
5818      %X = uitofp i32 257 to float         ; yields float:257.0
5819      %Y = uitofp i8 -1 to double          ; yields double:255.0
5820
5821'``sitofp .. to``' Instruction
5822^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5823
5824Syntax:
5825"""""""
5826
5827::
5828
5829      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
5830
5831Overview:
5832"""""""""
5833
5834The '``sitofp``' instruction regards ``value`` as a signed integer and
5835converts that value to the ``ty2`` type.
5836
5837Arguments:
5838""""""""""
5839
5840The '``sitofp``' instruction takes a value to cast, which must be a
5841scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5842``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5843``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5844type with the same number of elements as ``ty``
5845
5846Semantics:
5847""""""""""
5848
5849The '``sitofp``' instruction interprets its operand as a signed integer
5850quantity and converts it to the corresponding floating point value. If
5851the value cannot fit in the floating point value, the results are
5852undefined.
5853
5854Example:
5855""""""""
5856
5857.. code-block:: llvm
5858
5859      %X = sitofp i32 257 to float         ; yields float:257.0
5860      %Y = sitofp i8 -1 to double          ; yields double:-1.0
5861
5862.. _i_ptrtoint:
5863
5864'``ptrtoint .. to``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
5872      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
5873
5874Overview:
5875"""""""""
5876
5877The '``ptrtoint``' instruction converts the pointer or a vector of
5878pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5879
5880Arguments:
5881""""""""""
5882
5883The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5884a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5885type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5886a vector of integers type.
5887
5888Semantics:
5889""""""""""
5890
5891The '``ptrtoint``' instruction converts ``value`` to integer type
5892``ty2`` by interpreting the pointer value as an integer and either
5893truncating or zero extending that value to the size of the integer type.
5894If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5895``value`` is larger than ``ty2`` then a truncation is done. If they are
5896the same size, then nothing is done (*no-op cast*) other than a type
5897change.
5898
5899Example:
5900""""""""
5901
5902.. code-block:: llvm
5903
5904      %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
5905      %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
5906      %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5907
5908.. _i_inttoptr:
5909
5910'``inttoptr .. to``' Instruction
5911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5912
5913Syntax:
5914"""""""
5915
5916::
5917
5918      <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
5919
5920Overview:
5921"""""""""
5922
5923The '``inttoptr``' instruction converts an integer ``value`` to a
5924pointer type, ``ty2``.
5925
5926Arguments:
5927""""""""""
5928
5929The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5930cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5931type.
5932
5933Semantics:
5934""""""""""
5935
5936The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5937applying either a zero extension or a truncation depending on the size
5938of the integer ``value``. If ``value`` is larger than the size of a
5939pointer then a truncation is done. If ``value`` is smaller than the size
5940of a pointer then a zero extension is done. If they are the same size,
5941nothing is done (*no-op cast*).
5942
5943Example:
5944""""""""
5945
5946.. code-block:: llvm
5947
5948      %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
5949      %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
5950      %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
5951      %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5952
5953.. _i_bitcast:
5954
5955'``bitcast .. to``' Instruction
5956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5957
5958Syntax:
5959"""""""
5960
5961::
5962
5963      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
5964
5965Overview:
5966"""""""""
5967
5968The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5969changing any bits.
5970
5971Arguments:
5972""""""""""
5973
5974The '``bitcast``' instruction takes a value to cast, which must be a
5975non-aggregate first class value, and a type to cast it to, which must
5976also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5977bit sizes of ``value`` and the destination type, ``ty2``, must be
5978identical.  If the source type is a pointer, the destination type must
5979also be a pointer of the same size. This instruction supports bitwise
5980conversion of vectors to integers and to vectors of other types (as
5981long as they have the same size).
5982
5983Semantics:
5984""""""""""
5985
5986The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5987is always a *no-op cast* because no bits change with this
5988conversion. The conversion is done as if the ``value`` had been stored
5989to memory and read back as type ``ty2``. Pointer (or vector of
5990pointers) types may only be converted to other pointer (or vector of
5991pointers) types with the same address space through this instruction.
5992To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5993or :ref:`ptrtoint <i_ptrtoint>` instructions first.
5994
5995Example:
5996""""""""
5997
5998.. code-block:: llvm
5999
6000      %X = bitcast i8 255 to i8              ; yields i8 :-1
6001      %Y = bitcast i32* %x to sint*          ; yields sint*:%x
6002      %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
6003      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6004
6005.. _i_addrspacecast:
6006
6007'``addrspacecast .. to``' Instruction
6008^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6009
6010Syntax:
6011"""""""
6012
6013::
6014
6015      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
6016
6017Overview:
6018"""""""""
6019
6020The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6021address space ``n`` to type ``pty2`` in address space ``m``.
6022
6023Arguments:
6024""""""""""
6025
6026The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6027to cast and a pointer type to cast it to, which must have a different
6028address space.
6029
6030Semantics:
6031""""""""""
6032
6033The '``addrspacecast``' instruction converts the pointer value
6034``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
6035value modification, depending on the target and the address space
6036pair. Pointer conversions within the same address space must be
6037performed with the ``bitcast`` instruction. Note that if the address space
6038conversion is legal then both result and operand refer to the same memory
6039location.
6040
6041Example:
6042""""""""
6043
6044.. code-block:: llvm
6045
6046      %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
6047      %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
6048      %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
6049
6050.. _otherops:
6051
6052Other Operations
6053----------------
6054
6055The instructions in this category are the "miscellaneous" instructions,
6056which defy better classification.
6057
6058.. _i_icmp:
6059
6060'``icmp``' Instruction
6061^^^^^^^^^^^^^^^^^^^^^^
6062
6063Syntax:
6064"""""""
6065
6066::
6067
6068      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
6069
6070Overview:
6071"""""""""
6072
6073The '``icmp``' instruction returns a boolean value or a vector of
6074boolean values based on comparison of its two integer, integer vector,
6075pointer, or pointer vector operands.
6076
6077Arguments:
6078""""""""""
6079
6080The '``icmp``' instruction takes three operands. The first operand is
6081the condition code indicating the kind of comparison to perform. It is
6082not a value, just a keyword. The possible condition code are:
6083
6084#. ``eq``: equal
6085#. ``ne``: not equal
6086#. ``ugt``: unsigned greater than
6087#. ``uge``: unsigned greater or equal
6088#. ``ult``: unsigned less than
6089#. ``ule``: unsigned less or equal
6090#. ``sgt``: signed greater than
6091#. ``sge``: signed greater or equal
6092#. ``slt``: signed less than
6093#. ``sle``: signed less or equal
6094
6095The remaining two arguments must be :ref:`integer <t_integer>` or
6096:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6097must also be identical types.
6098
6099Semantics:
6100""""""""""
6101
6102The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6103code given as ``cond``. The comparison performed always yields either an
6104:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6105
6106#. ``eq``: yields ``true`` if the operands are equal, ``false``
6107   otherwise. No sign interpretation is necessary or performed.
6108#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6109   otherwise. No sign interpretation is necessary or performed.
6110#. ``ugt``: interprets the operands as unsigned values and yields
6111   ``true`` if ``op1`` is greater than ``op2``.
6112#. ``uge``: interprets the operands as unsigned values and yields
6113   ``true`` if ``op1`` is greater than or equal to ``op2``.
6114#. ``ult``: interprets the operands as unsigned values and yields
6115   ``true`` if ``op1`` is less than ``op2``.
6116#. ``ule``: interprets the operands as unsigned values and yields
6117   ``true`` if ``op1`` is less than or equal to ``op2``.
6118#. ``sgt``: interprets the operands as signed values and yields ``true``
6119   if ``op1`` is greater than ``op2``.
6120#. ``sge``: interprets the operands as signed values and yields ``true``
6121   if ``op1`` is greater than or equal to ``op2``.
6122#. ``slt``: interprets the operands as signed values and yields ``true``
6123   if ``op1`` is less than ``op2``.
6124#. ``sle``: interprets the operands as signed values and yields ``true``
6125   if ``op1`` is less than or equal to ``op2``.
6126
6127If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6128are compared as if they were integers.
6129
6130If the operands are integer vectors, then they are compared element by
6131element. The result is an ``i1`` vector with the same number of elements
6132as the values being compared. Otherwise, the result is an ``i1``.
6133
6134Example:
6135""""""""
6136
6137.. code-block:: llvm
6138
6139      <result> = icmp eq i32 4, 5          ; yields: result=false
6140      <result> = icmp ne float* %X, %X     ; yields: result=false
6141      <result> = icmp ult i16  4, 5        ; yields: result=true
6142      <result> = icmp sgt i16  4, 5        ; yields: result=false
6143      <result> = icmp ule i16 -4, 5        ; yields: result=false
6144      <result> = icmp sge i16  4, 5        ; yields: result=false
6145
6146Note that the code generator does not yet support vector types with the
6147``icmp`` instruction.
6148
6149.. _i_fcmp:
6150
6151'``fcmp``' Instruction
6152^^^^^^^^^^^^^^^^^^^^^^
6153
6154Syntax:
6155"""""""
6156
6157::
6158
6159      <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
6160
6161Overview:
6162"""""""""
6163
6164The '``fcmp``' instruction returns a boolean value or vector of boolean
6165values based on comparison of its operands.
6166
6167If the operands are floating point scalars, then the result type is a
6168boolean (:ref:`i1 <t_integer>`).
6169
6170If the operands are floating point vectors, then the result type is a
6171vector of boolean with the same number of elements as the operands being
6172compared.
6173
6174Arguments:
6175""""""""""
6176
6177The '``fcmp``' instruction takes three operands. The first operand is
6178the condition code indicating the kind of comparison to perform. It is
6179not a value, just a keyword. The possible condition code are:
6180
6181#. ``false``: no comparison, always returns false
6182#. ``oeq``: ordered and equal
6183#. ``ogt``: ordered and greater than
6184#. ``oge``: ordered and greater than or equal
6185#. ``olt``: ordered and less than
6186#. ``ole``: ordered and less than or equal
6187#. ``one``: ordered and not equal
6188#. ``ord``: ordered (no nans)
6189#. ``ueq``: unordered or equal
6190#. ``ugt``: unordered or greater than
6191#. ``uge``: unordered or greater than or equal
6192#. ``ult``: unordered or less than
6193#. ``ule``: unordered or less than or equal
6194#. ``une``: unordered or not equal
6195#. ``uno``: unordered (either nans)
6196#. ``true``: no comparison, always returns true
6197
6198*Ordered* means that neither operand is a QNAN while *unordered* means
6199that either operand may be a QNAN.
6200
6201Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6202point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6203type. They must have identical types.
6204
6205Semantics:
6206""""""""""
6207
6208The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6209condition code given as ``cond``. If the operands are vectors, then the
6210vectors are compared element by element. Each comparison performed
6211always yields an :ref:`i1 <t_integer>` result, as follows:
6212
6213#. ``false``: always yields ``false``, regardless of operands.
6214#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6215   is equal to ``op2``.
6216#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6217   is greater than ``op2``.
6218#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6219   is greater than or equal to ``op2``.
6220#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6221   is less than ``op2``.
6222#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6223   is less than or equal to ``op2``.
6224#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6225   is not equal to ``op2``.
6226#. ``ord``: yields ``true`` if both operands are not a QNAN.
6227#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6228   equal to ``op2``.
6229#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6230   greater than ``op2``.
6231#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6232   greater than or equal to ``op2``.
6233#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6234   less than ``op2``.
6235#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6236   less than or equal to ``op2``.
6237#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6238   not equal to ``op2``.
