1 #define MINIMAL_STDERR_OUTPUT
2
3 #include "llvm/Analysis/Passes.h"
4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
5 #include "llvm/ExecutionEngine/JIT.h"
6 #include "llvm/IR/DataLayout.h"
7 #include "llvm/IR/DerivedTypes.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Verifier.h"
12 #include "llvm/PassManager.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Transforms/Scalar.h"
15 #include <cctype>
16 #include <cstdio>
17 #include <map>
18 #include <string>
19 #include <vector>
20
21 using namespace llvm;
22
23 //===----------------------------------------------------------------------===//
24 // Lexer
25 //===----------------------------------------------------------------------===//
26
27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
28 // of these for known things.
29 enum Token {
30 tok_eof = -1,
31
32 // commands
33 tok_def = -2, tok_extern = -3,
34
35 // primary
36 tok_identifier = -4, tok_number = -5,
37
38 // control
39 tok_if = -6, tok_then = -7, tok_else = -8,
40 tok_for = -9, tok_in = -10,
41
42 // operators
43 tok_binary = -11, tok_unary = -12,
44
45 // var definition
46 tok_var = -13
47 };
48
49 static std::string IdentifierStr; // Filled in if tok_identifier
50 static double NumVal; // Filled in if tok_number
51
52 /// gettok - Return the next token from standard input.
gettok()53 static int gettok() {
54 static int LastChar = ' ';
55
56 // Skip any whitespace.
57 while (isspace(LastChar))
58 LastChar = getchar();
59
60 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
61 IdentifierStr = LastChar;
62 while (isalnum((LastChar = getchar())))
63 IdentifierStr += LastChar;
64
65 if (IdentifierStr == "def") return tok_def;
66 if (IdentifierStr == "extern") return tok_extern;
67 if (IdentifierStr == "if") return tok_if;
68 if (IdentifierStr == "then") return tok_then;
69 if (IdentifierStr == "else") return tok_else;
70 if (IdentifierStr == "for") return tok_for;
71 if (IdentifierStr == "in") return tok_in;
72 if (IdentifierStr == "binary") return tok_binary;
73 if (IdentifierStr == "unary") return tok_unary;
74 if (IdentifierStr == "var") return tok_var;
75 return tok_identifier;
76 }
77
78 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
79 std::string NumStr;
80 do {
81 NumStr += LastChar;
82 LastChar = getchar();
83 } while (isdigit(LastChar) || LastChar == '.');
84
85 NumVal = strtod(NumStr.c_str(), 0);
86 return tok_number;
87 }
88
89 if (LastChar == '#') {
90 // Comment until end of line.
91 do LastChar = getchar();
92 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
93
94 if (LastChar != EOF)
95 return gettok();
96 }
97
98 // Check for end of file. Don't eat the EOF.
99 if (LastChar == EOF)
100 return tok_eof;
101
102 // Otherwise, just return the character as its ascii value.
103 int ThisChar = LastChar;
104 LastChar = getchar();
105 return ThisChar;
106 }
107
108 //===----------------------------------------------------------------------===//
109 // Abstract Syntax Tree (aka Parse Tree)
110 //===----------------------------------------------------------------------===//
111
112 /// ExprAST - Base class for all expression nodes.
113 class ExprAST {
114 public:
~ExprAST()115 virtual ~ExprAST() {}
116 virtual Value *Codegen() = 0;
117 };
118
119 /// NumberExprAST - Expression class for numeric literals like "1.0".
120 class NumberExprAST : public ExprAST {
121 double Val;
122 public:
NumberExprAST(double val)123 NumberExprAST(double val) : Val(val) {}
124 virtual Value *Codegen();
125 };
126
127 /// VariableExprAST - Expression class for referencing a variable, like "a".
128 class VariableExprAST : public ExprAST {
129 std::string Name;
130 public:
VariableExprAST(const std::string & name)131 VariableExprAST(const std::string &name) : Name(name) {}
getName() const132 const std::string &getName() const { return Name; }
133 virtual Value *Codegen();
134 };
135
136 /// UnaryExprAST - Expression class for a unary operator.
137 class UnaryExprAST : public ExprAST {
138 char Opcode;
139 ExprAST *Operand;
140 public:
UnaryExprAST(char opcode,ExprAST * operand)141 UnaryExprAST(char opcode, ExprAST *operand)
142 : Opcode(opcode), Operand(operand) {}
143 virtual Value *Codegen();
144 };
145
146 /// BinaryExprAST - Expression class for a binary operator.
