• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "post-RA-sched"
29 
30 CriticalAntiDepBreaker::
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)31 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
32   AntiDepBreaker(), MF(MFi),
33   MRI(MF.getRegInfo()),
34   TII(MF.getTarget().getInstrInfo()),
35   TRI(MF.getTarget().getRegisterInfo()),
36   RegClassInfo(RCI),
37   Classes(TRI->getNumRegs(), nullptr),
38   KillIndices(TRI->getNumRegs(), 0),
39   DefIndices(TRI->getNumRegs(), 0),
40   KeepRegs(TRI->getNumRegs(), false) {}
41 
~CriticalAntiDepBreaker()42 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43 }
44 
StartBlock(MachineBasicBlock * BB)45 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
46   const unsigned BBSize = BB->size();
47   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
48     // Clear out the register class data.
49     Classes[i] = nullptr;
50 
51     // Initialize the indices to indicate that no registers are live.
52     KillIndices[i] = ~0u;
53     DefIndices[i] = BBSize;
54   }
55 
56   // Clear "do not change" set.
57   KeepRegs.reset();
58 
59   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
60 
61   // Examine the live-in regs of all successors.
62   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
63          SE = BB->succ_end(); SI != SE; ++SI)
64     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
65            E = (*SI)->livein_end(); I != E; ++I) {
66       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
67         unsigned Reg = *AI;
68         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
69         KillIndices[Reg] = BBSize;
70         DefIndices[Reg] = ~0u;
71       }
72     }
73 
74   // Mark live-out callee-saved registers. In a return block this is
75   // all callee-saved registers. In non-return this is any
76   // callee-saved register that is not saved in the prolog.
77   const MachineFrameInfo *MFI = MF.getFrameInfo();
78   BitVector Pristine = MFI->getPristineRegs(BB);
79   for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
80     if (!IsReturnBlock && !Pristine.test(*I)) continue;
81     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82       unsigned Reg = *AI;
83       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84       KillIndices[Reg] = BBSize;
85       DefIndices[Reg] = ~0u;
86     }
87   }
88 }
89 
FinishBlock()90 void CriticalAntiDepBreaker::FinishBlock() {
91   RegRefs.clear();
92   KeepRegs.reset();
93 }
94 
Observe(MachineInstr * MI,unsigned Count,unsigned InsertPosIndex)95 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
96                                      unsigned InsertPosIndex) {
97   // Kill instructions can define registers but are really nops, and there might
98   // be a real definition earlier that needs to be paired with uses dominated by
99   // this kill.
100 
101   // FIXME: It may be possible to remove the isKill() restriction once PR18663
102   // has been properly fixed. There can be value in processing kills as seen in
103   // the AggressiveAntiDepBreaker class.
104   if (MI->isDebugValue() || MI->isKill())
105     return;
106   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
107 
108   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
109     if (KillIndices[Reg] != ~0u) {
110       // If Reg is currently live, then mark that it can't be renamed as
111       // we don't know the extent of its live-range anymore (now that it
112       // has been scheduled).
113       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
114       KillIndices[Reg] = Count;
115     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
116       // Any register which was defined within the previous scheduling region
117       // may have been rescheduled and its lifetime may overlap with registers
118       // in ways not reflected in our current liveness state. For each such
119       // register, adjust the liveness state to be conservatively correct.
120       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
121 
122       // Move the def index to the end of the previous region, to reflect
123       // that the def could theoretically have been scheduled at the end.
124       DefIndices[Reg] = InsertPosIndex;
125     }
126   }
127 
128   PrescanInstruction(MI);
129   ScanInstruction(MI, Count);
130 }
131 
132 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
133 /// critical path.
CriticalPathStep(const SUnit * SU)134 static const SDep *CriticalPathStep(const SUnit *SU) {
135   const SDep *Next = nullptr;
136   unsigned NextDepth = 0;
137   // Find the predecessor edge with the greatest depth.
138   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
139        P != PE; ++P) {
140     const SUnit *PredSU = P->getSUnit();
141     unsigned PredLatency = P->getLatency();
142     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
143     // In the case of a latency tie, prefer an anti-dependency edge over
144     // other types of edges.
145     if (NextDepth < PredTotalLatency ||
146         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
147       NextDepth = PredTotalLatency;
148       Next = &*P;
149     }
150   }
151   return Next;
152 }
153 
PrescanInstruction(MachineInstr * MI)154 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
155   // It's not safe to change register allocation for source operands of
156   // instructions that have special allocation requirements. Also assume all
157   // registers used in a call must not be changed (ABI).
158   // FIXME: The issue with predicated instruction is more complex. We are being
159   // conservative here because the kill markers cannot be trusted after
160   // if-conversion:
161   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
162   // ...