6239#. ``uno``: yields ``true`` if either operand is a QNAN.
6240#. ``true``: always yields ``true``, regardless of operands.
6241
6242Example:
6243""""""""
6244
6245.. code-block:: llvm
6246
6247      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
6248      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
6249      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
6250      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
6251
6252Note that the code generator does not yet support vector types with the
6253``fcmp`` instruction.
6254
6255.. _i_phi:
6256
6257'``phi``' Instruction
6258^^^^^^^^^^^^^^^^^^^^^
6259
6260Syntax:
6261"""""""
6262
6263::
6264
6265      <result> = phi <ty> [ <val0>, <label0>], ...
6266
6267Overview:
6268"""""""""
6269
6270The '``phi``' instruction is used to implement the φ node in the SSA
6271graph representing the function.
6272
6273Arguments:
6274""""""""""
6275
6276The type of the incoming values is specified with the first type field.
6277After this, the '``phi``' instruction takes a list of pairs as
6278arguments, with one pair for each predecessor basic block of the current
6279block. Only values of :ref:`first class <t_firstclass>` type may be used as
6280the value arguments to the PHI node. Only labels may be used as the
6281label arguments.
6282
6283There must be no non-phi instructions between the start of a basic block
6284and the PHI instructions: i.e. PHI instructions must be first in a basic
6285block.
6286
6287For the purposes of the SSA form, the use of each incoming value is
6288deemed to occur on the edge from the corresponding predecessor block to
6289the current block (but after any definition of an '``invoke``'
6290instruction's return value on the same edge).
6291
6292Semantics:
6293""""""""""
6294
6295At runtime, the '``phi``' instruction logically takes on the value
6296specified by the pair corresponding to the predecessor basic block that
6297executed just prior to the current block.
6298
6299Example:
6300""""""""
6301
6302.. code-block:: llvm
6303
6304    Loop:       ; Infinite loop that counts from 0 on up...
6305      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6306      %nextindvar = add i32 %indvar, 1
6307      br label %Loop
6308
6309.. _i_select:
6310
6311'``select``' Instruction
6312^^^^^^^^^^^^^^^^^^^^^^^^
6313
6314Syntax:
6315"""""""
6316
6317::
6318
6319      <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
6320
6321      selty is either i1 or {<N x i1>}
6322
6323Overview:
6324"""""""""
6325
6326The '``select``' instruction is used to choose one value based on a
6327condition, without IR-level branching.
6328
6329Arguments:
6330""""""""""
6331
6332The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6333values indicating the condition, and two values of the same :ref:`first
6334class <t_firstclass>` type. If the val1/val2 are vectors and the
6335condition is a scalar, then entire vectors are selected, not individual
6336elements.
6337
6338Semantics:
6339""""""""""
6340
6341If the condition is an i1 and it evaluates to 1, the instruction returns
6342the first value argument; otherwise, it returns the second value
6343argument.
6344
6345If the condition is a vector of i1, then the value arguments must be
6346vectors of the same size, and the selection is done element by element.
6347
6348Example:
6349""""""""
6350
6351.. code-block:: llvm
6352
6353      %X = select i1 true, i8 17, i8 42          ; yields i8:17
6354
6355.. _i_call:
6356
6357'``call``' Instruction
6358^^^^^^^^^^^^^^^^^^^^^^
6359
6360Syntax:
6361"""""""
6362
6363::
6364
6365      <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6366
6367Overview:
6368"""""""""
6369
6370The '``call``' instruction represents a simple function call.
6371
6372Arguments:
6373""""""""""
6374
6375This instruction requires several arguments:
6376
6377#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6378   should perform tail call optimization.  The ``tail`` marker is a hint that
6379   `can be ignored <CodeGenerator.html#sibcallopt>`_.  The ``musttail`` marker
6380   means that the call must be tail call optimized in order for the program to
6381   be correct.  The ``musttail`` marker provides these guarantees:
6382
6383   #. The call will not cause unbounded stack growth if it is part of a
6384      recursive cycle in the call graph.
6385   #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6386      forwarded in place.
6387
6388   Both markers imply that the callee does not access allocas or varargs from
6389   the caller.  Calls marked ``musttail`` must obey the following additional
6390   rules:
6391
6392   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6393     or a pointer bitcast followed by a ret instruction.
6394   - The ret instruction must return the (possibly bitcasted) value
6395     produced by the call or void.
6396   - The caller and callee prototypes must match.  Pointer types of
6397     parameters or return types may differ in pointee type, but not
6398     in address space.
6399   - The calling conventions of the caller and callee must match.
6400   - All ABI-impacting function attributes, such as sret, byval, inreg,
6401     returned, and inalloca, must match.
6402
6403   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6404   the following conditions are met:
6405
6406   -  Caller and callee both have the calling convention ``fastcc``.
6407   -  The call is in tail position (ret immediately follows call and ret
6408      uses value of call or is void).
6409   -  Option ``-tailcallopt`` is enabled, or
6410      ``llvm::GuaranteedTailCallOpt`` is ``true``.
6411   -  `Platform-specific constraints are
6412      met. <CodeGenerator.html#tailcallopt>`_
6413
6414#. The optional "cconv" marker indicates which :ref:`calling
6415   convention <callingconv>` the call should use. If none is
6416   specified, the call defaults to using C calling conventions. The
6417   calling convention of the call must match the calling convention of
6418   the target function, or else the behavior is undefined.
6419#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6420   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6421   are valid here.
6422#. '``ty``': the type of the call instruction itself which is also the
6423   type of the return value. Functions that return no value are marked
6424   ``void``.
6425#. '``fnty``': shall be the signature of the pointer to function value
6426   being invoked. The argument types must match the types implied by
6427   this signature. This type can be omitted if the function is not
6428   varargs and if the function type does not return a pointer to a
6429   function.
6430#. '``fnptrval``': An LLVM value containing a pointer to a function to
6431   be invoked. In most cases, this is a direct function invocation, but
6432   indirect ``call``'s are just as possible, calling an arbitrary pointer
6433   to function value.
6434#. '``function args``': argument list whose types match the function
6435   signature argument types and parameter attributes. All arguments must
6436   be of :ref:`first class <t_firstclass>` type. If the function signature
6437   indicates the function accepts a variable number of arguments, the
6438   extra arguments can be specified.
6439#. The optional :ref:`function attributes <fnattrs>` list. Only
6440   '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6441   attributes are valid here.
6442
6443Semantics:
6444""""""""""
6445
6446The '``call``' instruction is used to cause control flow to transfer to
6447a specified function, with its incoming arguments bound to the specified
6448values. Upon a '``ret``' instruction in the called function, control
6449flow continues with the instruction after the function call, and the
6450return value of the function is bound to the result argument.
6451
6452Example:
6453""""""""
6454
6455.. code-block:: llvm
6456
6457      %retval = call i32 @test(i32 %argc)
6458      call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
6459      %X = tail call i32 @foo()                                    ; yields i32
6460      %Y = tail call fastcc i32 @foo()  ; yields i32
6461      call void %foo(i8 97 signext)
6462
6463      %struct.A = type { i32, i8 }
6464      %r = call %struct.A @foo()                        ; yields { i32, i8 }
6465      %gr = extractvalue %struct.A %r, 0                ; yields i32
6466      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
6467      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
6468      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
6469
6470llvm treats calls to some functions with names and arguments that match
6471the standard C99 library as being the C99 library functions, and may
6472perform optimizations or generate code for them under that assumption.
6473This is something we'd like to change in the future to provide better
6474support for freestanding environments and non-C-based languages.
6475
6476.. _i_va_arg:
6477
6478'``va_arg``' Instruction
6479^^^^^^^^^^^^^^^^^^^^^^^^
6480
6481Syntax:
6482"""""""
6483
6484::
6485
6486      <resultval> = va_arg <va_list*> <arglist>, <argty>
6487
6488Overview:
6489"""""""""
6490
6491The '``va_arg``' instruction is used to access arguments passed through
6492the "variable argument" area of a function call. It is used to implement
6493the ``va_arg`` macro in C.
6494
6495Arguments:
6496""""""""""
6497
6498This instruction takes a ``va_list*`` value and the type of the
6499argument. It returns a value of the specified argument type and
6500increments the ``va_list`` to point to the next argument. The actual
6501type of ``va_list`` is target specific.
6502
6503Semantics:
6504""""""""""
6505
6506The '``va_arg``' instruction loads an argument of the specified type
6507from the specified ``va_list`` and causes the ``va_list`` to point to
6508the next argument. For more information, see the variable argument
6509handling :ref:`Intrinsic Functions <int_varargs>`.
6510
6511It is legal for this instruction to be called in a function which does
6512not take a variable number of arguments, for example, the ``vfprintf``
6513function.
6514
6515``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6516function <intrinsics>` because it takes a type as an argument.
6517
6518Example:
6519""""""""
6520
6521See the :ref:`variable argument processing <int_varargs>` section.
6522
6523Note that the code generator does not yet fully support va\_arg on many
6524targets. Also, it does not currently support va\_arg with aggregate
6525types on any target.
6526
6527.. _i_landingpad:
6528
6529'``landingpad``' Instruction
6530^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6531
6532Syntax:
6533"""""""
6534
6535::
6536
6537      <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6538      <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6539
6540      <clause> := catch <type> <value>
6541      <clause> := filter <array constant type> <array constant>
6542
6543Overview:
6544"""""""""
6545
6546The '``landingpad``' instruction is used by `LLVM's exception handling
6547system <ExceptionHandling.html#overview>`_ to specify that a basic block
6548is a landing pad --- one where the exception lands, and corresponds to the
6549code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6550defines values supplied by the personality function (``pers_fn``) upon
6551re-entry to the function. The ``resultval`` has the type ``resultty``.
6552
6553Arguments:
6554""""""""""
6555
6556This instruction takes a ``pers_fn`` value. This is the personality
6557function associated with the unwinding mechanism. The optional
6558``cleanup`` flag indicates that the landing pad block is a cleanup.
6559
6560A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
6561contains the global variable representing the "type" that may be caught
6562or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6563clause takes an array constant as its argument. Use
6564"``[0 x i8**] undef``" for a filter which cannot throw. The
6565'``landingpad``' instruction must contain *at least* one ``clause`` or
6566the ``cleanup`` flag.
6567
6568Semantics:
6569""""""""""
6570
6571The '``landingpad``' instruction defines the values which are set by the
6572personality function (``pers_fn``) upon re-entry to the function, and
6573therefore the "result type" of the ``landingpad`` instruction. As with
6574calling conventions, how the personality function results are
6575represented in LLVM IR is target specific.
6576
6577The clauses are applied in order from top to bottom. If two
6578``landingpad`` instructions are merged together through inlining, the
6579clauses from the calling function are appended to the list of clauses.
6580When the call stack is being unwound due to an exception being thrown,
6581the exception is compared against each ``clause`` in turn. If it doesn't
6582match any of the clauses, and the ``cleanup`` flag is not set, then
6583unwinding continues further up the call stack.
6584
6585The ``landingpad`` instruction has several restrictions:
6586
6587-  A landing pad block is a basic block which is the unwind destination
6588   of an '``invoke``' instruction.
6589-  A landing pad block must have a '``landingpad``' instruction as its
6590   first non-PHI instruction.
6591-  There can be only one '``landingpad``' instruction within the landing
6592   pad block.
6593-  A basic block that is not a landing pad block may not include a
6594   '``landingpad``' instruction.
6595-  All '``landingpad``' instructions in a function must have the same
6596   personality function.