147 class BinaryExprAST : public ExprAST {
148 char Op;
149 ExprAST *LHS, *RHS;
150 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)151 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
152 : Op(op), LHS(lhs), RHS(rhs) {}
153 virtual Value *Codegen();
154 };
155
156 /// CallExprAST - Expression class for function calls.
157 class CallExprAST : public ExprAST {
158 std::string Callee;
159 std::vector<ExprAST*> Args;
160 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)161 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
162 : Callee(callee), Args(args) {}
163 virtual Value *Codegen();
164 };
165
166 /// IfExprAST - Expression class for if/then/else.
167 class IfExprAST : public ExprAST {
168 ExprAST *Cond, *Then, *Else;
169 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)170 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
171 : Cond(cond), Then(then), Else(_else) {}
172 virtual Value *Codegen();
173 };
174
175 /// ForExprAST - Expression class for for/in.
176 class ForExprAST : public ExprAST {
177 std::string VarName;
178 ExprAST *Start, *End, *Step, *Body;
179 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)180 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
181 ExprAST *step, ExprAST *body)
182 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
183 virtual Value *Codegen();
184 };
185
186 /// VarExprAST - Expression class for var/in
187 class VarExprAST : public ExprAST {
188 std::vector<std::pair<std::string, ExprAST*> > VarNames;
189 ExprAST *Body;
190 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)191 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
192 ExprAST *body)
193 : VarNames(varnames), Body(body) {}
194
195 virtual Value *Codegen();
196 };
197
198 /// PrototypeAST - This class represents the "prototype" for a function,
199 /// which captures its argument names as well as if it is an operator.
200 class PrototypeAST {
201 std::string Name;
202 std::vector<std::string> Args;
203 bool isOperator;
204 unsigned Precedence; // Precedence if a binary op.
205 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)206 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
207 bool isoperator = false, unsigned prec = 0)
208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
209
isUnaryOp() const210 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const211 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
212
getOperatorName() const213 char getOperatorName() const {
214 assert(isUnaryOp() || isBinaryOp());
215 return Name[Name.size()-1];
216 }
217
getBinaryPrecedence() const218 unsigned getBinaryPrecedence() const { return Precedence; }
219
220 Function *Codegen();
221
222 void CreateArgumentAllocas(Function *F);
223 };
224
225 /// FunctionAST - This class represents a function definition itself.
226 class FunctionAST {
227 PrototypeAST *Proto;
228 ExprAST *Body;
229 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)230 FunctionAST(PrototypeAST *proto, ExprAST *body)
231 : Proto(proto), Body(body) {}
232
233 Function *Codegen();
234 };
235
236 //===----------------------------------------------------------------------===//
237 // Parser
238 //===----------------------------------------------------------------------===//
239
240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
241 /// token the parser is looking at. getNextToken reads another token from the
242 /// lexer and updates CurTok with its results.
243 static int CurTok;
getNextToken()244 static int getNextToken() {
245 return CurTok = gettok();
246 }
247
248 /// BinopPrecedence - This holds the precedence for each binary operator that is
249 /// defined.
250 static std::map<char, int> BinopPrecedence;
251
252 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()253 static int GetTokPrecedence() {
254 if (!isascii(CurTok))
255 return -1;
256
257 // Make sure it's a declared binop.
258 int TokPrec = BinopPrecedence[CurTok];
259 if (TokPrec <= 0) return -1;
260 return TokPrec;
261 }
262
263 /// Error* - These are little helper functions for error handling.
Error(const char * Str)264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
267
268 static ExprAST *ParseExpression();
269
270 /// identifierexpr
271 /// ::= identifier
272 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()273 static ExprAST *ParseIdentifierExpr() {
274 std::string IdName = IdentifierStr;
275
276 getNextToken(); // eat identifier.
277
278 if (CurTok != '(') // Simple variable ref.
279 return new VariableExprAST(IdName);
280
281 // Call.
282 getNextToken(); // eat (
283 std::vector<ExprAST*> Args;
284 if (CurTok != ')') {
285 while (1) {
286 ExprAST *Arg = ParseExpression();
287 if (!Arg) return 0;
288 Args.push_back(Arg);
289
290 if (CurTok == ')') break;
291
292 if (CurTok != ',')
293 return Error("Expected ')' or ',' in argument list");
294 getNextToken();
295 }
296 }
297
298 // Eat the ')'.
