• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1=====================
2YAML I/O
3=====================
4
5.. contents::
6   :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language.  The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.  The simplest form of
14yaml is just "scalars", "mappings", and "sequences".  A scalar is any number
15or string.  The pound/hash symbol (#) begins a comment line.   A mapping is
16a set of key-value pairs where the key ends with a colon.  For example:
17
18.. code-block:: yaml
19
20     # a mapping
21     name:      Tom
22     hat-size:  7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29     # a sequence
30     - x86
31     - x86_64
32     - PowerPC
33
34You can combine mappings and sequences by indenting.  For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39     # a sequence of mappings with one key's value being a sequence
40     - name:      Tom
41       cpus:
42        - x86
43        - x86_64
44     - name:      Bob
45       cpus:
46        - x86
47     - name:      Dan
48       cpus:
49        - PowerPC
50        - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets.  The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60     # a sequence of mappings with one key's value being a flow sequence
61     - name:      Tom
62       cpus:      [ x86, x86_64 ]
63     - name:      Bob
64       cpus:      [ x86 ]
65     - name:      Dan
66       cpus:      [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML.  The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable.  Often the fields are not in the order that
82a human would find readable.  Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables.  The same considerations need to
87go into the design of your YAML encoding.  But, you may not want to change
88your existing native data structures.  Therefore, when writing out YAML
89there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design.  YAML I/O defines some
93abstract base templates.  You specialize those templates on your data types.
94For instance, if you have an enumerated type FooBar you could specialize
95ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99    using llvm::yaml::ScalarEnumerationTraits;
100    using llvm::yaml::IO;
101
102    template <>
103    struct ScalarEnumerationTraits<FooBar> {
104      static void enumeration(IO &io, FooBar &value) {
105      ...
106      }
107    };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
112values and the YAML string representation is only in one place.
113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
116llvm::yaml::MappingTraits.
117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple.  For example:
119
120.. code-block:: c++
121
122    using llvm::yaml::MappingTraits;
123    using llvm::yaml::IO;
124
125    template <>
126    struct MappingTraits<Person> {
127      static void mapping(IO &io, Person &info) {
128        io.mapRequired("name",         info.name);
129        io.mapOptional("hat-size",     info.hatSize);
130      }
131    };
132
133
134A YAML sequence is automatically inferred if you data type has begin()/end()
135iterators and a push_back() method.  Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143    using llvm::yaml::Output;
144
145    Person tom;
146    tom.name = "Tom";
147    tom.hatSize = 8;
148    Person dan;
149    dan.name = "Dan";
150    dan.hatSize = 7;
151    std::vector<Person> persons;
152    persons.push_back(tom);
153    persons.push_back(dan);
154
155    Output yout(llvm::outs());
156    yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162     - name:      Tom
163       hat-size:  8
164     - name:      Dan
165       hat-size:  7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171    using llvm::yaml::Input;
172
173    typedef std::vector<Person> PersonList;
174    std::vector<PersonList> docs;
175
176    Input yin(document.getBuffer());
177    yin >> docs;
178
179    if ( yin.error() )
180      return;
181
182    // Process read document
183    for ( PersonList &pl : docs ) {
184      for ( Person &person : pl ) {
185        cout << "name=" << person.name;
186      }
187    }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file.  That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations).  YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204     - name:      Tom
205       shoe-size: 12
206     - name:      Dan
207       hat-size:  7
208
209Has a key (shoe-size) that is not defined in the schema.  YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214    YAML:2:2: error: unknown key 'shoe-size'
215      shoe-size:       12
216      ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping).  The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* std::string
238* int64_t
239* int32_t
240* int16_t
241* int8_t
242* uint64_t
243* uint32_t
244* uint16_t
245* uint8_t
246
247That is, you can use those types in fields of MappingTraits or as element type
248in sequence.  When reading, YAML I/O will validate that the string found
249is convertible to that type and error out if not.
250
251
252Unique types
253------------
254Given that YAML I/O is trait based, the selection of how to convert your data
255to YAML is based on the type of your data.  But in C++ type matching, typedefs
256do not generate unique type names.  That means if you have two typedefs of
257unsigned int, to YAML I/O both types look exactly like unsigned int.  To
258facilitate make unique type names, YAML I/O provides a macro which is used
259like a typedef on built-in types, but expands to create a class with conversion
260operators to and from the base type.  For example:
261
262.. code-block:: c++
263
264    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
265    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
266
267This generates two classes MyFooFlags and MyBarFlags which you can use in your
268native data structures instead of uint32_t. They are implicitly
269converted to and from uint32_t.  The point of creating these unique types
270is that you can now specify traits on them to get different YAML conversions.