6597
6598Example:
6599""""""""
6600
6601.. code-block:: llvm
6602
6603      ;; A landing pad which can catch an integer.
6604      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6605               catch i8** @_ZTIi
6606      ;; A landing pad that is a cleanup.
6607      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6608               cleanup
6609      ;; A landing pad which can catch an integer and can only throw a double.
6610      %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6611               catch i8** @_ZTIi
6612               filter [1 x i8**] [@_ZTId]
6613
6614.. _intrinsics:
6615
6616Intrinsic Functions
6617===================
6618
6619LLVM supports the notion of an "intrinsic function". These functions
6620have well known names and semantics and are required to follow certain
6621restrictions. Overall, these intrinsics represent an extension mechanism
6622for the LLVM language that does not require changing all of the
6623transformations in LLVM when adding to the language (or the bitcode
6624reader/writer, the parser, etc...).
6625
6626Intrinsic function names must all start with an "``llvm.``" prefix. This
6627prefix is reserved in LLVM for intrinsic names; thus, function names may
6628not begin with this prefix. Intrinsic functions must always be external
6629functions: you cannot define the body of intrinsic functions. Intrinsic
6630functions may only be used in call or invoke instructions: it is illegal
6631to take the address of an intrinsic function. Additionally, because
6632intrinsic functions are part of the LLVM language, it is required if any
6633are added that they be documented here.
6634
6635Some intrinsic functions can be overloaded, i.e., the intrinsic
6636represents a family of functions that perform the same operation but on
6637different data types. Because LLVM can represent over 8 million
6638different integer types, overloading is used commonly to allow an
6639intrinsic function to operate on any integer type. One or more of the
6640argument types or the result type can be overloaded to accept any
6641integer type. Argument types may also be defined as exactly matching a
6642previous argument's type or the result type. This allows an intrinsic
6643function which accepts multiple arguments, but needs all of them to be
6644of the same type, to only be overloaded with respect to a single
6645argument or the result.
6646
6647Overloaded intrinsics will have the names of its overloaded argument
6648types encoded into its function name, each preceded by a period. Only
6649those types which are overloaded result in a name suffix. Arguments
6650whose type is matched against another type do not. For example, the
6651``llvm.ctpop`` function can take an integer of any width and returns an
6652integer of exactly the same integer width. This leads to a family of
6653functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6654``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6655overloaded, and only one type suffix is required. Because the argument's
6656type is matched against the return type, it does not require its own
6657name suffix.
6658
6659To learn how to add an intrinsic function, please see the `Extending
6660LLVM Guide <ExtendingLLVM.html>`_.
6661
6662.. _int_varargs:
6663
6664Variable Argument Handling Intrinsics
6665-------------------------------------
6666
6667Variable argument support is defined in LLVM with the
6668:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6669functions. These functions are related to the similarly named macros
6670defined in the ``<stdarg.h>`` header file.
6671
6672All of these functions operate on arguments that use a target-specific
6673value type "``va_list``". The LLVM assembly language reference manual
6674does not define what this type is, so all transformations should be
6675prepared to handle these functions regardless of the type used.
6676
6677This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6678variable argument handling intrinsic functions are used.
6679
6680.. code-block:: llvm
6681
6682    define i32 @test(i32 %X, ...) {
6683      ; Initialize variable argument processing
6684      %ap = alloca i8*
6685      %ap2 = bitcast i8** %ap to i8*
6686      call void @llvm.va_start(i8* %ap2)
6687
6688      ; Read a single integer argument
6689      %tmp = va_arg i8** %ap, i32
6690
6691      ; Demonstrate usage of llvm.va_copy and llvm.va_end
6692      %aq = alloca i8*
6693      %aq2 = bitcast i8** %aq to i8*
6694      call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6695      call void @llvm.va_end(i8* %aq2)
6696
6697      ; Stop processing of arguments.
6698      call void @llvm.va_end(i8* %ap2)
6699      ret i32 %tmp
6700    }
6701
6702    declare void @llvm.va_start(i8*)
6703    declare void @llvm.va_copy(i8*, i8*)
6704    declare void @llvm.va_end(i8*)
6705
6706.. _int_va_start:
6707
6708'``llvm.va_start``' Intrinsic
6709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6710
6711Syntax:
6712"""""""
6713
6714::
6715
6716      declare void @llvm.va_start(i8* <arglist>)
6717
6718Overview:
6719"""""""""
6720
6721The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6722subsequent use by ``va_arg``.
6723
6724Arguments:
6725""""""""""
6726
6727The argument is a pointer to a ``va_list`` element to initialize.
6728
6729Semantics:
6730""""""""""
6731
6732The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6733available in C. In a target-dependent way, it initializes the
6734``va_list`` element to which the argument points, so that the next call
6735to ``va_arg`` will produce the first variable argument passed to the
6736function. Unlike the C ``va_start`` macro, this intrinsic does not need
6737to know the last argument of the function as the compiler can figure
6738that out.
6739
6740'``llvm.va_end``' Intrinsic
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748      declare void @llvm.va_end(i8* <arglist>)
6749
6750Overview:
6751"""""""""
6752
6753The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6754initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6755
6756Arguments:
6757""""""""""
6758
6759The argument is a pointer to a ``va_list`` to destroy.
6760
6761Semantics:
6762""""""""""
6763
6764The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6765available in C. In a target-dependent way, it destroys the ``va_list``
6766element to which the argument points. Calls to
6767:ref:`llvm.va_start <int_va_start>` and
6768:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6769``llvm.va_end``.
6770
6771.. _int_va_copy:
6772
6773'``llvm.va_copy``' Intrinsic
6774^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779::
6780
6781      declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6782
6783Overview:
6784"""""""""
6785
6786The '``llvm.va_copy``' intrinsic copies the current argument position
6787from the source argument list to the destination argument list.
6788
6789Arguments:
6790""""""""""
6791
6792The first argument is a pointer to a ``va_list`` element to initialize.
6793The second argument is a pointer to a ``va_list`` element to copy from.
6794
6795Semantics:
6796""""""""""
6797
6798The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6799available in C. In a target-dependent way, it copies the source
6800``va_list`` element into the destination ``va_list`` element. This
6801intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6802arbitrarily complex and require, for example, memory allocation.
6803
6804Accurate Garbage Collection Intrinsics
6805--------------------------------------
6806
6807LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6808(GC) requires the implementation and generation of these intrinsics.
6809These intrinsics allow identification of :ref:`GC roots on the
6810stack <int_gcroot>`, as well as garbage collector implementations that
6811require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6812Front-ends for type-safe garbage collected languages should generate
6813these intrinsics to make use of the LLVM garbage collectors. For more
6814details, see `Accurate Garbage Collection with
6815LLVM <GarbageCollection.html>`_.
6816
6817The garbage collection intrinsics only operate on objects in the generic
6818address space (address space zero).
6819
6820.. _int_gcroot:
6821
6822'``llvm.gcroot``' Intrinsic
6823^^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828::
6829
6830      declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6831
6832Overview:
6833"""""""""
6834
6835The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6836the code generator, and allows some metadata to be associated with it.
6837
6838Arguments:
6839""""""""""
6840
6841The first argument specifies the address of a stack object that contains
6842the root pointer. The second pointer (which must be either a constant or
6843a global value address) contains the meta-data to be associated with the
6844root.
6845
6846Semantics:
6847""""""""""
6848
6849At runtime, a call to this intrinsic stores a null pointer into the
6850"ptrloc" location. At compile-time, the code generator generates
6851information to allow the runtime to find the pointer at GC safe points.
6852The '``llvm.gcroot``' intrinsic may only be used in a function which
6853:ref:`specifies a GC algorithm <gc>`.
6854
6855.. _int_gcread:
6856
6857'``llvm.gcread``' Intrinsic
6858^^^^^^^^^^^^^^^^^^^^^^^^^^^
6859
6860Syntax:
6861"""""""
6862
6863::
6864
6865      declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6866
6867Overview:
6868"""""""""
6869
6870The '``llvm.gcread``' intrinsic identifies reads of references from heap
6871locations, allowing garbage collector implementations that require read
6872barriers.
6873
6874Arguments:
6875""""""""""
6876
6877The second argument is the address to read from, which should be an
6878address allocated from the garbage collector. The first object is a
6879pointer to the start of the referenced object, if needed by the language
6880runtime (otherwise null).
6881
6882Semantics:
6883""""""""""
6884
6885The '``llvm.gcread``' intrinsic has the same semantics as a load
6886instruction, but may be replaced with substantially more complex code by
6887the garbage collector runtime, as needed. The '``llvm.gcread``'
6888intrinsic may only be used in a function which :ref:`specifies a GC
6889algorithm <gc>`.
6890
6891.. _int_gcwrite:
6892
6893'``llvm.gcwrite``' Intrinsic
6894^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6895
6896Syntax:
6897"""""""
6898
6899::
6900
6901      declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6902
6903Overview:
6904"""""""""
6905
6906The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6907locations, allowing garbage collector implementations that require write
6908barriers (such as generational or reference counting collectors).
6909
6910Arguments:
6911""""""""""
6912
6913The first argument is the reference to store, the second is the start of
6914the object to store it to, and the third is the address of the field of
6915Obj to store to. If the runtime does not require a pointer to the
6916object, Obj may be null.
6917
6918Semantics:
6919""""""""""
6920
6921The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6922instruction, but may be replaced with substantially more complex code by
6923the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6924intrinsic may only be used in a function which :ref:`specifies a GC
6925algorithm <gc>`.
6926
6927Code Generator Intrinsics
6928-------------------------
6929
6930These intrinsics are provided by LLVM to expose special features that
6931may only be implemented with code generator support.
6932
6933'``llvm.returnaddress``' Intrinsic
6934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6935
6936Syntax:
6937"""""""
6938
6939::
6940
6941      declare i8  *@llvm.returnaddress(i32 <level>)
6942
6943Overview:
6944"""""""""
6945
6946The '``llvm.returnaddress``' intrinsic attempts to compute a
6947target-specific value indicating the return address of the current
6948function or one of its callers.
6949
6950Arguments:
6951""""""""""
6952
6953The argument to this intrinsic indicates which function to return the
6954address for. Zero indicates the calling function, one indicates its
6955caller, etc. The argument is **required** to be a constant integer
6956value.
6957
6958Semantics:
6959""""""""""
6960
6961The '``llvm.returnaddress``' intrinsic either returns a pointer
6962indicating the return address of the specified call frame, or zero if it
6963cannot be identified. The value returned by this intrinsic is likely to
6964be incorrect or 0 for arguments other than zero, so it should only be
6965used for debugging purposes.
6966
6967Note that calling this intrinsic does not prevent function inlining or
6968other aggressive transformations, so the value returned may not be that
6969of the obvious source-language caller.
6970
6971'``llvm.frameaddress``' Intrinsic
6972^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6973
6974Syntax:
6975"""""""
6976
6977::
6978
6979      declare i8* @llvm.frameaddress(i32 <level>)
6980
6981Overview:
6982"""""""""
6983
6984The '``llvm.frameaddress``' intrinsic attempts to return the
6985target-specific frame pointer value for the specified stack frame.
6986
6987Arguments:
6988""""""""""
6989
6990The argument to this intrinsic indicates which function to return the
6991frame pointer for. Zero indicates the calling function, one indicates
6992its caller, etc. The argument is **required** to be a constant integer
6993value.
6994
6995Semantics:
6996""""""""""
6997
6998The '``llvm.frameaddress``' intrinsic either returns a pointer
6999indicating the frame address of the specified call frame, or zero if it
7000cannot be identified. The value returned by this intrinsic is likely to
7001be incorrect or 0 for arguments other than zero, so it should only be
7002used for debugging purposes.