299 getNextToken();
300
301 return new CallExprAST(IdName, Args);
302 }
303
304 /// numberexpr ::= number
ParseNumberExpr()305 static ExprAST *ParseNumberExpr() {
306 ExprAST *Result = new NumberExprAST(NumVal);
307 getNextToken(); // consume the number
308 return Result;
309 }
310
311 /// parenexpr ::= '(' expression ')'
ParseParenExpr()312 static ExprAST *ParseParenExpr() {
313 getNextToken(); // eat (.
314 ExprAST *V = ParseExpression();
315 if (!V) return 0;
316
317 if (CurTok != ')')
318 return Error("expected ')'");
319 getNextToken(); // eat ).
320 return V;
321 }
322
323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()324 static ExprAST *ParseIfExpr() {
325 getNextToken(); // eat the if.
326
327 // condition.
328 ExprAST *Cond = ParseExpression();
329 if (!Cond) return 0;
330
331 if (CurTok != tok_then)
332 return Error("expected then");
333 getNextToken(); // eat the then
334
335 ExprAST *Then = ParseExpression();
336 if (Then == 0) return 0;
337
338 if (CurTok != tok_else)
339 return Error("expected else");
340
341 getNextToken();
342
343 ExprAST *Else = ParseExpression();
344 if (!Else) return 0;
345
346 return new IfExprAST(Cond, Then, Else);
347 }
348
349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()350 static ExprAST *ParseForExpr() {
351 getNextToken(); // eat the for.
352
353 if (CurTok != tok_identifier)
354 return Error("expected identifier after for");
355
356 std::string IdName = IdentifierStr;
357 getNextToken(); // eat identifier.
358
359 if (CurTok != '=')
360 return Error("expected '=' after for");
361 getNextToken(); // eat '='.
362
363
364 ExprAST *Start = ParseExpression();
365 if (Start == 0) return 0;
366 if (CurTok != ',')
367 return Error("expected ',' after for start value");
368 getNextToken();
369
370 ExprAST *End = ParseExpression();
371 if (End == 0) return 0;
372
373 // The step value is optional.
374 ExprAST *Step = 0;
375 if (CurTok == ',') {
376 getNextToken();
377 Step = ParseExpression();
378 if (Step == 0) return 0;
379 }
380
381 if (CurTok != tok_in)
382 return Error("expected 'in' after for");
383 getNextToken(); // eat 'in'.
384
385 ExprAST *Body = ParseExpression();
386 if (Body == 0) return 0;
387
388 return new ForExprAST(IdName, Start, End, Step, Body);
389 }
390
391 /// varexpr ::= 'var' identifier ('=' expression)?
392 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()393 static ExprAST *ParseVarExpr() {
394 getNextToken(); // eat the var.
395
396 std::vector<std::pair<std::string, ExprAST*> > VarNames;
397
398 // At least one variable name is required.
399 if (CurTok != tok_identifier)
400 return Error("expected identifier after var");
401
402 while (1) {
403 std::string Name = IdentifierStr;
404 getNextToken(); // eat identifier.
405
406 // Read the optional initializer.
407 ExprAST *Init = 0;
408 if (CurTok == '=') {
409 getNextToken(); // eat the '='.
410
411 Init = ParseExpression();
412 if (Init == 0) return 0;
413 }
414
415 VarNames.push_back(std::make_pair(Name, Init));
416
417 // End of var list, exit loop.
418 if (CurTok != ',') break;
419 getNextToken(); // eat the ','.
420
421 if (CurTok != tok_identifier)
422 return Error("expected identifier list after var");
423 }
424
425 // At this point, we have to have 'in'.
426 if (CurTok != tok_in)
427 return Error("expected 'in' keyword after 'var'");
428 getNextToken(); // eat 'in'.
429
430 ExprAST *Body = ParseExpression();
431 if (Body == 0) return 0;
432
433 return new VarExprAST(VarNames, Body);
434 }
435
436 /// primary
437 /// ::= identifierexpr
438 /// ::= numberexpr
439 /// ::= parenexpr
440 /// ::= ifexpr
441 /// ::= forexpr
442 /// ::= varexpr
ParsePrimary()443 static ExprAST *ParsePrimary() {
444 switch (CurTok) {
445 default: return Error("unknown token when expecting an expression");
446 case tok_identifier: return ParseIdentifierExpr();
447 case tok_number: return ParseNumberExpr();
448 case '(': return ParseParenExpr();
449 case tok_if: return ParseIfExpr();
450 case tok_for: return ParseForExpr();
451 case tok_var: return ParseVarExpr();
452 }
453 }
454
455 /// unary
456 /// ::= primary
457 /// ::= '!' unary
ParseUnary()458 static ExprAST *ParseUnary() {
459 // If the current token is not an operator, it must be a primary expr.
