1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "post-RA-sched"
29
30 CriticalAntiDepBreaker::
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)31 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
32 AntiDepBreaker(), MF(MFi),
33 MRI(MF.getRegInfo()),
34 TII(MF.getTarget().getInstrInfo()),
35 TRI(MF.getTarget().getRegisterInfo()),
36 RegClassInfo(RCI),
37 Classes(TRI->getNumRegs(), nullptr),
38 KillIndices(TRI->getNumRegs(), 0),
39 DefIndices(TRI->getNumRegs(), 0),
40 KeepRegs(TRI->getNumRegs(), false) {}
41
~CriticalAntiDepBreaker()42 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43 }
44
StartBlock(MachineBasicBlock * BB)45 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
46 const unsigned BBSize = BB->size();
47 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
48 // Clear out the register class data.
49 Classes[i] = nullptr;
50
51 // Initialize the indices to indicate that no registers are live.
52 KillIndices[i] = ~0u;
53 DefIndices[i] = BBSize;
54 }
55
56 // Clear "do not change" set.
57 KeepRegs.reset();
58
59 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
60
61 // Examine the live-in regs of all successors.
62 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
63 SE = BB->succ_end(); SI != SE; ++SI)
64 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
65 E = (*SI)->livein_end(); I != E; ++I) {
66 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
67 unsigned Reg = *AI;
68 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
69 KillIndices[Reg] = BBSize;
70 DefIndices[Reg] = ~0u;
71 }
72 }
73
74 // Mark live-out callee-saved registers. In a return block this is
75 // all callee-saved registers. In non-return this is any
76 // callee-saved register that is not saved in the prolog.
77 const MachineFrameInfo *MFI = MF.getFrameInfo();
78 BitVector Pristine = MFI->getPristineRegs(BB);
79 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
80 if (!IsReturnBlock && !Pristine.test(*I)) continue;
81 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82 unsigned Reg = *AI;
83 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84 KillIndices[Reg] = BBSize;
85 DefIndices[Reg] = ~0u;
86 }
87 }
88 }
89
FinishBlock()90 void CriticalAntiDepBreaker::FinishBlock() {
91 RegRefs.clear();
92 KeepRegs.reset();
93 }
94
Observe(MachineInstr * MI,unsigned Count,unsigned InsertPosIndex)95 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
96 unsigned InsertPosIndex) {
97 // Kill instructions can define registers but are really nops, and there might
98 // be a real definition earlier that needs to be paired with uses dominated by
99 // this kill.
100
101 // FIXME: It may be possible to remove the isKill() restriction once PR18663
102 // has been properly fixed. There can be value in processing kills as seen in
103 // the AggressiveAntiDepBreaker class.
104 if (MI->isDebugValue() || MI->isKill())
105 return;
106 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
107
108 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
109 if (KillIndices[Reg] != ~0u) {
110 // If Reg is currently live, then mark that it can't be renamed as
111 // we don't know the extent of its live-range anymore (now that it
112 // has been scheduled).
113 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
114 KillIndices[Reg] = Count;
115 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
116 // Any register which was defined within the previous scheduling region
117 // may have been rescheduled and its lifetime may overlap with registers
118 // in ways not reflected in our current liveness state. For each such
119 // register, adjust the liveness state to be conservatively correct.
120 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
121
122 // Move the def index to the end of the previous region, to reflect
123 // that the def could theoretically have been scheduled at the end.
124 DefIndices[Reg] = InsertPosIndex;
125 }
126 }
127
128 PrescanInstruction(MI);
129 ScanInstruction(MI, Count);
130 }
131
132 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
133 /// critical path.
CriticalPathStep(const SUnit * SU)134 static const SDep *CriticalPathStep(const SUnit *SU) {
135 const SDep *Next = nullptr;
136 unsigned NextDepth = 0;
137 // Find the predecessor edge with the greatest depth.
138 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
139 P != PE; ++P) {
140 const SUnit *PredSU = P->getSUnit();
141 unsigned PredLatency = P->getLatency();
142 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
143 // In the case of a latency tie, prefer an anti-dependency edge over
144 // other types of edges.