7003
7004Note that calling this intrinsic does not prevent function inlining or
7005other aggressive transformations, so the value returned may not be that
7006of the obvious source-language caller.
7007
7008.. _int_read_register:
7009.. _int_write_register:
7010
7011'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7013
7014Syntax:
7015"""""""
7016
7017::
7018
7019      declare i32 @llvm.read_register.i32(metadata)
7020      declare i64 @llvm.read_register.i64(metadata)
7021      declare void @llvm.write_register.i32(metadata, i32 @value)
7022      declare void @llvm.write_register.i64(metadata, i64 @value)
7023      !0 = metadata !{metadata !"sp\00"}
7024
7025Overview:
7026"""""""""
7027
7028The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7029provides access to the named register. The register must be valid on
7030the architecture being compiled to. The type needs to be compatible
7031with the register being read.
7032
7033Semantics:
7034""""""""""
7035
7036The '``llvm.read_register``' intrinsic returns the current value of the
7037register, where possible. The '``llvm.write_register``' intrinsic sets
7038the current value of the register, where possible.
7039
7040This is useful to implement named register global variables that need
7041to always be mapped to a specific register, as is common practice on
7042bare-metal programs including OS kernels.
7043
7044The compiler doesn't check for register availability or use of the used
7045register in surrounding code, including inline assembly. Because of that,
7046allocatable registers are not supported.
7047
7048Warning: So far it only works with the stack pointer on selected
7049architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
7050work is needed to support other registers and even more so, allocatable
7051registers.
7052
7053.. _int_stacksave:
7054
7055'``llvm.stacksave``' Intrinsic
7056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7057
7058Syntax:
7059"""""""
7060
7061::
7062
7063      declare i8* @llvm.stacksave()
7064
7065Overview:
7066"""""""""
7067
7068The '``llvm.stacksave``' intrinsic is used to remember the current state
7069of the function stack, for use with
7070:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7071implementing language features like scoped automatic variable sized
7072arrays in C99.
7073
7074Semantics:
7075""""""""""
7076
7077This intrinsic returns a opaque pointer value that can be passed to
7078:ref:`llvm.stackrestore <int_stackrestore>`. When an
7079``llvm.stackrestore`` intrinsic is executed with a value saved from
7080``llvm.stacksave``, it effectively restores the state of the stack to
7081the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7082practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7083were allocated after the ``llvm.stacksave`` was executed.
7084
7085.. _int_stackrestore:
7086
7087'``llvm.stackrestore``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093::
7094
7095      declare void @llvm.stackrestore(i8* %ptr)
7096
7097Overview:
7098"""""""""
7099
7100The '``llvm.stackrestore``' intrinsic is used to restore the state of
7101the function stack to the state it was in when the corresponding
7102:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7103useful for implementing language features like scoped automatic variable
7104sized arrays in C99.
7105
7106Semantics:
7107""""""""""
7108
7109See the description for :ref:`llvm.stacksave <int_stacksave>`.
7110
7111'``llvm.prefetch``' Intrinsic
7112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7113
7114Syntax:
7115"""""""
7116
7117::
7118
7119      declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7120
7121Overview:
7122"""""""""
7123
7124The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7125insert a prefetch instruction if supported; otherwise, it is a noop.
7126Prefetches have no effect on the behavior of the program but can change
7127its performance characteristics.
7128
7129Arguments:
7130""""""""""
7131
7132``address`` is the address to be prefetched, ``rw`` is the specifier
7133determining if the fetch should be for a read (0) or write (1), and
7134``locality`` is a temporal locality specifier ranging from (0) - no
7135locality, to (3) - extremely local keep in cache. The ``cache type``
7136specifies whether the prefetch is performed on the data (1) or
7137instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7138arguments must be constant integers.
7139
7140Semantics:
7141""""""""""
7142
7143This intrinsic does not modify the behavior of the program. In
7144particular, prefetches cannot trap and do not produce a value. On
7145targets that support this intrinsic, the prefetch can provide hints to
7146the processor cache for better performance.
7147
7148'``llvm.pcmarker``' Intrinsic
7149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154::
7155
7156      declare void @llvm.pcmarker(i32 <id>)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.pcmarker``' intrinsic is a method to export a Program
7162Counter (PC) in a region of code to simulators and other tools. The
7163method is target specific, but it is expected that the marker will use
7164exported symbols to transmit the PC of the marker. The marker makes no
7165guarantees that it will remain with any specific instruction after
7166optimizations. It is possible that the presence of a marker will inhibit
7167optimizations. The intended use is to be inserted after optimizations to
7168allow correlations of simulation runs.
7169
7170Arguments:
7171""""""""""
7172
7173``id`` is a numerical id identifying the marker.
7174
7175Semantics:
7176""""""""""
7177
7178This intrinsic does not modify the behavior of the program. Backends
7179that do not support this intrinsic may ignore it.
7180
7181'``llvm.readcyclecounter``' Intrinsic
7182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7183
7184Syntax:
7185"""""""
7186
7187::
7188
7189      declare i64 @llvm.readcyclecounter()
7190
7191Overview:
7192"""""""""
7193
7194The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7195counter register (or similar low latency, high accuracy clocks) on those
7196targets that support it. On X86, it should map to RDTSC. On Alpha, it
7197should map to RPCC. As the backing counters overflow quickly (on the
7198order of 9 seconds on alpha), this should only be used for small
7199timings.
7200
7201Semantics:
7202""""""""""
7203
7204When directly supported, reading the cycle counter should not modify any
7205memory. Implementations are allowed to either return a application
7206specific value or a system wide value. On backends without support, this
7207is lowered to a constant 0.
7208
7209Note that runtime support may be conditional on the privilege-level code is
7210running at and the host platform.
7211
7212'``llvm.clear_cache``' Intrinsic
7213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7214
7215Syntax:
7216"""""""
7217
7218::
7219
7220      declare void @llvm.clear_cache(i8*, i8*)
7221
7222Overview:
7223"""""""""
7224
7225The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7226in the specified range to the execution unit of the processor. On
7227targets with non-unified instruction and data cache, the implementation
7228flushes the instruction cache.
7229
7230Semantics:
7231""""""""""
7232
7233On platforms with coherent instruction and data caches (e.g. x86), this
7234intrinsic is a nop. On platforms with non-coherent instruction and data
7235cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
7236instructions or a system call, if cache flushing requires special
7237privileges.
7238
7239The default behavior is to emit a call to ``__clear_cache`` from the run
7240time library.
7241
7242This instrinsic does *not* empty the instruction pipeline. Modifications
7243of the current function are outside the scope of the intrinsic.
7244
7245Standard C Library Intrinsics
7246-----------------------------
7247
7248LLVM provides intrinsics for a few important standard C library
7249functions. These intrinsics allow source-language front-ends to pass
7250information about the alignment of the pointer arguments to the code
7251generator, providing opportunity for more efficient code generation.
7252
7253.. _int_memcpy:
7254
7255'``llvm.memcpy``' Intrinsic
7256^^^^^^^^^^^^^^^^^^^^^^^^^^^
7257
7258Syntax:
7259"""""""
7260
7261This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7262integer bit width and for different address spaces. Not all targets
7263support all bit widths however.
7264
7265::
7266
7267      declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7268                                              i32 <len>, i32 <align>, i1 <isvolatile>)
7269      declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7270                                              i64 <len>, i32 <align>, i1 <isvolatile>)
7271
7272Overview:
7273"""""""""
7274
7275The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7276source location to the destination location.
7277
7278Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7279intrinsics do not return a value, takes extra alignment/isvolatile
7280arguments and the pointers can be in specified address spaces.
7281
7282Arguments:
7283""""""""""
7284
7285The first argument is a pointer to the destination, the second is a
7286pointer to the source. The third argument is an integer argument
7287specifying the number of bytes to copy, the fourth argument is the
7288alignment of the source and destination locations, and the fifth is a
7289boolean indicating a volatile access.
7290
7291If the call to this intrinsic has an alignment value that is not 0 or 1,
7292then the caller guarantees that both the source and destination pointers
7293are aligned to that boundary.
7294
7295If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7296a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7297very cleanly specified and it is unwise to depend on it.
7298
7299Semantics:
7300""""""""""
7301
7302The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7303source location to the destination location, which are not allowed to
7304overlap. It copies "len" bytes of memory over. If the argument is known
7305to be aligned to some boundary, this can be specified as the fourth
7306argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
7307
7308'``llvm.memmove``' Intrinsic
7309^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7310
7311Syntax:
7312"""""""
7313
7314This is an overloaded intrinsic. You can use llvm.memmove on any integer
7315bit width and for different address space. Not all targets support all
7316bit widths however.
7317
7318::
7319
7320      declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7321                                               i32 <len>, i32 <align>, i1 <isvolatile>)
7322      declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7323                                               i64 <len>, i32 <align>, i1 <isvolatile>)
7324
7325Overview:
7326"""""""""
7327
7328The '``llvm.memmove.*``' intrinsics move a block of memory from the
7329source location to the destination location. It is similar to the
7330'``llvm.memcpy``' intrinsic but allows the two memory locations to
7331overlap.
7332
7333Note that, unlike the standard libc function, the ``llvm.memmove.*``
7334intrinsics do not return a value, takes extra alignment/isvolatile
7335arguments and the pointers can be in specified address spaces.
7336
7337Arguments:
7338""""""""""
7339
7340The first argument is a pointer to the destination, the second is a
7341pointer to the source. The third argument is an integer argument
7342specifying the number of bytes to copy, the fourth argument is the
7343alignment of the source and destination locations, and the fifth is a
7344boolean indicating a volatile access.
7345
7346If the call to this intrinsic has an alignment value that is not 0 or 1,
7347then the caller guarantees that the source and destination pointers are
7348aligned to that boundary.
7349
7350If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7351is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7352not very cleanly specified and it is unwise to depend on it.
7353
7354Semantics:
7355""""""""""
7356
7357The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7358source location to the destination location, which may overlap. It
7359copies "len" bytes of memory over. If the argument is known to be
7360aligned to some boundary, this can be specified as the fourth argument,
7361otherwise it should be set to 0 or 1 (both meaning no alignment).
7362
7363'``llvm.memset.*``' Intrinsics
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369This is an overloaded intrinsic. You can use llvm.memset on any integer
7370bit width and for different address spaces. However, not all targets
7371support all bit widths.
7372
7373::
7374
7375      declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7376                                         i32 <len>, i32 <align>, i1 <isvolatile>)
7377      declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7378                                         i64 <len>, i32 <align>, i1 <isvolatile>)
7379
7380Overview:
7381"""""""""
7382
7383The '``llvm.memset.*``' intrinsics fill a block of memory with a
7384particular byte value.
7385
7386Note that, unlike the standard libc function, the ``llvm.memset``
7387intrinsic does not return a value and takes extra alignment/volatile
7388arguments. Also, the destination can be in an arbitrary address space.
7389
7390Arguments:
7391""""""""""
7392
7393The first argument is a pointer to the destination to fill, the second
7394is the byte value with which to fill it, the third argument is an
7395integer argument specifying the number of bytes to fill, and the fourth
7396argument is the known alignment of the destination location.
7397
7398If the call to this intrinsic has an alignment value that is not 0 or 1,
7399then the caller guarantees that the destination pointer is aligned to
7400that boundary.
7401
7402If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7403a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7404very cleanly specified and it is unwise to depend on it.