460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
461 return ParsePrimary();
462
463 // If this is a unary operator, read it.
464 int Opc = CurTok;
465 getNextToken();
466 if (ExprAST *Operand = ParseUnary())
467 return new UnaryExprAST(Opc, Operand);
468 return 0;
469 }
470
471 /// binoprhs
472 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
474 // If this is a binop, find its precedence.
475 while (1) {
476 int TokPrec = GetTokPrecedence();
477
478 // If this is a binop that binds at least as tightly as the current binop,
479 // consume it, otherwise we are done.
480 if (TokPrec < ExprPrec)
481 return LHS;
482
483 // Okay, we know this is a binop.
484 int BinOp = CurTok;
485 getNextToken(); // eat binop
486
487 // Parse the unary expression after the binary operator.
488 ExprAST *RHS = ParseUnary();
489 if (!RHS) return 0;
490
491 // If BinOp binds less tightly with RHS than the operator after RHS, let
492 // the pending operator take RHS as its LHS.
493 int NextPrec = GetTokPrecedence();
494 if (TokPrec < NextPrec) {
495 RHS = ParseBinOpRHS(TokPrec+1, RHS);
496 if (RHS == 0) return 0;
497 }
498
499 // Merge LHS/RHS.
500 LHS = new BinaryExprAST(BinOp, LHS, RHS);
501 }
502 }
503
504 /// expression
505 /// ::= unary binoprhs
506 ///
ParseExpression()507 static ExprAST *ParseExpression() {
508 ExprAST *LHS = ParseUnary();
509 if (!LHS) return 0;
510
511 return ParseBinOpRHS(0, LHS);
512 }
513
514 /// prototype
515 /// ::= id '(' id* ')'
516 /// ::= binary LETTER number? (id, id)
517 /// ::= unary LETTER (id)
ParsePrototype()518 static PrototypeAST *ParsePrototype() {
519 std::string FnName;
520
521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
522 unsigned BinaryPrecedence = 30;
523
524 switch (CurTok) {
525 default:
526 return ErrorP("Expected function name in prototype");
527 case tok_identifier:
528 FnName = IdentifierStr;
529 Kind = 0;
530 getNextToken();
531 break;
532 case tok_unary:
533 getNextToken();
534 if (!isascii(CurTok))
535 return ErrorP("Expected unary operator");
536 FnName = "unary";
537 FnName += (char)CurTok;
538 Kind = 1;
539 getNextToken();
540 break;
541 case tok_binary:
542 getNextToken();
543 if (!isascii(CurTok))
544 return ErrorP("Expected binary operator");
545 FnName = "binary";
546 FnName += (char)CurTok;
547 Kind = 2;
548 getNextToken();
549
550 // Read the precedence if present.
551 if (CurTok == tok_number) {
552 if (NumVal < 1 || NumVal > 100)
553 return ErrorP("Invalid precedecnce: must be 1..100");
554 BinaryPrecedence = (unsigned)NumVal;
555 getNextToken();
556 }
557 break;
558 }
559
560 if (CurTok != '(')
561 return ErrorP("Expected '(' in prototype");
562
563 std::vector<std::string> ArgNames;
564 while (getNextToken() == tok_identifier)
565 ArgNames.push_back(IdentifierStr);
566 if (CurTok != ')')
567 return ErrorP("Expected ')' in prototype");
568
569 // success.
570 getNextToken(); // eat ')'.
571
572 // Verify right number of names for operator.
573 if (Kind && ArgNames.size() != Kind)
574 return ErrorP("Invalid number of operands for operator");
575
576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
577 }
578
579 /// definition ::= 'def' prototype expression
ParseDefinition()580 static FunctionAST *ParseDefinition() {
581 getNextToken(); // eat def.
582 PrototypeAST *Proto = ParsePrototype();
583 if (Proto == 0) return 0;
584
585 if (ExprAST *E = ParseExpression())
586 return new FunctionAST(Proto, E);
587 return 0;
588 }
589
590 /// toplevelexpr ::= expression
ParseTopLevelExpr()591 static FunctionAST *ParseTopLevelExpr() {
592 if (ExprAST *E = ParseExpression()) {
593 // Make an anonymous proto.
594 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
595 return new FunctionAST(Proto, E);
596 }
597 return 0;
598 }
599
600 /// external ::= 'extern' prototype
ParseExtern()601 static PrototypeAST *ParseExtern() {
602 getNextToken(); // eat extern.