145 if (NextDepth < PredTotalLatency ||
146 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
147 NextDepth = PredTotalLatency;
148 Next = &*P;
149 }
150 }
151 return Next;
152 }
153
PrescanInstruction(MachineInstr * MI)154 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
155 // It's not safe to change register allocation for source operands of
156 // instructions that have special allocation requirements. Also assume all
157 // registers used in a call must not be changed (ABI).
158 // FIXME: The issue with predicated instruction is more complex. We are being
159 // conservative here because the kill markers cannot be trusted after
160 // if-conversion:
161 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
162 // ...
163 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
164 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
165 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
166 //
167 // The first R6 kill is not really a kill since it's killed by a predicated
168 // instruction which may not be executed. The second R6 def may or may not
169 // re-define R6 so it's not safe to change it since the last R6 use cannot be
170 // changed.
171 bool Special = MI->isCall() ||
172 MI->hasExtraSrcRegAllocReq() ||
173 TII->isPredicated(MI);
174
175 // Scan the register operands for this instruction and update
176 // Classes and RegRefs.
177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178 MachineOperand &MO = MI->getOperand(i);
179 if (!MO.isReg()) continue;
180 unsigned Reg = MO.getReg();
181 if (Reg == 0) continue;
182 const TargetRegisterClass *NewRC = nullptr;
183
184 if (i < MI->getDesc().getNumOperands())
185 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
186
187 // For now, only allow the register to be changed if its register
188 // class is consistent across all uses.
189 if (!Classes[Reg] && NewRC)
190 Classes[Reg] = NewRC;
191 else if (!NewRC || Classes[Reg] != NewRC)
192 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
193
194 // Now check for aliases.
195 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
196 // If an alias of the reg is used during the live range, give up.
197 // Note that this allows us to skip checking if AntiDepReg
198 // overlaps with any of the aliases, among other things.
199 unsigned AliasReg = *AI;
200 if (Classes[AliasReg]) {
201 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
202 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203 }
204 }
205
206 // If we're still willing to consider this register, note the reference.
207 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
208 RegRefs.insert(std::make_pair(Reg, &MO));
209
210 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
211 // it or any of its sub or super regs. We need to use KeepRegs to mark the
212 // reg because not all uses of the same reg within an instruction are
213 // necessarily tagged as tied.
214 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
215 // def register but not the second (see PR20020 for details).
216 // FIXME: can this check be relaxed to account for undef uses
217 // of a register? In the above 'xor' example, the uses of %eax are undef, so
218 // earlier instructions could still replace %eax even though the 'xor'
219 // itself can't be changed.
220 if (MI->isRegTiedToUseOperand(i) &&
221 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
222 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
223 SubRegs.isValid(); ++SubRegs) {
224 KeepRegs.set(*SubRegs);
225 }
226 for (MCSuperRegIterator SuperRegs(Reg, TRI);
227 SuperRegs.isValid(); ++SuperRegs) {
228 KeepRegs.set(*SuperRegs);
229 }
230 }
231
232 if (MO.isUse() && Special) {
233 if (!KeepRegs.test(Reg)) {
234 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
235 SubRegs.isValid(); ++SubRegs)
236 KeepRegs.set(*SubRegs);
237 }
238 }
239 }
240 }
241
ScanInstruction(MachineInstr * MI,unsigned Count)242 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
243 unsigned Count) {
244 // Update liveness.
245 // Proceeding upwards, registers that are defed but not used in this
246 // instruction are now dead.
247 assert(!MI->isKill() && "Attempting to scan a kill instruction");
248
249 if (!TII->isPredicated(MI)) {
250 // Predicated defs are modeled as read + write, i.e. similar to two
251 // address updates.