271
272Hex types
273---------
274An example use of a unique type is that YAML I/O provides fixed sized unsigned
275integers that are written with YAML I/O as hexadecimal instead of the decimal
276format used by the built-in integer types:
277
278* Hex64
279* Hex32
280* Hex16
281* Hex8
282
283You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
284be that when YAML I/O writes out that type it will be formatted in hexadecimal.
285
286
287ScalarEnumerationTraits
288-----------------------
289YAML I/O supports translating between in-memory enumerations and a set of string
290values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
291on your enumeration type and define a enumeration() method.
292For instance, suppose you had an enumeration of CPUs and a struct with it as
293a field:
294
295.. code-block:: c++
296
297    enum CPUs {
298      cpu_x86_64  = 5,
299      cpu_x86     = 7,
300      cpu_PowerPC = 8
301    };
302
303    struct Info {
304      CPUs      cpu;
305      uint32_t  flags;
306    };
307
308To support reading and writing of this enumeration, you can define a
309ScalarEnumerationTraits specialization on CPUs, which can then be used
310as a field type:
311
312.. code-block:: c++
313
314    using llvm::yaml::ScalarEnumerationTraits;
315    using llvm::yaml::MappingTraits;
316    using llvm::yaml::IO;
317
318    template <>
319    struct ScalarEnumerationTraits<CPUs> {
320      static void enumeration(IO &io, CPUs &value) {
321        io.enumCase(value, "x86_64",  cpu_x86_64);
322        io.enumCase(value, "x86",     cpu_x86);
323        io.enumCase(value, "PowerPC", cpu_PowerPC);
324      }
325    };
326
327    template <>
328    struct MappingTraits<Info> {
329      static void mapping(IO &io, Info &info) {
330        io.mapRequired("cpu",       info.cpu);
331        io.mapOptional("flags",     info.flags, 0);
332      }
333    };
334
335When reading YAML, if the string found does not match any of the the strings
336specified by enumCase() methods, an error is automatically generated.
337When writing YAML, if the value being written does not match any of the values
338specified by the enumCase() methods, a runtime assertion is triggered.
339
340
341BitValue
342--------
343Another common data structure in C++ is a field where each bit has a unique
344meaning.  This is often used in a "flags" field.  YAML I/O has support for
345converting such fields to a flow sequence.   For instance suppose you
346had the following bit flags defined:
347
348.. code-block:: c++
349
350    enum {
351      flagsPointy = 1
352      flagsHollow = 2
353      flagsFlat   = 4
354      flagsRound  = 8
355    };
356
357    LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
358
359To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
360on MyFlags and provide the bit values and their names.
361
362.. code-block:: c++
363
364    using llvm::yaml::ScalarBitSetTraits;
365    using llvm::yaml::MappingTraits;
366    using llvm::yaml::IO;
367
368    template <>
369    struct ScalarBitSetTraits<MyFlags> {
370      static void bitset(IO &io, MyFlags &value) {
371        io.bitSetCase(value, "hollow",  flagHollow);
372        io.bitSetCase(value, "flat",    flagFlat);
373        io.bitSetCase(value, "round",   flagRound);
374        io.bitSetCase(value, "pointy",  flagPointy);
375      }
376    };
377
378    struct Info {
379      StringRef   name;
380      MyFlags     flags;
381    };
382
383    template <>
384    struct MappingTraits<Info> {
385      static void mapping(IO &io, Info& info) {
386        io.mapRequired("name",  info.name);
387        io.mapRequired("flags", info.flags);
388       }
389    };
390
391With the above, YAML I/O (when writing) will test mask each value in the
392bitset trait against the flags field, and each that matches will
393cause the corresponding string to be added to the flow sequence.  The opposite
394is done when reading and any unknown string values will result in a error. With
395the above schema, a same valid YAML document is:
396
397.. code-block:: yaml
398
399    name:    Tom
400    flags:   [ pointy, flat ]
401
402Sometimes a "flags" field might contains an enumeration part
403defined by a bit-mask.