163   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
164   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
165   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
166   //
167   // The first R6 kill is not really a kill since it's killed by a predicated
168   // instruction which may not be executed. The second R6 def may or may not
169   // re-define R6 so it's not safe to change it since the last R6 use cannot be
170   // changed.
171   bool Special = MI->isCall() ||
172     MI->hasExtraSrcRegAllocReq() ||
173     TII->isPredicated(MI);
174 
175   // Scan the register operands for this instruction and update
176   // Classes and RegRefs.
177   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178     MachineOperand &MO = MI->getOperand(i);
179     if (!MO.isReg()) continue;
180     unsigned Reg = MO.getReg();
181     if (Reg == 0) continue;
182     const TargetRegisterClass *NewRC = nullptr;
183 
184     if (i < MI->getDesc().getNumOperands())
185       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
186 
187     // For now, only allow the register to be changed if its register
188     // class is consistent across all uses.
189     if (!Classes[Reg] && NewRC)
190       Classes[Reg] = NewRC;
191     else if (!NewRC || Classes[Reg] != NewRC)
192       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
193 
194     // Now check for aliases.
195     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
196       // If an alias of the reg is used during the live range, give up.
197       // Note that this allows us to skip checking if AntiDepReg
198       // overlaps with any of the aliases, among other things.
199       unsigned AliasReg = *AI;
200       if (Classes[AliasReg]) {
201         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
202         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203       }
204     }
205 
206     // If we're still willing to consider this register, note the reference.
207     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
208       RegRefs.insert(std::make_pair(Reg, &MO));
209 
210     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
211     // it or any of its sub or super regs. We need to use KeepRegs to mark the
212     // reg because not all uses of the same reg within an instruction are
213     // necessarily tagged as tied.
214     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
215     // def register but not the second (see PR20020 for details).
216     // FIXME: can this check be relaxed to account for undef uses
217     // of a register? In the above 'xor' example, the uses of %eax are undef, so
218     // earlier instructions could still replace %eax even though the 'xor'
219     // itself can't be changed.
220     if (MI->isRegTiedToUseOperand(i) &&
221         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
222       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
223            SubRegs.isValid(); ++SubRegs) {
224         KeepRegs.set(*SubRegs);
225       }
226       for (MCSuperRegIterator SuperRegs(Reg, TRI);
227            SuperRegs.isValid(); ++SuperRegs) {
228         KeepRegs.set(*SuperRegs);
229       }
230     }
231 
232     if (MO.isUse() && Special) {
233       if (!KeepRegs.test(Reg)) {
234         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
235              SubRegs.isValid(); ++SubRegs)
236           KeepRegs.set(*SubRegs);
237       }
238     }
239   }
240 }
241 
ScanInstruction(MachineInstr * MI,unsigned Count)242 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
243                                              unsigned Count) {
244   // Update liveness.
245   // Proceeding upwards, registers that are defed but not used in this
246   // instruction are now dead.
247   assert(!MI->isKill() && "Attempting to scan a kill instruction");
248 
249   if (!TII->isPredicated(MI)) {
250     // Predicated defs are modeled as read + write, i.e. similar to two
251     // address updates.
252     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
253       MachineOperand &MO = MI->getOperand(i);
254 
255       if (MO.isRegMask())
256         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
257           if (MO.clobbersPhysReg(i)) {
258             DefIndices[i] = Count;
259             KillIndices[i] = ~0u;
260             KeepRegs.reset(i);
261             Classes[i] = nullptr;
262             RegRefs.erase(i);
263           }
264 
265       if (!MO.isReg()) continue;
266       unsigned Reg = MO.getReg();
267       if (Reg == 0) continue;
268       if (!MO.isDef()) continue;
269 
270       // If we've already marked this reg as unchangeable, carry on.
271       if (KeepRegs.test(Reg)) continue;
272 
273       // Ignore two-addr defs.
274       if (MI->isRegTiedToUseOperand(i)) continue;
275 
276       // FIXME: we should use a SubRegIterator that includes self (as above), so
277       // we don't have to repeat all this code for the reg itself.
278       DefIndices[Reg] = Count;
279       KillIndices[Reg] = ~0u;
280       assert(((KillIndices[Reg] == ~0u) !=
281               (DefIndices[Reg] == ~0u)) &&
282              "Kill and Def maps aren't consistent for Reg!");
283       KeepRegs.reset(Reg);
284       Classes[Reg] = nullptr;
285       RegRefs.erase(Reg);
286       // Repeat, for all subregs.