7405
7406Semantics:
7407""""""""""
7408
7409The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7410at the destination location. If the argument is known to be aligned to
7411some boundary, this can be specified as the fourth argument, otherwise
7412it should be set to 0 or 1 (both meaning no alignment).
7413
7414'``llvm.sqrt.*``' Intrinsic
7415^^^^^^^^^^^^^^^^^^^^^^^^^^^
7416
7417Syntax:
7418"""""""
7419
7420This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7421floating point or vector of floating point type. Not all targets support
7422all types however.
7423
7424::
7425
7426      declare float     @llvm.sqrt.f32(float %Val)
7427      declare double    @llvm.sqrt.f64(double %Val)
7428      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
7429      declare fp128     @llvm.sqrt.f128(fp128 %Val)
7430      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7431
7432Overview:
7433"""""""""
7434
7435The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7436returning the same value as the libm '``sqrt``' functions would. Unlike
7437``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7438negative numbers other than -0.0 (which allows for better optimization,
7439because there is no need to worry about errno being set).
7440``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7441
7442Arguments:
7443""""""""""
7444
7445The argument and return value are floating point numbers of the same
7446type.
7447
7448Semantics:
7449""""""""""
7450
7451This function returns the sqrt of the specified operand if it is a
7452nonnegative floating point number.
7453
7454'``llvm.powi.*``' Intrinsic
7455^^^^^^^^^^^^^^^^^^^^^^^^^^^
7456
7457Syntax:
7458"""""""
7459
7460This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7461floating point or vector of floating point type. Not all targets support
7462all types however.
7463
7464::
7465
7466      declare float     @llvm.powi.f32(float  %Val, i32 %power)
7467      declare double    @llvm.powi.f64(double %Val, i32 %power)
7468      declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
7469      declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
7470      declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
7471
7472Overview:
7473"""""""""
7474
7475The '``llvm.powi.*``' intrinsics return the first operand raised to the
7476specified (positive or negative) power. The order of evaluation of
7477multiplications is not defined. When a vector of floating point type is
7478used, the second argument remains a scalar integer value.
7479
7480Arguments:
7481""""""""""
7482
7483The second argument is an integer power, and the first is a value to
7484raise to that power.
7485
7486Semantics:
7487""""""""""
7488
7489This function returns the first value raised to the second power with an
7490unspecified sequence of rounding operations.
7491
7492'``llvm.sin.*``' Intrinsic
7493^^^^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7499floating point or vector of floating point type. Not all targets support
7500all types however.
7501
7502::
7503
7504      declare float     @llvm.sin.f32(float  %Val)
7505      declare double    @llvm.sin.f64(double %Val)
7506      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
7507      declare fp128     @llvm.sin.f128(fp128 %Val)
7508      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
7509
7510Overview:
7511"""""""""
7512
7513The '``llvm.sin.*``' intrinsics return the sine of the operand.
7514
7515Arguments:
7516""""""""""
7517
7518The argument and return value are floating point numbers of the same
7519type.
7520
7521Semantics:
7522""""""""""
7523
7524This function returns the sine of the specified operand, returning the
7525same values as the libm ``sin`` functions would, and handles error
7526conditions in the same way.
7527
7528'``llvm.cos.*``' Intrinsic
7529^^^^^^^^^^^^^^^^^^^^^^^^^^
7530
7531Syntax:
7532"""""""
7533
7534This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7535floating point or vector of floating point type. Not all targets support
7536all types however.
7537
7538::
7539
7540      declare float     @llvm.cos.f32(float  %Val)
7541      declare double    @llvm.cos.f64(double %Val)
7542      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
7543      declare fp128     @llvm.cos.f128(fp128 %Val)
7544      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
7545
7546Overview:
7547"""""""""
7548
7549The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7550
7551Arguments:
7552""""""""""
7553
7554The argument and return value are floating point numbers of the same
7555type.
7556
7557Semantics:
7558""""""""""
7559
7560This function returns the cosine of the specified operand, returning the
7561same values as the libm ``cos`` functions would, and handles error
7562conditions in the same way.
7563
7564'``llvm.pow.*``' Intrinsic
7565^^^^^^^^^^^^^^^^^^^^^^^^^^
7566
7567Syntax:
7568"""""""
7569
7570This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7571floating point or vector of floating point type. Not all targets support
7572all types however.
7573
7574::
7575
7576      declare float     @llvm.pow.f32(float  %Val, float %Power)
7577      declare double    @llvm.pow.f64(double %Val, double %Power)
7578      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
7579      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
7580      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
7581
7582Overview:
7583"""""""""
7584
7585The '``llvm.pow.*``' intrinsics return the first operand raised to the
7586specified (positive or negative) power.
7587
7588Arguments:
7589""""""""""
7590
7591The second argument is a floating point power, and the first is a value
7592to raise to that power.
7593
7594Semantics:
7595""""""""""
7596
7597This function returns the first value raised to the second power,
7598returning the same values as the libm ``pow`` functions would, and
7599handles error conditions in the same way.
7600
7601'``llvm.exp.*``' Intrinsic
7602^^^^^^^^^^^^^^^^^^^^^^^^^^
7603
7604Syntax:
7605"""""""
7606
7607This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7608floating point or vector of floating point type. Not all targets support
7609all types however.
7610
7611::
7612
7613      declare float     @llvm.exp.f32(float  %Val)
7614      declare double    @llvm.exp.f64(double %Val)
7615      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
7616      declare fp128     @llvm.exp.f128(fp128 %Val)
7617      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
7618
7619Overview:
7620"""""""""
7621
7622The '``llvm.exp.*``' intrinsics perform the exp function.
7623
7624Arguments:
7625""""""""""
7626
7627The argument and return value are floating point numbers of the same
7628type.
7629
7630Semantics:
7631""""""""""
7632
7633This function returns the same values as the libm ``exp`` functions
7634would, and handles error conditions in the same way.
7635
7636'``llvm.exp2.*``' Intrinsic
7637^^^^^^^^^^^^^^^^^^^^^^^^^^^
7638
7639Syntax:
7640"""""""
7641
7642This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7643floating point or vector of floating point type. Not all targets support
7644all types however.
7645
7646::
7647
7648      declare float     @llvm.exp2.f32(float  %Val)
7649      declare double    @llvm.exp2.f64(double %Val)
7650      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
7651      declare fp128     @llvm.exp2.f128(fp128 %Val)
7652      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
7653
7654Overview:
7655"""""""""
7656
7657The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7658
7659Arguments:
7660""""""""""
7661
7662The argument and return value are floating point numbers of the same
7663type.
7664
7665Semantics:
7666""""""""""
7667
7668This function returns the same values as the libm ``exp2`` functions
7669would, and handles error conditions in the same way.
7670
7671'``llvm.log.*``' Intrinsic
7672^^^^^^^^^^^^^^^^^^^^^^^^^^
7673
7674Syntax:
7675"""""""
7676
7677This is an overloaded intrinsic. You can use ``llvm.log`` on any
7678floating point or vector of floating point type. Not all targets support
7679all types however.
7680
7681::
7682
7683      declare float     @llvm.log.f32(float  %Val)
7684      declare double    @llvm.log.f64(double %Val)
7685      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
7686      declare fp128     @llvm.log.f128(fp128 %Val)
7687      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
7688
7689Overview:
7690"""""""""
7691
7692The '``llvm.log.*``' intrinsics perform the log function.
7693
7694Arguments:
7695""""""""""
7696
7697The argument and return value are floating point numbers of the same
7698type.
7699
7700Semantics:
7701""""""""""
7702
7703This function returns the same values as the libm ``log`` functions
7704would, and handles error conditions in the same way.
7705
7706'``llvm.log10.*``' Intrinsic
7707^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7708
7709Syntax:
7710"""""""
7711
7712This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7713floating point or vector of floating point type. Not all targets support
7714all types however.
7715
7716::
7717
7718      declare float     @llvm.log10.f32(float  %Val)
7719      declare double    @llvm.log10.f64(double %Val)
7720      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
7721      declare fp128     @llvm.log10.f128(fp128 %Val)
7722      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
7723
7724Overview:
7725"""""""""
7726
7727The '``llvm.log10.*``' intrinsics perform the log10 function.
7728
7729Arguments:
7730""""""""""
7731
7732The argument and return value are floating point numbers of the same
7733type.
7734
7735Semantics:
7736""""""""""
7737
7738This function returns the same values as the libm ``log10`` functions
7739would, and handles error conditions in the same way.
7740
7741'``llvm.log2.*``' Intrinsic
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7748floating point or vector of floating point type. Not all targets support
7749all types however.
7750
7751::
7752
7753      declare float     @llvm.log2.f32(float  %Val)
7754      declare double    @llvm.log2.f64(double %Val)
7755      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
7756      declare fp128     @llvm.log2.f128(fp128 %Val)
7757      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
7758
7759Overview:
7760"""""""""
7761
7762The '``llvm.log2.*``' intrinsics perform the log2 function.
7763
7764Arguments:
7765""""""""""
7766
7767The argument and return value are floating point numbers of the same
7768type.
7769
7770Semantics:
7771""""""""""
7772
7773This function returns the same values as the libm ``log2`` functions
7774would, and handles error conditions in the same way.
7775
7776'``llvm.fma.*``' Intrinsic
7777^^^^^^^^^^^^^^^^^^^^^^^^^^
7778
7779Syntax:
7780"""""""
7781
7782This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7783floating point or vector of floating point type. Not all targets support
7784all types however.
7785
7786::
7787
7788      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
7789      declare double    @llvm.fma.f64(double %a, double %b, double %c)
7790      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7791      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7792      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7793
7794Overview:
7795"""""""""
7796
7797The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7798operation.
7799
7800Arguments:
7801""""""""""
7802
7803The argument and return value are floating point numbers of the same
7804type.
7805
7806Semantics:
7807""""""""""
7808
7809This function returns the same values as the libm ``fma`` functions
7810would, and does not set errno.
7811
7812'``llvm.fabs.*``' Intrinsic
7813^^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7819floating point or vector of floating point type. Not all targets support
7820all types however.
7821
7822::
7823
7824      declare float     @llvm.fabs.f32(float  %Val)
7825      declare double    @llvm.fabs.f64(double %Val)
7826      declare x86_fp80  @llvm.fabs.f80(x86_fp80  %Val)
7827      declare fp128     @llvm.fabs.f128(fp128 %Val)
7828      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128  %Val)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.fabs.*``' intrinsics return the absolute value of the
7834operand.
7835
7836Arguments:
7837""""""""""
7838
7839The argument and return value are floating point numbers of the same
7840type.
7841
7842Semantics:
7843""""""""""
7844
7845This function returns the same values as the libm ``fabs`` functions
7846would, and handles error conditions in the same way.
7847
7848'``llvm.copysign.*``' Intrinsic
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7855floating point or vector of floating point type. Not all targets support
7856all types however.
7857
7858::
7859
7860      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
7861      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
7862      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
7863      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7864      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
7865
7866Overview:
7867"""""""""
7868
7869The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7870first operand and the sign of the second operand.
7871
7872Arguments:
7873""""""""""
7874
7875The arguments and return value are floating point numbers of the same
7876type.
7877
7878Semantics:
7879""""""""""
7880
7881This function returns the same values as the libm ``copysign``
7882functions would, and handles error conditions in the same way.
7883
7884'``llvm.floor.*``' Intrinsic
7885^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7886
7887Syntax:
7888"""""""
7889
7890This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7891floating point or vector of floating point type. Not all targets support
7892all types however.