603 return ParsePrototype();
604 }
605
606 //===----------------------------------------------------------------------===//
607 // Code Generation
608 //===----------------------------------------------------------------------===//
609
610 static Module *TheModule;
611 static FunctionPassManager *TheFPM;
612 static IRBuilder<> Builder(getGlobalContext());
613 static std::map<std::string, AllocaInst*> NamedValues;
614
ErrorV(const char * Str)615 Value *ErrorV(const char *Str) { Error(Str); return 0; }
616
617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
618 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
620 const std::string &VarName) {
621 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
622 TheFunction->getEntryBlock().begin());
623 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
624 VarName.c_str());
625 }
626
Codegen()627 Value *NumberExprAST::Codegen() {
628 return ConstantFP::get(getGlobalContext(), APFloat(Val));
629 }
630
Codegen()631 Value *VariableExprAST::Codegen() {
632 // Look this variable up in the function.
633 Value *V = NamedValues[Name];
634 if (V == 0) return ErrorV("Unknown variable name");
635
636 // Load the value.
637 return Builder.CreateLoad(V, Name.c_str());
638 }
639
Codegen()640 Value *UnaryExprAST::Codegen() {
641 Value *OperandV = Operand->Codegen();
642 if (OperandV == 0) return 0;
643 #ifdef USE_MCJIT
644 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
645 #else
646 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
647 #endif
648 if (F == 0)
649 return ErrorV("Unknown unary operator");
650
651 return Builder.CreateCall(F, OperandV, "unop");
652 }
653
Codegen()654 Value *BinaryExprAST::Codegen() {
655 // Special case '=' because we don't want to emit the LHS as an expression.
656 if (Op == '=') {
657 // Assignment requires the LHS to be an identifier.
658 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
659 if (!LHSE)
660 return ErrorV("destination of '=' must be a variable");
661 // Codegen the RHS.
662 Value *Val = RHS->Codegen();
663 if (Val == 0) return 0;
664
665 // Look up the name.
666 Value *Variable = NamedValues[LHSE->getName()];
667 if (Variable == 0) return ErrorV("Unknown variable name");
668
669 Builder.CreateStore(Val, Variable);
670 return Val;
671 }
672
673 Value *L = LHS->Codegen();
674 Value *R = RHS->Codegen();
675 if (L == 0 || R == 0) return 0;
676
677 switch (Op) {
678 case '+': return Builder.CreateFAdd(L, R, "addtmp");
679 case '-': return Builder.CreateFSub(L, R, "subtmp");
680 case '*': return Builder.CreateFMul(L, R, "multmp");
681 case '/': return Builder.CreateFDiv(L, R, "divtmp");
682 case '<':
683 L = Builder.CreateFCmpULT(L, R, "cmptmp");
684 // Convert bool 0/1 to double 0.0 or 1.0
685 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
686 "booltmp");
687 default: break;
688 }
689
690 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
691 // a call to it.
692 Function *F = TheModule->getFunction(std::string("binary")+Op);
693 assert(F && "binary operator not found!");
694
695 Value *Ops[] = { L, R };
696 return Builder.CreateCall(F, Ops, "binop");
697 }
698
Codegen()699 Value *CallExprAST::Codegen() {
700 // Look up the name in the global module table.
701 Function *CalleeF = TheModule->getFunction(Callee);
702 if (CalleeF == 0) {
703 char error_str[64];
704 sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
705 return ErrorV(error_str);
706 }
707
708 // If argument mismatch error.
709 if (CalleeF->arg_size() != Args.size())
710 return ErrorV("Incorrect # arguments passed");
711
712 std::vector<Value*> ArgsV;
713 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
714 ArgsV.push_back(Args[i]->Codegen());
715 if (ArgsV.back() == 0) return 0;
716 }
717
718 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
719 }
720
Codegen()721 Value *IfExprAST::Codegen() {
722 Value *CondV = Cond->Codegen();
723 if (CondV == 0) return 0;
724
725 // Convert condition to a bool by comparing equal to 0.0.
726 CondV = Builder.CreateFCmpONE(CondV,
727 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
728 "ifcond");
729
730 Function *TheFunction = Builder.GetInsertBlock()->getParent();
731
732 // Create blocks for the then and else cases. Insert the 'then' block at the
733 // end of the function.
734 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
735 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
736 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
737
738 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
739
740 // Emit then value.
741 Builder.SetInsertPoint(ThenBB);
742
743 Value *ThenV = Then->Codegen();
744 if (ThenV == 0) return 0;
745
746 Builder.CreateBr(MergeBB);
747 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
748 ThenBB = Builder.GetInsertBlock();
749
750 // Emit else block.
