• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ADT_TINYPTRVECTOR_H
11 #define LLVM_ADT_TINYPTRVECTOR_H
12 
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/PointerUnion.h"
15 #include "llvm/ADT/SmallVector.h"
16 
17 namespace llvm {
18 
19 /// TinyPtrVector - This class is specialized for cases where there are
20 /// normally 0 or 1 element in a vector, but is general enough to go beyond that
21 /// when required.
22 ///
23 /// NOTE: This container doesn't allow you to store a null pointer into it.
24 ///
25 template <typename EltTy>
26 class TinyPtrVector {
27 public:
28   typedef llvm::SmallVector<EltTy, 4> VecTy;
29   typedef typename VecTy::value_type value_type;
30 
31   llvm::PointerUnion<EltTy, VecTy*> Val;
32 
TinyPtrVector()33   TinyPtrVector() {}
~TinyPtrVector()34   ~TinyPtrVector() {
35     if (VecTy *V = Val.template dyn_cast<VecTy*>())
36       delete V;
37   }
38 
TinyPtrVector(const TinyPtrVector & RHS)39   TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
40     if (VecTy *V = Val.template dyn_cast<VecTy*>())
41       Val = new VecTy(*V);
42   }
43   TinyPtrVector &operator=(const TinyPtrVector &RHS) {
44     if (this == &RHS)
45       return *this;
46     if (RHS.empty()) {
47       this->clear();
48       return *this;
49     }
50 
51     // Try to squeeze into the single slot. If it won't fit, allocate a copied
52     // vector.
53     if (Val.template is<EltTy>()) {
54       if (RHS.size() == 1)
55         Val = RHS.front();
56       else
57         Val = new VecTy(*RHS.Val.template get<VecTy*>());
58       return *this;
59     }
60 
61     // If we have a full vector allocated, try to re-use it.
62     if (RHS.Val.template is<EltTy>()) {
63       Val.template get<VecTy*>()->clear();
64       Val.template get<VecTy*>()->push_back(RHS.front());
65     } else {
66       *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
67     }
68     return *this;
69   }
70 
TinyPtrVector(TinyPtrVector && RHS)71   TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
72     RHS.Val = (EltTy)nullptr;
73   }
74   TinyPtrVector &operator=(TinyPtrVector &&RHS) {
75     if (this == &RHS)
76       return *this;
77     if (RHS.empty()) {
78       this->clear();
79       return *this;
80     }
81 
82     // If this vector has been allocated on the heap, re-use it if cheap. If it
83     // would require more copying, just delete it and we'll steal the other
84     // side.
85     if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
86       if (RHS.Val.template is<EltTy>()) {
87         V->clear();
88         V->push_back(RHS.front());
89         return *this;
90       }
91       delete V;
92     }
93 
94     Val = RHS.Val;
95     RHS.Val = (EltTy)nullptr;
96     return *this;
97   }
98 
99   // implicit conversion operator to ArrayRef.
100   operator ArrayRef<EltTy>() const {
101     if (Val.isNull())
102       return ArrayRef<EltTy>();
103     if (Val.template is<EltTy>())
104       return *Val.getAddrOfPtr1();
105     return *Val.template get<VecTy*>();
106   }
107 
empty()108   bool empty() const {
109     // This vector can be empty if it contains no element, or if it
110     // contains a pointer to an empty vector.
111     if (Val.isNull()) return true;
112     if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
113       return Vec->empty();
114     return false;
115   }
116 
size()117   unsigned size() const {
118     if (empty())
119       return 0;
120     if (Val.template is<EltTy>())
121       return 1;
122     return Val.template get<VecTy*>()->size();
123   }
124 
125   typedef const EltTy *const_iterator;
126   typedef EltTy *iterator;
127 
begin()128   iterator begin() {
129     if (Val.template is<EltTy>())
130       return Val.getAddrOfPtr1();
131 
132     return Val.template get<VecTy *>()->begin();
133 
134   }
end()135   iterator end() {
136     if (Val.template is<EltTy>())
137       return begin() + (Val.isNull() ? 0 : 1);
138 
139     return Val.template get<VecTy *>()->end();
140   }
141 
begin()142   const_iterator begin() const {
143     return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
144   }
145 
end()146   const_iterator end() const {
147     return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
148   }
149 
150   EltTy operator[](unsigned i) const {
151     assert(!Val.isNull() && "can't index into an empty vector");
152     if (EltTy V = Val.template dyn_cast<EltTy>()) {
153       assert(i == 0 && "tinyvector index out of range");
154       return V;
155     }
156 
157     assert(i < Val.template get<VecTy*>()->size() &&
158            "tinyvector index out of range");
159     return (*Val.template get<VecTy*>())[i];
160   }
161 
front()162   EltTy front() const {
163     assert(!empty() && "vector empty");
164     if (EltTy V = Val.template dyn_cast<EltTy>())
165       return V;
166     return Val.template get<VecTy*>()->front();
167   }
168 
back()169   EltTy back() const {
170     assert(!empty() && "vector empty");
171     if (EltTy V = Val.template dyn_cast<EltTy>())
172       return V;
173     return Val.template get<VecTy*>()->back();
174   }
175 
push_back(EltTy NewVal)176   void push_back(EltTy NewVal) {
177     assert(NewVal && "Can't add a null value");
178 
179     // If we have nothing, add something.