252 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
253 MachineOperand &MO = MI->getOperand(i);
254
255 if (MO.isRegMask())
256 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
257 if (MO.clobbersPhysReg(i)) {
258 DefIndices[i] = Count;
259 KillIndices[i] = ~0u;
260 KeepRegs.reset(i);
261 Classes[i] = nullptr;
262 RegRefs.erase(i);
263 }
264
265 if (!MO.isReg()) continue;
266 unsigned Reg = MO.getReg();
267 if (Reg == 0) continue;
268 if (!MO.isDef()) continue;
269
270 // If we've already marked this reg as unchangeable, carry on.
271 if (KeepRegs.test(Reg)) continue;
272
273 // Ignore two-addr defs.
274 if (MI->isRegTiedToUseOperand(i)) continue;
275
276 // FIXME: we should use a SubRegIterator that includes self (as above), so
277 // we don't have to repeat all this code for the reg itself.
278 DefIndices[Reg] = Count;
279 KillIndices[Reg] = ~0u;
280 assert(((KillIndices[Reg] == ~0u) !=
281 (DefIndices[Reg] == ~0u)) &&
282 "Kill and Def maps aren't consistent for Reg!");
283 KeepRegs.reset(Reg);
284 Classes[Reg] = nullptr;
285 RegRefs.erase(Reg);
286 // Repeat, for all subregs.
287 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
288 unsigned SubregReg = *SubRegs;
289 DefIndices[SubregReg] = Count;
290 KillIndices[SubregReg] = ~0u;
291 KeepRegs.reset(SubregReg);
292 Classes[SubregReg] = nullptr;
293 RegRefs.erase(SubregReg);
294 }
295 // Conservatively mark super-registers as unusable.
296 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
297 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
298 }
299 }
300 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301 MachineOperand &MO = MI->getOperand(i);
302 if (!MO.isReg()) continue;
303 unsigned Reg = MO.getReg();
304 if (Reg == 0) continue;
305 if (!MO.isUse()) continue;
306
307 const TargetRegisterClass *NewRC = nullptr;
308 if (i < MI->getDesc().getNumOperands())
309 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
310
311 // For now, only allow the register to be changed if its register
312 // class is consistent across all uses.
313 if (!Classes[Reg] && NewRC)
314 Classes[Reg] = NewRC;
315 else if (!NewRC || Classes[Reg] != NewRC)
316 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
317
318 RegRefs.insert(std::make_pair(Reg, &MO));
319
320 // FIXME: we should use an MCRegAliasIterator that includes self so we don't
321 // have to repeat all this code for the reg itself.
322
323 // It wasn't previously live but now it is, this is a kill.
324 if (KillIndices[Reg] == ~0u) {
325 KillIndices[Reg] = Count;
326 DefIndices[Reg] = ~0u;
327 assert(((KillIndices[Reg] == ~0u) !=
328 (DefIndices[Reg] == ~0u)) &&
329 "Kill and Def maps aren't consistent for Reg!");
330 }
331 // Repeat, for all aliases.
332 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
333 unsigned AliasReg = *AI;
334 if (KillIndices[AliasReg] == ~0u) {
335 KillIndices[AliasReg] = Count;
336 DefIndices[AliasReg] = ~0u;
337 }
338 }
339 }
340 }
341
342 // Check all machine operands that reference the antidependent register and must
343 // be replaced by NewReg. Return true if any of their parent instructions may
344 // clobber the new register.
345 //
346 // Note: AntiDepReg may be referenced by a two-address instruction such that
347 // it's use operand is tied to a def operand. We guard against the case in which
348 // the two-address instruction also defines NewReg, as may happen with
349 // pre/postincrement loads. In this case, both the use and def operands are in
350 // RegRefs because the def is inserted by PrescanInstruction and not erased
351 // during ScanInstruction. So checking for an instruction with definitions of
352 // both NewReg and AntiDepReg covers it.
353 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)354 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
355 RegRefIter RegRefEnd,
356 unsigned NewReg)
357 {
358 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
359 MachineOperand *RefOper = I->second;
360
361 // Don't allow the instruction defining AntiDepReg to earlyclobber its
362 // operands, in case they may be assigned to NewReg. In this case antidep
363 // breaking must fail, but it's too rare to bother optimizing.