404
405.. code-block:: c++
406
407    enum {
408      flagsFeatureA = 1,
409      flagsFeatureB = 2,
410      flagsFeatureC = 4,
411
412      flagsCPUMask = 24,
413
414      flagsCPU1 = 8,
415      flagsCPU2 = 16
416    };
417
418To support reading and writing such fields, you need to use the maskedBitSet()
419method and provide the bit values, their names and the enumeration mask.
420
421.. code-block:: c++
422
423    template <>
424    struct ScalarBitSetTraits<MyFlags> {
425      static void bitset(IO &io, MyFlags &value) {
426        io.bitSetCase(value, "featureA",  flagsFeatureA);
427        io.bitSetCase(value, "featureB",  flagsFeatureB);
428        io.bitSetCase(value, "featureC",  flagsFeatureC);
429        io.maskedBitSetCase(value, "CPU1",  flagsCPU1, flagsCPUMask);
430        io.maskedBitSetCase(value, "CPU2",  flagsCPU2, flagsCPUMask);
431      }
432    };
433
434YAML I/O (when writing) will apply the enumeration mask to the flags field,
435and compare the result and values from the bitset. As in case of a regular
436bitset, each that matches will cause the corresponding string to be added
437to the flow sequence.
438
439Custom Scalar
440-------------
441Sometimes for readability a scalar needs to be formatted in a custom way. For
442instance your internal data structure may use a integer for time (seconds since
443some epoch), but in YAML it would be much nicer to express that integer in
444some time format (e.g. 4-May-2012 10:30pm).  YAML I/O has a way to support
445custom formatting and parsing of scalar types by specializing ScalarTraits<> on
446your data type.  When writing, YAML I/O will provide the native type and
447your specialization must create a temporary llvm::StringRef.  When reading,
448YAML I/O will provide an llvm::StringRef of scalar and your specialization
449must convert that to your native data type.  An outline of a custom scalar type
450looks like:
451
452.. code-block:: c++
453
454    using llvm::yaml::ScalarTraits;
455    using llvm::yaml::IO;
456
457    template <>
458    struct ScalarTraits<MyCustomType> {
459      static void output(const T &value, llvm::raw_ostream &out) {
460        out << value;  // do custom formatting here
461      }
462      static StringRef input(StringRef scalar, T &value) {
463        // do custom parsing here.  Return the empty string on success,
464        // or an error message on failure.
465        return StringRef();
466      }
467      // Determine if this scalar needs quotes.
468      static bool mustQuote(StringRef) { return true; }
469    };
470
471
472Mappings
473========
474
475To be translated to or from a YAML mapping for your type T you must specialize
476llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
477method. If your native data structures use pointers to a class everywhere,
478you can specialize on the class pointer.  Examples:
479
480.. code-block:: c++
481
482    using llvm::yaml::MappingTraits;
483    using llvm::yaml::IO;
484
485    // Example of struct Foo which is used by value
486    template <>
487    struct MappingTraits<Foo> {
488      static void mapping(IO &io, Foo &foo) {
489        io.mapOptional("size",      foo.size);
490      ...
491      }
492    };
493
494    // Example of struct Bar which is natively always a pointer
495    template <>
496    struct MappingTraits<Bar*> {
497      static void mapping(IO &io, Bar *&bar) {
498        io.mapOptional("size",    bar->size);
499      ...
500      }
501    };
502
503
504No Normalization
505----------------
506
507The mapping() method is responsible, if needed, for normalizing and
508denormalizing. In a simple case where the native data structure requires no
509normalization, the mapping method just uses mapOptional() or mapRequired() to
510bind the struct's fields to YAML key names.  For example:
511
512.. code-block:: c++
513
514    using llvm::yaml::MappingTraits;
515    using llvm::yaml::IO;
516
517    template <>
518    struct MappingTraits<Person> {
519      static void mapping(IO &io, Person &info) {
520        io.mapRequired("name",         info.name);
521        io.mapOptional("hat-size",     info.hatSize);
522      }
523    };
524
525
526Normalization
527----------------
528
529When [de]normalization is required, the mapping() method needs a way to access
530normalized values as fields. To help with this, there is
531a template MappingNormalization<> which you can then use to automatically
532do the normalization and denormalization.  The template is used to create
533a local variable in your mapping() method which contains the normalized keys.