7893
7894::
7895
7896      declare float     @llvm.floor.f32(float  %Val)
7897      declare double    @llvm.floor.f64(double %Val)
7898      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
7899      declare fp128     @llvm.floor.f128(fp128 %Val)
7900      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
7901
7902Overview:
7903"""""""""
7904
7905The '``llvm.floor.*``' intrinsics return the floor of the operand.
7906
7907Arguments:
7908""""""""""
7909
7910The argument and return value are floating point numbers of the same
7911type.
7912
7913Semantics:
7914""""""""""
7915
7916This function returns the same values as the libm ``floor`` functions
7917would, and handles error conditions in the same way.
7918
7919'``llvm.ceil.*``' Intrinsic
7920^^^^^^^^^^^^^^^^^^^^^^^^^^^
7921
7922Syntax:
7923"""""""
7924
7925This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7926floating point or vector of floating point type. Not all targets support
7927all types however.
7928
7929::
7930
7931      declare float     @llvm.ceil.f32(float  %Val)
7932      declare double    @llvm.ceil.f64(double %Val)
7933      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
7934      declare fp128     @llvm.ceil.f128(fp128 %Val)
7935      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
7936
7937Overview:
7938"""""""""
7939
7940The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7941
7942Arguments:
7943""""""""""
7944
7945The argument and return value are floating point numbers of the same
7946type.
7947
7948Semantics:
7949""""""""""
7950
7951This function returns the same values as the libm ``ceil`` functions
7952would, and handles error conditions in the same way.
7953
7954'``llvm.trunc.*``' Intrinsic
7955^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7956
7957Syntax:
7958"""""""
7959
7960This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7961floating point or vector of floating point type. Not all targets support
7962all types however.
7963
7964::
7965
7966      declare float     @llvm.trunc.f32(float  %Val)
7967      declare double    @llvm.trunc.f64(double %Val)
7968      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
7969      declare fp128     @llvm.trunc.f128(fp128 %Val)
7970      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
7971
7972Overview:
7973"""""""""
7974
7975The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7976nearest integer not larger in magnitude than the operand.
7977
7978Arguments:
7979""""""""""
7980
7981The argument and return value are floating point numbers of the same
7982type.
7983
7984Semantics:
7985""""""""""
7986
7987This function returns the same values as the libm ``trunc`` functions
7988would, and handles error conditions in the same way.
7989
7990'``llvm.rint.*``' Intrinsic
7991^^^^^^^^^^^^^^^^^^^^^^^^^^^
7992
7993Syntax:
7994"""""""
7995
7996This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7997floating point or vector of floating point type. Not all targets support
7998all types however.
7999
8000::
8001
8002      declare float     @llvm.rint.f32(float  %Val)
8003      declare double    @llvm.rint.f64(double %Val)
8004      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
8005      declare fp128     @llvm.rint.f128(fp128 %Val)
8006      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
8007
8008Overview:
8009"""""""""
8010
8011The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8012nearest integer. It may raise an inexact floating-point exception if the
8013operand isn't an integer.
8014
8015Arguments:
8016""""""""""
8017
8018The argument and return value are floating point numbers of the same
8019type.
8020
8021Semantics:
8022""""""""""
8023
8024This function returns the same values as the libm ``rint`` functions
8025would, and handles error conditions in the same way.
8026
8027'``llvm.nearbyint.*``' Intrinsic
8028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8029
8030Syntax:
8031"""""""
8032
8033This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8034floating point or vector of floating point type. Not all targets support
8035all types however.
8036
8037::
8038
8039      declare float     @llvm.nearbyint.f32(float  %Val)
8040      declare double    @llvm.nearbyint.f64(double %Val)
8041      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
8042      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
8043      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
8044
8045Overview:
8046"""""""""
8047
8048The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8049nearest integer.
8050
8051Arguments:
8052""""""""""
8053
8054The argument and return value are floating point numbers of the same
8055type.
8056
8057Semantics:
8058""""""""""
8059
8060This function returns the same values as the libm ``nearbyint``
8061functions would, and handles error conditions in the same way.
8062
8063'``llvm.round.*``' Intrinsic
8064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8065
8066Syntax:
8067"""""""
8068
8069This is an overloaded intrinsic. You can use ``llvm.round`` on any
8070floating point or vector of floating point type. Not all targets support
8071all types however.
8072
8073::
8074
8075      declare float     @llvm.round.f32(float  %Val)
8076      declare double    @llvm.round.f64(double %Val)
8077      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
8078      declare fp128     @llvm.round.f128(fp128 %Val)
8079      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
8080
8081Overview:
8082"""""""""
8083
8084The '``llvm.round.*``' intrinsics returns the operand rounded to the
8085nearest integer.
8086
8087Arguments:
8088""""""""""
8089
8090The argument and return value are floating point numbers of the same
8091type.
8092
8093Semantics:
8094""""""""""
8095
8096This function returns the same values as the libm ``round``
8097functions would, and handles error conditions in the same way.
8098
8099Bit Manipulation Intrinsics
8100---------------------------
8101
8102LLVM provides intrinsics for a few important bit manipulation
8103operations. These allow efficient code generation for some algorithms.
8104
8105'``llvm.bswap.*``' Intrinsics
8106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8107
8108Syntax:
8109"""""""
8110
8111This is an overloaded intrinsic function. You can use bswap on any
8112integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8113
8114::
8115
8116      declare i16 @llvm.bswap.i16(i16 <id>)
8117      declare i32 @llvm.bswap.i32(i32 <id>)
8118      declare i64 @llvm.bswap.i64(i64 <id>)
8119
8120Overview:
8121"""""""""
8122
8123The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8124values with an even number of bytes (positive multiple of 16 bits).
8125These are useful for performing operations on data that is not in the
8126target's native byte order.
8127
8128Semantics:
8129""""""""""
8130
8131The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8132and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8133intrinsic returns an i32 value that has the four bytes of the input i32
8134swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8135returned i32 will have its bytes in 3, 2, 1, 0 order. The
8136``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8137concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8138respectively).
8139
8140'``llvm.ctpop.*``' Intrinsic
8141^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8142
8143Syntax:
8144"""""""
8145
8146This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8147bit width, or on any vector with integer elements. Not all targets
8148support all bit widths or vector types, however.
8149
8150::
8151
8152      declare i8 @llvm.ctpop.i8(i8  <src>)
8153      declare i16 @llvm.ctpop.i16(i16 <src>)
8154      declare i32 @llvm.ctpop.i32(i32 <src>)
8155      declare i64 @llvm.ctpop.i64(i64 <src>)
8156      declare i256 @llvm.ctpop.i256(i256 <src>)
8157      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8158
8159Overview:
8160"""""""""
8161
8162The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8163in a value.
8164
8165Arguments:
8166""""""""""
8167
8168The only argument is the value to be counted. The argument may be of any
8169integer type, or a vector with integer elements. The return type must
8170match the argument type.
8171
8172Semantics:
8173""""""""""
8174
8175The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8176each element of a vector.
8177
8178'``llvm.ctlz.*``' Intrinsic
8179^^^^^^^^^^^^^^^^^^^^^^^^^^^
8180
8181Syntax:
8182"""""""
8183
8184This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8185integer bit width, or any vector whose elements are integers. Not all
8186targets support all bit widths or vector types, however.
8187
8188::
8189
8190      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
8191      declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
8192      declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
8193      declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
8194      declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8195      declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8196
8197Overview:
8198"""""""""
8199
8200The '``llvm.ctlz``' family of intrinsic functions counts the number of
8201leading zeros in a variable.
8202
8203Arguments:
8204""""""""""
8205
8206The first argument is the value to be counted. This argument may be of
8207any integer type, or a vectory with integer element type. The return
8208type must match the first argument type.
8209
8210The second argument must be a constant and is a flag to indicate whether
8211the intrinsic should ensure that a zero as the first argument produces a
8212defined result. Historically some architectures did not provide a
8213defined result for zero values as efficiently, and many algorithms are
8214now predicated on avoiding zero-value inputs.
8215
8216Semantics:
8217""""""""""
8218
8219The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8220zeros in a variable, or within each element of the vector. If
8221``src == 0`` then the result is the size in bits of the type of ``src``
8222if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8223``llvm.ctlz(i32 2) = 30``.
8224
8225'``llvm.cttz.*``' Intrinsic
8226^^^^^^^^^^^^^^^^^^^^^^^^^^^
8227
8228Syntax:
8229"""""""
8230
8231This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8232integer bit width, or any vector of integer elements. Not all targets
8233support all bit widths or vector types, however.
8234
8235::
8236
8237      declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
8238      declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
8239      declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
8240      declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
8241      declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8242      declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8243
8244Overview:
8245"""""""""
8246
8247The '``llvm.cttz``' family of intrinsic functions counts the number of
8248trailing zeros.
8249
8250Arguments:
8251""""""""""
8252
8253The first argument is the value to be counted. This argument may be of
8254any integer type, or a vectory with integer element type. The return
8255type must match the first argument type.
8256
8257The second argument must be a constant and is a flag to indicate whether
8258the intrinsic should ensure that a zero as the first argument produces a
8259defined result. Historically some architectures did not provide a
8260defined result for zero values as efficiently, and many algorithms are
8261now predicated on avoiding zero-value inputs.
8262
8263Semantics:
8264""""""""""
8265
8266The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8267zeros in a variable, or within each element of a vector. If ``src == 0``
8268then the result is the size in bits of the type of ``src`` if
8269``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8270``llvm.cttz(2) = 1``.
8271
8272Arithmetic with Overflow Intrinsics
8273-----------------------------------
8274
8275LLVM provides intrinsics for some arithmetic with overflow operations.
8276
8277'``llvm.sadd.with.overflow.*``' Intrinsics
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8284on any integer bit width.
8285
8286::
8287
8288      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8289      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8290      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8291
8292Overview:
8293"""""""""
8294
8295The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8296a signed addition of the two arguments, and indicate whether an overflow
8297occurred during the signed summation.
8298
8299Arguments:
8300""""""""""
8301
8302The arguments (%a and %b) and the first element of the result structure
8303may be of integer types of any bit width, but they must have the same
8304bit width. The second element of the result structure must be of type
8305``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8306addition.
8307
8308Semantics:
8309""""""""""
8310
8311The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8312a signed addition of the two variables. They return a structure --- the
8313first element of which is the signed summation, and the second element
8314of which is a bit specifying if the signed summation resulted in an
8315overflow.
8316
8317Examples:
8318"""""""""
8319
8320.. code-block:: llvm
8321
8322      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8323      %sum = extractvalue {i32, i1} %res, 0
8324      %obit = extractvalue {i32, i1} %res, 1
8325      br i1 %obit, label %overflow, label %normal
8326
8327'``llvm.uadd.with.overflow.*``' Intrinsics
8328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8329
8330Syntax:
8331"""""""
8332
8333This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8334on any integer bit width.
8335
8336::
8337
8338      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8339      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8340      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8341
8342Overview:
8343"""""""""
8344
8345The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8346an unsigned addition of the two arguments, and indicate whether a carry
8347occurred during the unsigned summation.
8348
8349Arguments:
8350""""""""""
8351
8352The arguments (%a and %b) and the first element of the result structure
8353may be of integer types of any bit width, but they must have the same
8354bit width. The second element of the result structure must be of type
8355``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8356addition.
8357
8358Semantics:
8359""""""""""
8360
8361The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8362an unsigned addition of the two arguments. They return a structure --- the
8363first element of which is the sum, and the second element of which is a
8364bit specifying if the unsigned summation resulted in a carry.