364 if (RefOper->isDef() && RefOper->isEarlyClobber())
365 return true;
366
367 // Handle cases in which this instruction defines NewReg.
368 MachineInstr *MI = RefOper->getParent();
369 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
370 const MachineOperand &CheckOper = MI->getOperand(i);
371
372 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
373 return true;
374
375 if (!CheckOper.isReg() || !CheckOper.isDef() ||
376 CheckOper.getReg() != NewReg)
377 continue;
378
379 // Don't allow the instruction to define NewReg and AntiDepReg.
380 // When AntiDepReg is renamed it will be an illegal op.
381 if (RefOper->isDef())
382 return true;
383
384 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
385 // NewReg.
386 if (CheckOper.isEarlyClobber())
387 return true;
388
389 // Don't allow inline asm to define NewReg at all. Who knows what it's
390 // doing with it.
391 if (MI->isInlineAsm())
392 return true;
393 }
394 }
395 return false;
396 }
397
398 unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & Forbid)399 findSuitableFreeRegister(RegRefIter RegRefBegin,
400 RegRefIter RegRefEnd,
401 unsigned AntiDepReg,
402 unsigned LastNewReg,
403 const TargetRegisterClass *RC,
404 SmallVectorImpl<unsigned> &Forbid)
405 {
406 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
407 for (unsigned i = 0; i != Order.size(); ++i) {
408 unsigned NewReg = Order[i];
409 // Don't replace a register with itself.
410 if (NewReg == AntiDepReg) continue;
411 // Don't replace a register with one that was recently used to repair
412 // an anti-dependence with this AntiDepReg, because that would
413 // re-introduce that anti-dependence.
414 if (NewReg == LastNewReg) continue;
415 // If any instructions that define AntiDepReg also define the NewReg, it's
416 // not suitable. For example, Instruction with multiple definitions can
417 // result in this condition.
418 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
419 // If NewReg is dead and NewReg's most recent def is not before
420 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
421 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
422 && "Kill and Def maps aren't consistent for AntiDepReg!");
423 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
424 && "Kill and Def maps aren't consistent for NewReg!");
425 if (KillIndices[NewReg] != ~0u ||
426 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
427 KillIndices[AntiDepReg] > DefIndices[NewReg])
428 continue;
429 // If NewReg overlaps any of the forbidden registers, we can't use it.
430 bool Forbidden = false;
431 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
432 ite = Forbid.end(); it != ite; ++it)
433 if (TRI->regsOverlap(NewReg, *it)) {
434 Forbidden = true;
435 break;
436 }
437 if (Forbidden) continue;
438 return NewReg;
439 }
440
441 // No registers are free and available!
442 return 0;
443 }
444
445 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)446 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
447 MachineBasicBlock::iterator Begin,
448 MachineBasicBlock::iterator End,
449 unsigned InsertPosIndex,
450 DbgValueVector &DbgValues) {
451 // The code below assumes that there is at least one instruction,
452 // so just duck out immediately if the block is empty.
453 if (SUnits.empty()) return 0;
454
455 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
456 // This is used for updating debug information.
457 //
458 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
459 DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
460
461 // Find the node at the bottom of the critical path.
462 const SUnit *Max = nullptr;
463 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
464 const SUnit *SU = &SUnits[i];
465 MISUnitMap[SU->getInstr()] = SU;
466 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
467 Max = SU;
468 }
469
470 #ifndef NDEBUG
471 {
472 DEBUG(dbgs() << "Critical path has total latency "
473 << (Max->getDepth() + Max->Latency) << "\n");
474 DEBUG(dbgs() << "Available regs:");
475 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
476 if (KillIndices[Reg] == ~0u)
477 DEBUG(dbgs() << " " << TRI->getName(Reg));
478 }
479 DEBUG(dbgs() << '\n');
480 }
481 #endif
482
483 // Track progress along the critical path through the SUnit graph as we walk
484 // the instructions.