751 TheFunction->getBasicBlockList().push_back(ElseBB);
752 Builder.SetInsertPoint(ElseBB);
753
754 Value *ElseV = Else->Codegen();
755 if (ElseV == 0) return 0;
756
757 Builder.CreateBr(MergeBB);
758 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
759 ElseBB = Builder.GetInsertBlock();
760
761 // Emit merge block.
762 TheFunction->getBasicBlockList().push_back(MergeBB);
763 Builder.SetInsertPoint(MergeBB);
764 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
765 "iftmp");
766
767 PN->addIncoming(ThenV, ThenBB);
768 PN->addIncoming(ElseV, ElseBB);
769 return PN;
770 }
771
Codegen()772 Value *ForExprAST::Codegen() {
773 // Output this as:
774 // var = alloca double
775 // ...
776 // start = startexpr
777 // store start -> var
778 // goto loop
779 // loop:
780 // ...
781 // bodyexpr
782 // ...
783 // loopend:
784 // step = stepexpr
785 // endcond = endexpr
786 //
787 // curvar = load var
788 // nextvar = curvar + step
789 // store nextvar -> var
790 // br endcond, loop, endloop
791 // outloop:
792
793 Function *TheFunction = Builder.GetInsertBlock()->getParent();
794
795 // Create an alloca for the variable in the entry block.
796 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
797
798 // Emit the start code first, without 'variable' in scope.
799 Value *StartVal = Start->Codegen();
800 if (StartVal == 0) return 0;
801
802 // Store the value into the alloca.
803 Builder.CreateStore(StartVal, Alloca);
804
805 // Make the new basic block for the loop header, inserting after current
806 // block.
807 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
808
809 // Insert an explicit fall through from the current block to the LoopBB.
810 Builder.CreateBr(LoopBB);
811
812 // Start insertion in LoopBB.
813 Builder.SetInsertPoint(LoopBB);
814
815 // Within the loop, the variable is defined equal to the PHI node. If it
816 // shadows an existing variable, we have to restore it, so save it now.
817 AllocaInst *OldVal = NamedValues[VarName];
818 NamedValues[VarName] = Alloca;
819
820 // Emit the body of the loop. This, like any other expr, can change the
821 // current BB. Note that we ignore the value computed by the body, but don't
822 // allow an error.
823 if (Body->Codegen() == 0)
824 return 0;
825
826 // Emit the step value.
827 Value *StepVal;
828 if (Step) {
829 StepVal = Step->Codegen();
830 if (StepVal == 0) return 0;
831 } else {
832 // If not specified, use 1.0.
833 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
834 }
835
836 // Compute the end condition.
837 Value *EndCond = End->Codegen();
838 if (EndCond == 0) return EndCond;
839
840 // Reload, increment, and restore the alloca. This handles the case where
841 // the body of the loop mutates the variable.
842 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
843 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
844 Builder.CreateStore(NextVar, Alloca);
845
846 // Convert condition to a bool by comparing equal to 0.0.
847 EndCond = Builder.CreateFCmpONE(EndCond,
848 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
849 "loopcond");
850
851 // Create the "after loop" block and insert it.
852 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
853
854 // Insert the conditional branch into the end of LoopEndBB.
855 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
856
857 // Any new code will be inserted in AfterBB.
858 Builder.SetInsertPoint(AfterBB);
859
860 // Restore the unshadowed variable.
861 if (OldVal)
862 NamedValues[VarName] = OldVal;
863 else
864 NamedValues.erase(VarName);
865
866
867 // for expr always returns 0.0.
868 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
869 }
870
Codegen()871 Value *VarExprAST::Codegen() {
872 std::vector<AllocaInst *> OldBindings;
873
874 Function *TheFunction = Builder.GetInsertBlock()->getParent();
875
876 // Register all variables and emit their initializer.
877 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
878 const std::string &VarName = VarNames[i].first;
879 ExprAST *Init = VarNames[i].second;
880
881 // Emit the initializer before adding the variable to scope, this prevents
882 // the initializer from referencing the variable itself, and permits stuff
883 // like this:
884 // var a = 1 in
885 // var a = a in ... # refers to outer 'a'.
886 Value *InitVal;
887 if (Init) {
888 InitVal = Init->Codegen();
889 if (InitVal == 0) return 0;
890 } else { // If not specified, use 0.0.