180     if (Val.isNull()) {
181       Val = NewVal;
182       return;
183     }
184 
185     // If we have a single value, convert to a vector.
186     if (EltTy V = Val.template dyn_cast<EltTy>()) {
187       Val = new VecTy();
188       Val.template get<VecTy*>()->push_back(V);
189     }
190 
191     // Add the new value, we know we have a vector.
192     Val.template get<VecTy*>()->push_back(NewVal);
193   }
194 
pop_back()195   void pop_back() {
196     // If we have a single value, convert to empty.
197     if (Val.template is<EltTy>())
198       Val = (EltTy)nullptr;
199     else if (VecTy *Vec = Val.template get<VecTy*>())
200       Vec->pop_back();
201   }
202 
clear()203   void clear() {
204     // If we have a single value, convert to empty.
205     if (Val.template is<EltTy>()) {
206       Val = (EltTy)nullptr;
207     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
208       // If we have a vector form, just clear it.
209       Vec->clear();
210     }
211     // Otherwise, we're already empty.
212   }
213 
erase(iterator I)214   iterator erase(iterator I) {
215     assert(I >= begin() && "Iterator to erase is out of bounds.");
216     assert(I < end() && "Erasing at past-the-end iterator.");
217 
218     // If we have a single value, convert to empty.
219     if (Val.template is<EltTy>()) {
220       if (I == begin())
221         Val = (EltTy)nullptr;
222     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
223       // multiple items in a vector; just do the erase, there is no
224       // benefit to collapsing back to a pointer
225       return Vec->erase(I);
226     }
227     return end();
228   }
229 
erase(iterator S,iterator E)230   iterator erase(iterator S, iterator E) {
231     assert(S >= begin() && "Range to erase is out of bounds.");
232     assert(S <= E && "Trying to erase invalid range.");
233     assert(E <= end() && "Trying to erase past the end.");
234 
235     if (Val.template is<EltTy>()) {
236       if (S == begin() && S != E)
237         Val = (EltTy)nullptr;
238     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
239       return Vec->erase(S, E);
240     }
241     return end();
242   }
243 
insert(iterator I,const EltTy & Elt)244   iterator insert(iterator I, const EltTy &Elt) {
245     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
246     assert(I <= this->end() && "Inserting past the end of the vector.");
247     if (I == end()) {
248       push_back(Elt);
249       return std::prev(end());
250     }
251     assert(!Val.isNull() && "Null value with non-end insert iterator.");
252     if (EltTy V = Val.template dyn_cast<EltTy>()) {
253       assert(I == begin());
254       Val = Elt;
255       push_back(V);
256       return begin();
257     }
258 
259     return Val.template get<VecTy*>()->insert(I, Elt);
260   }
261 
262   template<typename ItTy>
insert(iterator I,ItTy From,ItTy To)263   iterator insert(iterator I, ItTy From, ItTy To) {
264     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
265     assert(I <= this->end() && "Inserting past the end of the vector.");
266     if (From == To)
267       return I;
268 
269     // If we have a single value, convert to a vector.
270     ptrdiff_t Offset = I - begin();
271     if (Val.isNull()) {
272       if (std::next(From) == To) {
273         Val = *From;
274         return begin();
275       }
276 
277       Val = new VecTy();
278     } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
279       Val = new VecTy();
280       Val.template get<VecTy*>()->push_back(V);
281     }
282     return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
283   }
284 };
285 } // end namespace llvm
286 
287 #endif
288