485 const SUnit *CriticalPathSU = Max;
486 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
487
488 // Consider this pattern:
489 // A = ...
490 // ... = A
491 // A = ...
492 // ... = A
493 // A = ...
494 // ... = A
495 // A = ...
496 // ... = A
497 // There are three anti-dependencies here, and without special care,
498 // we'd break all of them using the same register:
499 // A = ...
500 // ... = A
501 // B = ...
502 // ... = B
503 // B = ...
504 // ... = B
505 // B = ...
506 // ... = B
507 // because at each anti-dependence, B is the first register that
508 // isn't A which is free. This re-introduces anti-dependencies
509 // at all but one of the original anti-dependencies that we were
510 // trying to break. To avoid this, keep track of the most recent
511 // register that each register was replaced with, avoid
512 // using it to repair an anti-dependence on the same register.
513 // This lets us produce this:
514 // A = ...
515 // ... = A
516 // B = ...
517 // ... = B
518 // C = ...
519 // ... = C
520 // B = ...
521 // ... = B
522 // This still has an anti-dependence on B, but at least it isn't on the
523 // original critical path.
524 //
525 // TODO: If we tracked more than one register here, we could potentially
526 // fix that remaining critical edge too. This is a little more involved,
527 // because unlike the most recent register, less recent registers should
528 // still be considered, though only if no other registers are available.
529 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
530
531 // Attempt to break anti-dependence edges on the critical path. Walk the
532 // instructions from the bottom up, tracking information about liveness
533 // as we go to help determine which registers are available.
534 unsigned Broken = 0;
535 unsigned Count = InsertPosIndex - 1;
536 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
537 MachineInstr *MI = --I;
538 // Kill instructions can define registers but are really nops, and there
539 // might be a real definition earlier that needs to be paired with uses
540 // dominated by this kill.
541
542 // FIXME: It may be possible to remove the isKill() restriction once PR18663
543 // has been properly fixed. There can be value in processing kills as seen
544 // in the AggressiveAntiDepBreaker class.
545 if (MI->isDebugValue() || MI->isKill())
546 continue;
547
548 // Check if this instruction has a dependence on the critical path that
549 // is an anti-dependence that we may be able to break. If it is, set
550 // AntiDepReg to the non-zero register associated with the anti-dependence.
551 //
552 // We limit our attention to the critical path as a heuristic to avoid
553 // breaking anti-dependence edges that aren't going to significantly
554 // impact the overall schedule. There are a limited number of registers
555 // and we want to save them for the important edges.
556 //
557 // TODO: Instructions with multiple defs could have multiple
558 // anti-dependencies. The current code here only knows how to break one
559 // edge per instruction. Note that we'd have to be able to break all of
560 // the anti-dependencies in an instruction in order to be effective.
561 unsigned AntiDepReg = 0;
562 if (MI == CriticalPathMI) {
563 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
564 const SUnit *NextSU = Edge->getSUnit();
565
566 // Only consider anti-dependence edges.
567 if (Edge->getKind() == SDep::Anti) {
568 AntiDepReg = Edge->getReg();
569 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
570 if (!MRI.isAllocatable(AntiDepReg))
571 // Don't break anti-dependencies on non-allocatable registers.
572 AntiDepReg = 0;
573 else if (KeepRegs.test(AntiDepReg))
574 // Don't break anti-dependencies if a use down below requires
575 // this exact register.
576 AntiDepReg = 0;
577 else {
578 // If the SUnit has other dependencies on the SUnit that it
579 // anti-depends on, don't bother breaking the anti-dependency
580 // since those edges would prevent such units from being
581 // scheduled past each other regardless.
582 //
583 // Also, if there are dependencies on other SUnits with the
584 // same register as the anti-dependency, don't attempt to
585 // break it.
586 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
587 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
588 if (P->getSUnit() == NextSU ?
589 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
590 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
591 AntiDepReg = 0;
592 break;
593 }
594 }
595 }
596 CriticalPathSU = NextSU;
597 CriticalPathMI = CriticalPathSU->getInstr();
598 } else {
599 // We've reached the end of the critical path.