891 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
892 }
893
894 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
895 Builder.CreateStore(InitVal, Alloca);
896
897 // Remember the old variable binding so that we can restore the binding when
898 // we unrecurse.
899 OldBindings.push_back(NamedValues[VarName]);
900
901 // Remember this binding.
902 NamedValues[VarName] = Alloca;
903 }
904
905 // Codegen the body, now that all vars are in scope.
906 Value *BodyVal = Body->Codegen();
907 if (BodyVal == 0) return 0;
908
909 // Pop all our variables from scope.
910 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
911 NamedValues[VarNames[i].first] = OldBindings[i];
912
913 // Return the body computation.
914 return BodyVal;
915 }
916
Codegen()917 Function *PrototypeAST::Codegen() {
918 // Make the function type: double(double,double) etc.
919 std::vector<Type*> Doubles(Args.size(),
920 Type::getDoubleTy(getGlobalContext()));
921 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
922 Doubles, false);
923
924 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
925 // If F conflicted, there was already something named 'Name'. If it has a
926 // body, don't allow redefinition or reextern.
927 if (F->getName() != Name) {
928 // Delete the one we just made and get the existing one.
929 F->eraseFromParent();
930 F = TheModule->getFunction(Name);
931 // If F already has a body, reject this.
932 if (!F->empty()) {
933 ErrorF("redefinition of function");
934 return 0;
935 }
936 // If F took a different number of args, reject.
937 if (F->arg_size() != Args.size()) {
938 ErrorF("redefinition of function with different # args");
939 return 0;
940 }
941 }
942
943 // Set names for all arguments.
944 unsigned Idx = 0;
945 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
946 ++AI, ++Idx)
947 AI->setName(Args[Idx]);
948
949 return F;
950 }
951
952 /// CreateArgumentAllocas - Create an alloca for each argument and register the
953 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)954 void PrototypeAST::CreateArgumentAllocas(Function *F) {
955 Function::arg_iterator AI = F->arg_begin();
956 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
957 // Create an alloca for this variable.
958 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
959
960 // Store the initial value into the alloca.
961 Builder.CreateStore(AI, Alloca);
962
963 // Add arguments to variable symbol table.
964 NamedValues[Args[Idx]] = Alloca;
965 }
966 }
967
Codegen()968 Function *FunctionAST::Codegen() {
969 NamedValues.clear();
970
971 Function *TheFunction = Proto->Codegen();
972 if (TheFunction == 0)
973 return 0;
974
975 // If this is an operator, install it.
976 if (Proto->isBinaryOp())
977 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
978
979 // Create a new basic block to start insertion into.
980 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
981 Builder.SetInsertPoint(BB);
982
983 // Add all arguments to the symbol table and create their allocas.
984 Proto->CreateArgumentAllocas(TheFunction);
985
986 if (Value *RetVal = Body->Codegen()) {
987 // Finish off the function.
988 Builder.CreateRet(RetVal);
989
990 // Validate the generated code, checking for consistency.
991 verifyFunction(*TheFunction);
992
993 // Optimize the function.
994 TheFPM->run(*TheFunction);
995
996 return TheFunction;
997 }
998
999 // Error reading body, remove function.
1000 TheFunction->eraseFromParent();
1001
1002 if (Proto->isBinaryOp())
1003 BinopPrecedence.erase(Proto->getOperatorName());
1004 return 0;
1005 }
1006
1007 //===----------------------------------------------------------------------===//
1008 // Top-Level parsing and JIT Driver
1009 //===----------------------------------------------------------------------===//
1010
1011 static ExecutionEngine *TheExecutionEngine;
1012
HandleDefinition()1013 static void HandleDefinition() {
1014 if (FunctionAST *F = ParseDefinition()) {
1015 if (Function *LF = F->Codegen()) {
1016 #ifndef MINIMAL_STDERR_OUTPUT
1017 fprintf(stderr, "Read function definition:");
1018 LF->dump();
1019 #endif
1020 }
1021 } else {
1022 // Skip token for error recovery.
1023 getNextToken();
1024 }
1025 }
1026
HandleExtern()1027 static void HandleExtern() {
1028 if (PrototypeAST *P = ParseExtern()) {
1029 if (Function *F = P->Codegen()) {
1030 #ifndef MINIMAL_STDERR_OUTPUT
1031 fprintf(stderr, "Read extern: ");
1032 F->dump();
1033 #endif
1034 }
1035 } else {
1036 // Skip token for error recovery.
1037 getNextToken();
1038 }
1039 }
1040
HandleTopLevelExpression()1041 static void HandleTopLevelExpression() {
1042 // Evaluate a top-level expression into an anonymous function.