534
535Suppose you have native data type
536Polar which specifies a position in polar coordinates (distance, angle):
537
538.. code-block:: c++
539
540    struct Polar {
541      float distance;
542      float angle;
543    };
544
545but you've decided the normalized YAML for should be in x,y coordinates. That
546is, you want the yaml to look like:
547
548.. code-block:: yaml
549
550    x:   10.3
551    y:   -4.7
552
553You can support this by defining a MappingTraits that normalizes the polar
554coordinates to x,y coordinates when writing YAML and denormalizes x,y
555coordinates into polar when reading YAML.
556
557.. code-block:: c++
558
559    using llvm::yaml::MappingTraits;
560    using llvm::yaml::IO;
561
562    template <>
563    struct MappingTraits<Polar> {
564
565      class NormalizedPolar {
566      public:
567        NormalizedPolar(IO &io)
568          : x(0.0), y(0.0) {
569        }
570        NormalizedPolar(IO &, Polar &polar)
571          : x(polar.distance * cos(polar.angle)),
572            y(polar.distance * sin(polar.angle)) {
573        }
574        Polar denormalize(IO &) {
575          return Polar(sqrt(x*x+y*y), arctan(x,y));
576        }
577
578        float        x;
579        float        y;
580      };
581
582      static void mapping(IO &io, Polar &polar) {
583        MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
584
585        io.mapRequired("x",    keys->x);
586        io.mapRequired("y",    keys->y);
587      }
588    };
589
590When writing YAML, the local variable "keys" will be a stack allocated
591instance of NormalizedPolar, constructed from the supplied polar object which
592initializes it x and y fields.  The mapRequired() methods then write out the x
593and y values as key/value pairs.
594
595When reading YAML, the local variable "keys" will be a stack allocated instance
596of NormalizedPolar, constructed by the empty constructor.  The mapRequired
597methods will find the matching key in the YAML document and fill in the x and y
598fields of the NormalizedPolar object keys. At the end of the mapping() method
599when the local keys variable goes out of scope, the denormalize() method will
600automatically be called to convert the read values back to polar coordinates,
601and then assigned back to the second parameter to mapping().
602
603In some cases, the normalized class may be a subclass of the native type and
604could be returned by the denormalize() method, except that the temporary
605normalized instance is stack allocated.  In these cases, the utility template
606MappingNormalizationHeap<> can be used instead.  It just like
607MappingNormalization<> except that it heap allocates the normalized object
608when reading YAML.  It never destroys the normalized object.  The denormalize()
609method can this return "this".
610
611
612Default values
613--------------
614Within a mapping() method, calls to io.mapRequired() mean that that key is
615required to exist when parsing YAML documents, otherwise YAML I/O will issue an
616error.
617
618On the other hand, keys registered with io.mapOptional() are allowed to not
619exist in the YAML document being read.  So what value is put in the field
620for those optional keys?
621There are two steps to how those optional fields are filled in. First, the
622second parameter to the mapping() method is a reference to a native class.  That
623native class must have a default constructor.  Whatever value the default
624constructor initially sets for an optional field will be that field's value.
625Second, the mapOptional() method has an optional third parameter.  If provided
626it is the value that mapOptional() should set that field to if the YAML document
627does not have that key.
628
629There is one important difference between those two ways (default constructor
630and third parameter to mapOptional). When YAML I/O generates a YAML document,
631if the mapOptional() third parameter is used, if the actual value being written
632is the same as (using ==) the default value, then that key/value is not written.
633
634
635Order of Keys
636--------------
637
638When writing out a YAML document, the keys are written in the order that the
639calls to mapRequired()/mapOptional() are made in the mapping() method. This
640gives you a chance to write the fields in an order that a human reader of
641the YAML document would find natural.  This may be different that the order
642of the fields in the native class.
643
644When reading in a YAML document, the keys in the document can be in any order,
645but they are processed in the order that the calls to mapRequired()/mapOptional()
646are made in the mapping() method.  That enables some interesting
647functionality.  For instance, if the first field bound is the cpu and the second
648field bound is flags, and the flags are cpu specific, you can programmatically
649switch how the flags are converted to and from YAML based on the cpu.