600 CriticalPathSU = nullptr;
601 CriticalPathMI = nullptr;
602 }
603 }
604
605 PrescanInstruction(MI);
606
607 SmallVector<unsigned, 2> ForbidRegs;
608
609 // If MI's defs have a special allocation requirement, don't allow
610 // any def registers to be changed. Also assume all registers
611 // defined in a call must not be changed (ABI).
612 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
613 // If this instruction's defs have special allocation requirement, don't
614 // break this anti-dependency.
615 AntiDepReg = 0;
616 else if (AntiDepReg) {
617 // If this instruction has a use of AntiDepReg, breaking it
618 // is invalid. If the instruction defines other registers,
619 // save a list of them so that we don't pick a new register
620 // that overlaps any of them.
621 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
622 MachineOperand &MO = MI->getOperand(i);
623 if (!MO.isReg()) continue;
624 unsigned Reg = MO.getReg();
625 if (Reg == 0) continue;
626 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
627 AntiDepReg = 0;
628 break;
629 }
630 if (MO.isDef() && Reg != AntiDepReg)
631 ForbidRegs.push_back(Reg);
632 }
633 }
634
635 // Determine AntiDepReg's register class, if it is live and is
636 // consistently used within a single class.
637 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
638 : nullptr;
639 assert((AntiDepReg == 0 || RC != nullptr) &&
640 "Register should be live if it's causing an anti-dependence!");
641 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
642 AntiDepReg = 0;
643
644 // Look for a suitable register to use to break the anti-dependence.
645 //
646 // TODO: Instead of picking the first free register, consider which might
647 // be the best.
648 if (AntiDepReg != 0) {
649 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
650 std::multimap<unsigned, MachineOperand *>::iterator>
651 Range = RegRefs.equal_range(AntiDepReg);
652 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
653 AntiDepReg,
654 LastNewReg[AntiDepReg],
655 RC, ForbidRegs)) {
656 DEBUG(dbgs() << "Breaking anti-dependence edge on "
657 << TRI->getName(AntiDepReg)
658 << " with " << RegRefs.count(AntiDepReg) << " references"
659 << " using " << TRI->getName(NewReg) << "!\n");
660
661 // Update the references to the old register to refer to the new
662 // register.
663 for (std::multimap<unsigned, MachineOperand *>::iterator
664 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
665 Q->second->setReg(NewReg);
666 // If the SU for the instruction being updated has debug information
667 // related to the anti-dependency register, make sure to update that
668 // as well.
669 const SUnit *SU = MISUnitMap[Q->second->getParent()];
670 if (!SU) continue;
671 for (DbgValueVector::iterator DVI = DbgValues.begin(),
672 DVE = DbgValues.end(); DVI != DVE; ++DVI)
673 if (DVI->second == Q->second->getParent())
674 UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
675 }
676
677 // We just went back in time and modified history; the
678 // liveness information for the anti-dependence reg is now
679 // inconsistent. Set the state as if it were dead.
680 Classes[NewReg] = Classes[AntiDepReg];
681 DefIndices[NewReg] = DefIndices[AntiDepReg];
682 KillIndices[NewReg] = KillIndices[AntiDepReg];
683 assert(((KillIndices[NewReg] == ~0u) !=
684 (DefIndices[NewReg] == ~0u)) &&
685 "Kill and Def maps aren't consistent for NewReg!");
686
687 Classes[AntiDepReg] = nullptr;
688 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
689 KillIndices[AntiDepReg] = ~0u;
690 assert(((KillIndices[AntiDepReg] == ~0u) !=
691 (DefIndices[AntiDepReg] == ~0u)) &&
692 "Kill and Def maps aren't consistent for AntiDepReg!");
693
694 RegRefs.erase(AntiDepReg);
695 LastNewReg[AntiDepReg] = NewReg;
696 ++Broken;
697 }
698 }
699
700 ScanInstruction(MI, Count);
701 }
702
703 return Broken;
704 }
705