8365
8366Examples:
8367"""""""""
8368
8369.. code-block:: llvm
8370
8371      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8372      %sum = extractvalue {i32, i1} %res, 0
8373      %obit = extractvalue {i32, i1} %res, 1
8374      br i1 %obit, label %carry, label %normal
8375
8376'``llvm.ssub.with.overflow.*``' Intrinsics
8377^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8378
8379Syntax:
8380"""""""
8381
8382This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8383on any integer bit width.
8384
8385::
8386
8387      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8388      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8389      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8390
8391Overview:
8392"""""""""
8393
8394The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8395a signed subtraction of the two arguments, and indicate whether an
8396overflow occurred during the signed subtraction.
8397
8398Arguments:
8399""""""""""
8400
8401The arguments (%a and %b) and the first element of the result structure
8402may be of integer types of any bit width, but they must have the same
8403bit width. The second element of the result structure must be of type
8404``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8405subtraction.
8406
8407Semantics:
8408""""""""""
8409
8410The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8411a signed subtraction of the two arguments. They return a structure --- the
8412first element of which is the subtraction, and the second element of
8413which is a bit specifying if the signed subtraction resulted in an
8414overflow.
8415
8416Examples:
8417"""""""""
8418
8419.. code-block:: llvm
8420
8421      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8422      %sum = extractvalue {i32, i1} %res, 0
8423      %obit = extractvalue {i32, i1} %res, 1
8424      br i1 %obit, label %overflow, label %normal
8425
8426'``llvm.usub.with.overflow.*``' Intrinsics
8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8433on any integer bit width.
8434
8435::
8436
8437      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8438      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8439      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8440
8441Overview:
8442"""""""""
8443
8444The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8445an unsigned subtraction of the two arguments, and indicate whether an
8446overflow occurred during the unsigned subtraction.
8447
8448Arguments:
8449""""""""""
8450
8451The arguments (%a and %b) and the first element of the result structure
8452may be of integer types of any bit width, but they must have the same
8453bit width. The second element of the result structure must be of type
8454``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8455subtraction.
8456
8457Semantics:
8458""""""""""
8459
8460The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8461an unsigned subtraction of the two arguments. They return a structure ---
8462the first element of which is the subtraction, and the second element of
8463which is a bit specifying if the unsigned subtraction resulted in an
8464overflow.
8465
8466Examples:
8467"""""""""
8468
8469.. code-block:: llvm
8470
8471      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8472      %sum = extractvalue {i32, i1} %res, 0
8473      %obit = extractvalue {i32, i1} %res, 1
8474      br i1 %obit, label %overflow, label %normal
8475
8476'``llvm.smul.with.overflow.*``' Intrinsics
8477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8478
8479Syntax:
8480"""""""
8481
8482This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8483on any integer bit width.
8484
8485::
8486
8487      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8488      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8489      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8490
8491Overview:
8492"""""""""
8493
8494The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8495a signed multiplication of the two arguments, and indicate whether an
8496overflow occurred during the signed multiplication.
8497
8498Arguments:
8499""""""""""
8500
8501The arguments (%a and %b) and the first element of the result structure
8502may be of integer types of any bit width, but they must have the same
8503bit width. The second element of the result structure must be of type
8504``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8505multiplication.
8506
8507Semantics:
8508""""""""""
8509
8510The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8511a signed multiplication of the two arguments. They return a structure ---
8512the first element of which is the multiplication, and the second element
8513of which is a bit specifying if the signed multiplication resulted in an
8514overflow.
8515
8516Examples:
8517"""""""""
8518
8519.. code-block:: llvm
8520
8521      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8522      %sum = extractvalue {i32, i1} %res, 0
8523      %obit = extractvalue {i32, i1} %res, 1
8524      br i1 %obit, label %overflow, label %normal
8525
8526'``llvm.umul.with.overflow.*``' Intrinsics
8527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8528
8529Syntax:
8530"""""""
8531
8532This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8533on any integer bit width.
8534
8535::
8536
8537      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8538      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8539      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8540
8541Overview:
8542"""""""""
8543
8544The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8545a unsigned multiplication of the two arguments, and indicate whether an
8546overflow occurred during the unsigned multiplication.
8547
8548Arguments:
8549""""""""""
8550
8551The arguments (%a and %b) and the first element of the result structure
8552may be of integer types of any bit width, but they must have the same
8553bit width. The second element of the result structure must be of type
8554``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8555multiplication.
8556
8557Semantics:
8558""""""""""
8559
8560The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8561an unsigned multiplication of the two arguments. They return a structure ---
8562the first element of which is the multiplication, and the second
8563element of which is a bit specifying if the unsigned multiplication
8564resulted in an overflow.
8565
8566Examples:
8567"""""""""
8568
8569.. code-block:: llvm
8570
8571      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8572      %sum = extractvalue {i32, i1} %res, 0
8573      %obit = extractvalue {i32, i1} %res, 1
8574      br i1 %obit, label %overflow, label %normal
8575
8576Specialised Arithmetic Intrinsics
8577---------------------------------
8578
8579'``llvm.fmuladd.*``' Intrinsic
8580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8581
8582Syntax:
8583"""""""
8584
8585::
8586
8587      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8588      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8589
8590Overview:
8591"""""""""
8592
8593The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
8594expressions that can be fused if the code generator determines that (a) the
8595target instruction set has support for a fused operation, and (b) that the
8596fused operation is more efficient than the equivalent, separate pair of mul
8597and add instructions.
8598
8599Arguments:
8600""""""""""
8601
8602The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8603multiplicands, a and b, and an addend c.
8604
8605Semantics:
8606""""""""""
8607
8608The expression:
8609
8610::
8611
8612      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8613
8614is equivalent to the expression a \* b + c, except that rounding will
8615not be performed between the multiplication and addition steps if the
8616code generator fuses the operations. Fusion is not guaranteed, even if
8617the target platform supports it. If a fused multiply-add is required the
8618corresponding llvm.fma.\* intrinsic function should be used
8619instead. This never sets errno, just as '``llvm.fma.*``'.
8620
8621Examples:
8622"""""""""
8623
8624.. code-block:: llvm
8625
8626      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
8627
8628Half Precision Floating Point Intrinsics
8629----------------------------------------
8630
8631For most target platforms, half precision floating point is a
8632storage-only format. This means that it is a dense encoding (in memory)
8633but does not support computation in the format.
8634
8635This means that code must first load the half-precision floating point
8636value as an i16, then convert it to float with
8637:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8638then be performed on the float value (including extending to double
8639etc). To store the value back to memory, it is first converted to float
8640if needed, then converted to i16 with
8641:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8642i16 value.
8643
8644.. _int_convert_to_fp16:
8645
8646'``llvm.convert.to.fp16``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
8654      declare i16 @llvm.convert.to.fp16(float %a)
8655
8656Overview:
8657"""""""""
8658
8659The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8660from single precision floating point format to half precision floating
8661point format.
8662
8663Arguments:
8664""""""""""
8665
8666The intrinsic function contains single argument - the value to be
8667converted.
8668
8669Semantics:
8670""""""""""
8671
8672The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8673from single precision floating point format to half precision floating
8674point format. The return value is an ``i16`` which contains the
8675converted number.
8676
8677Examples:
8678"""""""""
8679
8680.. code-block:: llvm
8681
8682      %res = call i16 @llvm.convert.to.fp16(float %a)
8683      store i16 %res, i16* @x, align 2
8684
8685.. _int_convert_from_fp16:
8686
8687'``llvm.convert.from.fp16``' Intrinsic
8688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8689
8690Syntax:
8691"""""""
8692
8693::
8694
8695      declare float @llvm.convert.from.fp16(i16 %a)
8696
8697Overview:
8698"""""""""
8699
8700The '``llvm.convert.from.fp16``' intrinsic function performs a
8701conversion from half precision floating point format to single precision
8702floating point format.
8703
8704Arguments:
8705""""""""""
8706
8707The intrinsic function contains single argument - the value to be
8708converted.
8709
8710Semantics:
8711""""""""""
8712
8713The '``llvm.convert.from.fp16``' intrinsic function performs a
8714conversion from half single precision floating point format to single
8715precision floating point format. The input half-float value is
8716represented by an ``i16`` value.
8717
8718Examples:
8719"""""""""
8720
8721.. code-block:: llvm
8722
8723      %a = load i16* @x, align 2
8724      %res = call float @llvm.convert.from.fp16(i16 %a)
8725
8726Debugger Intrinsics
8727-------------------
8728
8729The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8730prefix), are described in the `LLVM Source Level
8731Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8732document.
8733
8734Exception Handling Intrinsics
8735-----------------------------
8736
8737The LLVM exception handling intrinsics (which all start with
8738``llvm.eh.`` prefix), are described in the `LLVM Exception
8739Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8740
8741.. _int_trampoline:
8742
8743Trampoline Intrinsics
8744---------------------
8745
8746These intrinsics make it possible to excise one parameter, marked with
8747the :ref:`nest <nest>` attribute, from a function. The result is a
8748callable function pointer lacking the nest parameter - the caller does
8749not need to provide a value for it. Instead, the value to use is stored
8750in advance in a "trampoline", a block of memory usually allocated on the
8751stack, which also contains code to splice the nest value into the
8752argument list. This is used to implement the GCC nested function address
8753extension.
8754
8755For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8756then the resulting function pointer has signature ``i32 (i32, i32)*``.
8757It can be created as follows:
8758
8759.. code-block:: llvm
8760
8761      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8762      %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8763      call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8764      %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8765      %fp = bitcast i8* %p to i32 (i32, i32)*
8766
8767The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8768``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8769
8770.. _int_it:
8771
8772'``llvm.init.trampoline``' Intrinsic
8773^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8774
8775Syntax:
8776"""""""
8777
8778::
8779
8780      declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8781
8782Overview:
8783"""""""""
8784
8785This fills the memory pointed to by ``tramp`` with executable code,
8786turning it into a trampoline.
8787
8788Arguments:
8789""""""""""
8790
8791The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8792pointers. The ``tramp`` argument must point to a sufficiently large and
8793sufficiently aligned block of memory; this memory is written to by the
8794intrinsic. Note that the size and the alignment are target-specific -
8795LLVM currently provides no portable way of determining them, so a
8796front-end that generates this intrinsic needs to have some
8797target-specific knowledge. The ``func`` argument must hold a function
8798bitcast to an ``i8*``.
8799
8800Semantics:
8801""""""""""
8802
8803The block of memory pointed to by ``tramp`` is filled with target
8804dependent code, turning it into a function. Then ``tramp`` needs to be
8805passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8806be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8807function's signature is the same as that of ``func`` with any arguments
8808marked with the ``nest`` attribute removed. At most one such ``nest``
8809argument is allowed, and it must be of pointer type. Calling the new
8810function is equivalent to calling ``func`` with the same argument list,
8811but with ``nval`` used for the missing ``nest`` argument. If, after
8812calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8813modified, then the effect of any later call to the returned function
8814pointer is undefined.
8815
8816.. _int_at:
8817
8818'``llvm.adjust.trampoline``' Intrinsic
8819^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8820
8821Syntax:
8822"""""""
8823
8824::
8825
8826      declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8827
8828Overview:
8829"""""""""
8830
8831This performs any required machine-specific adjustment to the address of
8832a trampoline (passed as ``tramp``).
8833
8834Arguments:
8835""""""""""
8836
8837``tramp`` must point to a block of memory which already has trampoline
8838code filled in by a previous call to
8839:ref:`llvm.init.trampoline <int_it>`.