650This works for both reading and writing. For example:
651
652.. code-block:: c++
653
654    using llvm::yaml::MappingTraits;
655    using llvm::yaml::IO;
656
657    struct Info {
658      CPUs        cpu;
659      uint32_t    flags;
660    };
661
662    template <>
663    struct MappingTraits<Info> {
664      static void mapping(IO &io, Info &info) {
665        io.mapRequired("cpu",       info.cpu);
666        // flags must come after cpu for this to work when reading yaml
667        if ( info.cpu == cpu_x86_64 )
668          io.mapRequired("flags",  *(My86_64Flags*)info.flags);
669        else
670          io.mapRequired("flags",  *(My86Flags*)info.flags);
671     }
672    };
673
674
675Tags
676----
677
678The YAML syntax supports tags as a way to specify the type of a node before
679it is parsed. This allows dynamic types of nodes.  But the YAML I/O model uses
680static typing, so there are limits to how you can use tags with the YAML I/O
681model. Recently, we added support to YAML I/O for checking/setting the optional
682tag on a map. Using this functionality it is even possbile to support different
683mappings, as long as they are convertable.
684
685To check a tag, inside your mapping() method you can use io.mapTag() to specify
686what the tag should be.  This will also add that tag when writing yaml.
687
688Validation
689----------
690
691Sometimes in a yaml map, each key/value pair is valid, but the combination is
692not.  This is similar to something having no syntax errors, but still having
693semantic errors.  To support semantic level checking, YAML I/O allows
694an optional ``validate()`` method in a MappingTraits template specialization.
695
696When parsing yaml, the ``validate()`` method is call *after* all key/values in
697the map have been processed. Any error message returned by the ``validate()``
698method during input will be printed just a like a syntax error would be printed.
699When writing yaml, the ``validate()`` method is called *before* the yaml
700key/values  are written.  Any error during output will trigger an ``assert()``
701because it is a programming error to have invalid struct values.
702
703
704.. code-block:: c++
705
706    using llvm::yaml::MappingTraits;
707    using llvm::yaml::IO;
708
709    struct Stuff {
710      ...
711    };
712
713    template <>
714    struct MappingTraits<Stuff> {
715      static void mapping(IO &io, Stuff &stuff) {
716      ...
717      }
718      static StringRef validate(IO &io, Stuff &stuff) {
719        // Look at all fields in 'stuff' and if there
720        // are any bad values return a string describing
721        // the error.  Otherwise return an empty string.
722        return StringRef();
723      }
724    };
725
726
727Sequence
728========
729
730To be translated to or from a YAML sequence for your type T you must specialize
731llvm::yaml::SequenceTraits on T and implement two methods:
732``size_t size(IO &io, T&)`` and
733``T::value_type& element(IO &io, T&, size_t indx)``.  For example:
734
735.. code-block:: c++
736
737  template <>
738  struct SequenceTraits<MySeq> {
739    static size_t size(IO &io, MySeq &list) { ... }
740    static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
741  };
742
743The size() method returns how many elements are currently in your sequence.
744The element() method returns a reference to the i'th element in the sequence.
745When parsing YAML, the element() method may be called with an index one bigger
746than the current size.  Your element() method should allocate space for one
747more element (using default constructor if element is a C++ object) and returns
748a reference to that new allocated space.
749
750
751Flow Sequence
752-------------
753A YAML "flow sequence" is a sequence that when written to YAML it uses the
754inline notation (e.g [ foo, bar ] ).  To specify that a sequence type should
755be written in YAML as a flow sequence, your SequenceTraits specialization should
756add "static const bool flow = true;".  For instance:
757
758.. code-block:: c++
759
760  template <>
761  struct SequenceTraits<MyList> {
762    static size_t size(IO &io, MyList &list) { ... }
763    static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
764
765    // The existence of this member causes YAML I/O to use a flow sequence
766    static const bool flow = true;
767  };
768
769With the above, if you used MyList as the data type in your native data
770structures, then then when converted to YAML, a flow sequence of integers
771will be used (e.g. [ 10, -3, 4 ]).
772
773
774Utility Macros
775--------------
776Since a common source of sequences is std::vector<>, YAML I/O provides macros:
777LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
778can be used to easily specify SequenceTraits<> on a std::vector type.  YAML
779I/O does not partial specialize SequenceTraits on std::vector<> because that
780would force all vectors to be sequences.  An example use of the macros:
781
782.. code-block:: c++
783
784  std::vector<MyType1>;
785  std::vector<MyType2>;
786  LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
787  LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
788
789
790
791Document List
792=============
793
794YAML allows you to define multiple "documents" in a single YAML file.  Each
795new document starts with a left aligned "---" token.  The end of all documents
796is denoted with a left aligned "..." token.  Many users of YAML will never
797have need for multiple documents.  The top level node in their YAML schema
798will be a mapping or sequence. For those cases, the following is not needed.