1043 if (FunctionAST *F = ParseTopLevelExpr()) {
1044 if (Function *LF = F->Codegen()) {
1045 // JIT the function, returning a function pointer.
1046 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1047 // Cast it to the right type (takes no arguments, returns a double) so we
1048 // can call it as a native function.
1049 double (*FP)() = (double (*)())(intptr_t)FPtr;
1050 #ifdef MINIMAL_STDERR_OUTPUT
1051 FP();
1052 #else
1053 fprintf(stderr, "Evaluated to %f\n", FP());
1054 #endif
1055 }
1056 } else {
1057 // Skip token for error recovery.
1058 getNextToken();
1059 }
1060 }
1061
1062 /// top ::= definition | external | expression | ';'
MainLoop()1063 static void MainLoop() {
1064 while (1) {
1065 #ifndef MINIMAL_STDERR_OUTPUT
1066 fprintf(stderr, "ready> ");
1067 #endif
1068 switch (CurTok) {
1069 case tok_eof: return;
1070 case ';': getNextToken(); break; // ignore top-level semicolons.
1071 case tok_def: HandleDefinition(); break;
1072 case tok_extern: HandleExtern(); break;
1073 default: HandleTopLevelExpression(); break;
1074 }
1075 }
1076 }
1077
1078 //===----------------------------------------------------------------------===//
1079 // "Library" functions that can be "extern'd" from user code.
1080 //===----------------------------------------------------------------------===//
1081
1082 /// putchard - putchar that takes a double and returns 0.
1083 extern "C"
putchard(double X)1084 double putchard(double X) {
1085 putchar((char)X);
1086 return 0;
1087 }
1088
1089 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1090 extern "C"
printd(double X)1091 double printd(double X) {
1092 printf("%f", X);
1093 return 0;
1094 }
1095
1096 extern "C"
printlf()1097 double printlf() {
1098 printf("\n");
1099 return 0;
1100 }
1101
1102 //===----------------------------------------------------------------------===//
1103 // Main driver code.
1104 //===----------------------------------------------------------------------===//
1105
main(int argc,char ** argv)1106 int main(int argc, char **argv) {
1107 InitializeNativeTarget();
1108 LLVMContext &Context = getGlobalContext();
1109
1110 // Install standard binary operators.
1111 // 1 is lowest precedence.
1112 BinopPrecedence['='] = 2;
1113 BinopPrecedence['<'] = 10;
1114 BinopPrecedence['+'] = 20;
1115 BinopPrecedence['-'] = 20;
1116 BinopPrecedence['/'] = 40;
1117 BinopPrecedence['*'] = 40; // highest.
1118
1119 // Make the module, which holds all the code.
1120 TheModule = new Module("my cool jit", Context);
1121
1122 // Create the JIT. This takes ownership of the module.
1123 std::string ErrStr;
1124 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1125 if (!TheExecutionEngine) {
1126 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1127 exit(1);
1128 }
1129
1130 FunctionPassManager OurFPM(TheModule);
1131
1132 // Set up the optimizer pipeline. Start with registering info about how the
1133 // target lays out data structures.
1134 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
1135 // Provide basic AliasAnalysis support for GVN.
1136 OurFPM.add(createBasicAliasAnalysisPass());
1137 // Promote allocas to registers.
1138 OurFPM.add(createPromoteMemoryToRegisterPass());
1139 // Do simple "peephole" optimizations and bit-twiddling optzns.
1140 OurFPM.add(createInstructionCombiningPass());
1141 // Reassociate expressions.
1142 OurFPM.add(createReassociatePass());
1143 // Eliminate Common SubExpressions.
1144 OurFPM.add(createGVNPass());
1145 // Simplify the control flow graph (deleting unreachable blocks, etc).
1146 OurFPM.add(createCFGSimplificationPass());
1147
1148 OurFPM.doInitialization();
1149
1150 // Set the global so the code gen can use this.
1151 TheFPM = &OurFPM;
1152
1153 // Prime the first token.
1154 #ifndef MINIMAL_STDERR_OUTPUT
1155 fprintf(stderr, "ready> ");
1156 #endif
1157 getNextToken();
1158
1159 // Run the main "interpreter loop" now.
1160 MainLoop();
1161
1162 // Print out all of the generated code.
1163 TheFPM = 0;
1164 #ifndef MINIMAL_STDERR_OUTPUT
1165 TheModule->dump();
1166 #endif
1167 return 0;
1168 }
1169