8840
8841Semantics:
8842""""""""""
8843
8844On some architectures the address of the code to be executed needs to be
8845different than the address where the trampoline is actually stored. This
8846intrinsic returns the executable address corresponding to ``tramp``
8847after performing the required machine specific adjustments. The pointer
8848returned can then be :ref:`bitcast and executed <int_trampoline>`.
8849
8850Memory Use Markers
8851------------------
8852
8853This class of intrinsics provides information about the lifetime of
8854memory objects and ranges where variables are immutable.
8855
8856.. _int_lifestart:
8857
8858'``llvm.lifetime.start``' Intrinsic
8859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8860
8861Syntax:
8862"""""""
8863
8864::
8865
8866      declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8867
8868Overview:
8869"""""""""
8870
8871The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8872object's lifetime.
8873
8874Arguments:
8875""""""""""
8876
8877The first argument is a constant integer representing the size of the
8878object, or -1 if it is variable sized. The second argument is a pointer
8879to the object.
8880
8881Semantics:
8882""""""""""
8883
8884This intrinsic indicates that before this point in the code, the value
8885of the memory pointed to by ``ptr`` is dead. This means that it is known
8886to never be used and has an undefined value. A load from the pointer
8887that precedes this intrinsic can be replaced with ``'undef'``.
8888
8889.. _int_lifeend:
8890
8891'``llvm.lifetime.end``' Intrinsic
8892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8893
8894Syntax:
8895"""""""
8896
8897::
8898
8899      declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8900
8901Overview:
8902"""""""""
8903
8904The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8905object's lifetime.
8906
8907Arguments:
8908""""""""""
8909
8910The first argument is a constant integer representing the size of the
8911object, or -1 if it is variable sized. The second argument is a pointer
8912to the object.
8913
8914Semantics:
8915""""""""""
8916
8917This intrinsic indicates that after this point in the code, the value of
8918the memory pointed to by ``ptr`` is dead. This means that it is known to
8919never be used and has an undefined value. Any stores into the memory
8920object following this intrinsic may be removed as dead.
8921
8922'``llvm.invariant.start``' Intrinsic
8923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8924
8925Syntax:
8926"""""""
8927
8928::
8929
8930      declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8931
8932Overview:
8933"""""""""
8934
8935The '``llvm.invariant.start``' intrinsic specifies that the contents of
8936a memory object will not change.
8937
8938Arguments:
8939""""""""""
8940
8941The first argument is a constant integer representing the size of the
8942object, or -1 if it is variable sized. The second argument is a pointer
8943to the object.
8944
8945Semantics:
8946""""""""""
8947
8948This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8949the return value, the referenced memory location is constant and
8950unchanging.
8951
8952'``llvm.invariant.end``' Intrinsic
8953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8954
8955Syntax:
8956"""""""
8957
8958::
8959
8960      declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8961
8962Overview:
8963"""""""""
8964
8965The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8966memory object are mutable.
8967
8968Arguments:
8969""""""""""
8970
8971The first argument is the matching ``llvm.invariant.start`` intrinsic.
8972The second argument is a constant integer representing the size of the
8973object, or -1 if it is variable sized and the third argument is a
8974pointer to the object.
8975
8976Semantics:
8977""""""""""
8978
8979This intrinsic indicates that the memory is mutable again.
8980
8981General Intrinsics
8982------------------
8983
8984This class of intrinsics is designed to be generic and has no specific
8985purpose.
8986
8987'``llvm.var.annotation``' Intrinsic
8988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8989
8990Syntax:
8991"""""""
8992
8993::
8994
8995      declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
8996
8997Overview:
8998"""""""""
8999
9000The '``llvm.var.annotation``' intrinsic.
9001
9002Arguments:
9003""""""""""
9004
9005The first argument is a pointer to a value, the second is a pointer to a
9006global string, the third is a pointer to a global string which is the
9007source file name, and the last argument is the line number.
9008
9009Semantics:
9010""""""""""
9011
9012This intrinsic allows annotation of local variables with arbitrary
9013strings. This can be useful for special purpose optimizations that want
9014to look for these annotations. These have no other defined use; they are
9015ignored by code generation and optimization.
9016
9017'``llvm.ptr.annotation.*``' Intrinsic
9018^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9019
9020Syntax:
9021"""""""
9022
9023This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9024pointer to an integer of any width. *NOTE* you must specify an address space for
9025the pointer. The identifier for the default address space is the integer
9026'``0``'.
9027
9028::
9029
9030      declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
9031      declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
9032      declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
9033      declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
9034      declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
9035
9036Overview:
9037"""""""""
9038
9039The '``llvm.ptr.annotation``' intrinsic.
9040
9041Arguments:
9042""""""""""
9043
9044The first argument is a pointer to an integer value of arbitrary bitwidth
9045(result of some expression), the second is a pointer to a global string, the
9046third is a pointer to a global string which is the source file name, and the
9047last argument is the line number. It returns the value of the first argument.
9048
9049Semantics:
9050""""""""""
9051
9052This intrinsic allows annotation of a pointer to an integer with arbitrary
9053strings. This can be useful for special purpose optimizations that want to look
9054for these annotations. These have no other defined use; they are ignored by code
9055generation and optimization.
9056
9057'``llvm.annotation.*``' Intrinsic
9058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9059
9060Syntax:
9061"""""""
9062
9063This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9064any integer bit width.
9065
9066::
9067
9068      declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
9069      declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
9070      declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
9071      declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
9072      declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
9073
9074Overview:
9075"""""""""
9076
9077The '``llvm.annotation``' intrinsic.
9078
9079Arguments:
9080""""""""""
9081
9082The first argument is an integer value (result of some expression), the
9083second is a pointer to a global string, the third is a pointer to a
9084global string which is the source file name, and the last argument is
9085the line number. It returns the value of the first argument.
9086
9087Semantics:
9088""""""""""
9089
9090This intrinsic allows annotations to be put on arbitrary expressions
9091with arbitrary strings. This can be useful for special purpose
9092optimizations that want to look for these annotations. These have no
9093other defined use; they are ignored by code generation and optimization.
9094
9095'``llvm.trap``' Intrinsic
9096^^^^^^^^^^^^^^^^^^^^^^^^^
9097
9098Syntax:
9099"""""""
9100
9101::
9102
9103      declare void @llvm.trap() noreturn nounwind
9104
9105Overview:
9106"""""""""
9107
9108The '``llvm.trap``' intrinsic.
9109
9110Arguments:
9111""""""""""
9112
9113None.
9114
9115Semantics:
9116""""""""""
9117
9118This intrinsic is lowered to the target dependent trap instruction. If
9119the target does not have a trap instruction, this intrinsic will be
9120lowered to a call of the ``abort()`` function.
9121
9122'``llvm.debugtrap``' Intrinsic
9123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9124
9125Syntax:
9126"""""""
9127
9128::
9129
9130      declare void @llvm.debugtrap() nounwind
9131
9132Overview:
9133"""""""""
9134
9135The '``llvm.debugtrap``' intrinsic.
9136
9137Arguments:
9138""""""""""
9139
9140None.
9141
9142Semantics:
9143""""""""""
9144
9145This intrinsic is lowered to code which is intended to cause an
9146execution trap with the intention of requesting the attention of a
9147debugger.
9148
9149'``llvm.stackprotector``' Intrinsic
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157      declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9158
9159Overview:
9160"""""""""
9161
9162The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9163onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9164is placed on the stack before local variables.
9165
9166Arguments:
9167""""""""""
9168
9169The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9170The first argument is the value loaded from the stack guard
9171``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9172enough space to hold the value of the guard.
9173
9174Semantics:
9175""""""""""
9176
9177This intrinsic causes the prologue/epilogue inserter to force the position of
9178the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9179to ensure that if a local variable on the stack is overwritten, it will destroy
9180the value of the guard. When the function exits, the guard on the stack is
9181checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9182different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9183calling the ``__stack_chk_fail()`` function.
9184
9185'``llvm.stackprotectorcheck``' Intrinsic
9186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9187
9188Syntax:
9189"""""""
9190
9191::
9192
9193      declare void @llvm.stackprotectorcheck(i8** <guard>)
9194
9195Overview:
9196"""""""""
9197
9198The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
9199created stack protector and if they are not equal calls the
9200``__stack_chk_fail()`` function.
9201
9202Arguments:
9203""""""""""
9204
9205The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9206the variable ``@__stack_chk_guard``.
9207
9208Semantics:
9209""""""""""
9210
9211This intrinsic is provided to perform the stack protector check by comparing
9212``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9213values do not match call the ``__stack_chk_fail()`` function.
9214
9215The reason to provide this as an IR level intrinsic instead of implementing it
9216via other IR operations is that in order to perform this operation at the IR
9217level without an intrinsic, one would need to create additional basic blocks to
9218handle the success/failure cases. This makes it difficult to stop the stack
9219protector check from disrupting sibling tail calls in Codegen. With this
9220intrinsic, we are able to generate the stack protector basic blocks late in
9221codegen after the tail call decision has occurred.
9222
9223'``llvm.objectsize``' Intrinsic
9224^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9225
9226Syntax:
9227"""""""
9228
9229::
9230
9231      declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9232      declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9233
9234Overview:
9235"""""""""
9236
9237The ``llvm.objectsize`` intrinsic is designed to provide information to
9238the optimizers to determine at compile time whether a) an operation
9239(like memcpy) will overflow a buffer that corresponds to an object, or
9240b) that a runtime check for overflow isn't necessary. An object in this
9241context means an allocation of a specific class, structure, array, or
9242other object.
9243
9244Arguments:
9245""""""""""
9246
9247The ``llvm.objectsize`` intrinsic takes two arguments. The first
9248argument is a pointer to or into the ``object``. The second argument is
9249a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9250or -1 (if false) when the object size is unknown. The second argument
9251only accepts constants.
9252
9253Semantics:
9254""""""""""
9255
9256The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9257the size of the object concerned. If the size cannot be determined at
9258compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9259on the ``min`` argument).
9260
9261'``llvm.expect``' Intrinsic
9262^^^^^^^^^^^^^^^^^^^^^^^^^^^
9263
9264Syntax:
9265"""""""
9266
9267This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9268integer bit width.
9269
9270::
9271
9272      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
9273      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9274      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9275
9276Overview:
9277"""""""""
9278
9279The ``llvm.expect`` intrinsic provides information about expected (the
9280most probable) value of ``val``, which can be used by optimizers.
9281
9282Arguments:
9283""""""""""
9284
9285The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9286a value. The second argument is an expected value, this needs to be a
9287constant value, variables are not allowed.
9288
9289Semantics:
9290""""""""""
9291
9292This intrinsic is lowered to the ``val``.
9293
9294'``llvm.donothing``' Intrinsic
9295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9296
9297Syntax:
9298"""""""
9299
9300::
9301
9302      declare void @llvm.donothing() nounwind readnone
9303
9304Overview:
9305"""""""""
9306
9307The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9308only intrinsic that can be called with an invoke instruction.
9309
9310Arguments:
9311""""""""""
9312
9313None.
9314
9315Semantics:
9316""""""""""
9317
9318This intrinsic does nothing, and it's removed by optimizers and ignored
9319by codegen.
9320
9321Stack Map Intrinsics
9322--------------------
9323
9324LLVM provides experimental intrinsics to support runtime patching
9325mechanisms commonly desired in dynamic language JITs. These intrinsics
9326are described in :doc:`StackMaps`.
9327