799But for cases where you do want multiple documents, you can specify a
800trait for you document list type.  The trait has the same methods as
801SequenceTraits but is named DocumentListTraits.  For example:
802
803.. code-block:: c++
804
805  template <>
806  struct DocumentListTraits<MyDocList> {
807    static size_t size(IO &io, MyDocList &list) { ... }
808    static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
809  };
810
811
812User Context Data
813=================
814When an llvm::yaml::Input or llvm::yaml::Output object is created their
815constructors take an optional "context" parameter.  This is a pointer to
816whatever state information you might need.
817
818For instance, in a previous example we showed how the conversion type for a
819flags field could be determined at runtime based on the value of another field
820in the mapping. But what if an inner mapping needs to know some field value
821of an outer mapping?  That is where the "context" parameter comes in. You
822can set values in the context in the outer map's mapping() method and
823retrieve those values in the inner map's mapping() method.
824
825The context value is just a void*.  All your traits which use the context
826and operate on your native data types, need to agree what the context value
827actually is.  It could be a pointer to an object or struct which your various
828traits use to shared context sensitive information.
829
830
831Output
832======
833
834The llvm::yaml::Output class is used to generate a YAML document from your
835in-memory data structures, using traits defined on your data types.
836To instantiate an Output object you need an llvm::raw_ostream, and optionally
837a context pointer:
838
839.. code-block:: c++
840
841      class Output : public IO {
842      public:
843        Output(llvm::raw_ostream &, void *context=NULL);
844
845Once you have an Output object, you can use the C++ stream operator on it
846to write your native data as YAML. One thing to recall is that a YAML file
847can contain multiple "documents".  If the top level data structure you are
848streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
849are generating one document and wraps the mapping output
850with  "``---``" and trailing "``...``".
851
852.. code-block:: c++
853
854    using llvm::yaml::Output;
855
856    void dumpMyMapDoc(const MyMapType &info) {
857      Output yout(llvm::outs());
858      yout << info;
859    }
860
861The above could produce output like:
862
863.. code-block:: yaml
864
865     ---
866     name:      Tom
867     hat-size:  7
868     ...
869
870On the other hand, if the top level data structure you are streaming as YAML
871has a DocumentListTraits specialization, then Output walks through each element
872of your DocumentList and generates a "---" before the start of each element
873and ends with a "...".
874
875.. code-block:: c++
876
877    using llvm::yaml::Output;
878
879    void dumpMyMapDoc(const MyDocListType &docList) {
880      Output yout(llvm::outs());
881      yout << docList;
882    }
883
884The above could produce output like:
885
886.. code-block:: yaml
887
888     ---
889     name:      Tom
890     hat-size:  7
891     ---
892     name:      Tom
893     shoe-size:  11
894     ...
895
896Input
897=====
898
899The llvm::yaml::Input class is used to parse YAML document(s) into your native
900data structures. To instantiate an Input
901object you need a StringRef to the entire YAML file, and optionally a context
902pointer:
903
904.. code-block:: c++
905
906      class Input : public IO {
907      public:
908        Input(StringRef inputContent, void *context=NULL);
909
910Once you have an Input object, you can use the C++ stream operator to read
911the document(s).  If you expect there might be multiple YAML documents in
912one file, you'll need to specialize DocumentListTraits on a list of your
913document type and stream in that document list type.  Otherwise you can
914just stream in the document type.  Also, you can check if there was
915any syntax errors in the YAML be calling the error() method on the Input
916object.  For example:
917
918.. code-block:: c++
919
920     // Reading a single document
921     using llvm::yaml::Input;
922
923     Input yin(mb.getBuffer());
924
925     // Parse the YAML file
926     MyDocType theDoc;
927     yin >> theDoc;
928
929     // Check for error
930     if ( yin.error() )
931       return;
932
933
934.. code-block:: c++
935
936     // Reading multiple documents in one file
937     using llvm::yaml::Input;
938
939     LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
940
941     Input yin(mb.getBuffer());
942
943     // Parse the YAML file
944     std::vector<MyDocType> theDocList;
945     yin >> theDocList;
946
947     // Check for error
948     if ( yin.error() )
949       return;
950
951
952