287       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
288         unsigned SubregReg = *SubRegs;
289         DefIndices[SubregReg] = Count;
290         KillIndices[SubregReg] = ~0u;
291         KeepRegs.reset(SubregReg);
292         Classes[SubregReg] = nullptr;
293         RegRefs.erase(SubregReg);
294       }
295       // Conservatively mark super-registers as unusable.
296       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
297         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
298     }
299   }
300   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301     MachineOperand &MO = MI->getOperand(i);
302     if (!MO.isReg()) continue;
303     unsigned Reg = MO.getReg();
304     if (Reg == 0) continue;
305     if (!MO.isUse()) continue;
306 
307     const TargetRegisterClass *NewRC = nullptr;
308     if (i < MI->getDesc().getNumOperands())
309       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
310 
311     // For now, only allow the register to be changed if its register
312     // class is consistent across all uses.
313     if (!Classes[Reg] && NewRC)
314       Classes[Reg] = NewRC;
315     else if (!NewRC || Classes[Reg] != NewRC)
316       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
317 
318     RegRefs.insert(std::make_pair(Reg, &MO));
319 
320     // FIXME: we should use an MCRegAliasIterator that includes self so we don't
321     // have to repeat all this code for the reg itself.
322 
323     // It wasn't previously live but now it is, this is a kill.
324     if (KillIndices[Reg] == ~0u) {
325       KillIndices[Reg] = Count;
326       DefIndices[Reg] = ~0u;
327           assert(((KillIndices[Reg] == ~0u) !=
328                   (DefIndices[Reg] == ~0u)) &&
329                "Kill and Def maps aren't consistent for Reg!");
330     }
331     // Repeat, for all aliases.
332     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
333       unsigned AliasReg = *AI;
334       if (KillIndices[AliasReg] == ~0u) {
335         KillIndices[AliasReg] = Count;
336         DefIndices[AliasReg] = ~0u;
337       }
338     }
339   }
340 }
341 
342 // Check all machine operands that reference the antidependent register and must
343 // be replaced by NewReg. Return true if any of their parent instructions may
344 // clobber the new register.
345 //
346 // Note: AntiDepReg may be referenced by a two-address instruction such that
347 // it's use operand is tied to a def operand. We guard against the case in which
348 // the two-address instruction also defines NewReg, as may happen with
349 // pre/postincrement loads. In this case, both the use and def operands are in
350 // RegRefs because the def is inserted by PrescanInstruction and not erased
351 // during ScanInstruction. So checking for an instruction with definitions of
352 // both NewReg and AntiDepReg covers it.
353 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)354 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
355                                                 RegRefIter RegRefEnd,
356                                                 unsigned NewReg)
357 {
358   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
359     MachineOperand *RefOper = I->second;
360 
361     // Don't allow the instruction defining AntiDepReg to earlyclobber its
362     // operands, in case they may be assigned to NewReg. In this case antidep
363     // breaking must fail, but it's too rare to bother optimizing.
364     if (RefOper->isDef() && RefOper->isEarlyClobber())
365       return true;
366 
367     // Handle cases in which this instruction defines NewReg.
368     MachineInstr *MI = RefOper->getParent();
369     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
370       const MachineOperand &CheckOper = MI->getOperand(i);
371 
372       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
373         return true;
374 
375       if (!CheckOper.isReg() || !CheckOper.isDef() ||
376           CheckOper.getReg() != NewReg)
377         continue;
378 
379       // Don't allow the instruction to define NewReg and AntiDepReg.
380       // When AntiDepReg is renamed it will be an illegal op.
381       if (RefOper->isDef())
382         return true;
383 
384       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
385       // NewReg.
386       if (CheckOper.isEarlyClobber())
387         return true;
388 
389       // Don't allow inline asm to define NewReg at all. Who knows what it's
390       // doing with it.
391       if (MI->isInlineAsm())
392         return true;
393     }
394   }
395   return false;
396 }
397 
398 unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & Forbid)399 findSuitableFreeRegister(RegRefIter RegRefBegin,
400                          RegRefIter RegRefEnd,
401                          unsigned AntiDepReg,
402                          unsigned LastNewReg,
403                          const TargetRegisterClass *RC,
404                          SmallVectorImpl<unsigned> &Forbid)
405 {
406   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
407   for (unsigned i = 0; i != Order.size(); ++i) {
408     unsigned NewReg = Order[i];
409     // Don't replace a register with itself.
410     if (NewReg == AntiDepReg) continue;
411     // Don't replace a register with one that was recently used to repair
412     // an anti-dependence with this AntiDepReg, because that would
413     // re-introduce that anti-dependence.
414     if (NewReg == LastNewReg) continue;
415     // If any instructions that define AntiDepReg also define the NewReg, it's
416     // not suitable.  For example, Instruction with multiple definitions can
417     // result in this condition.
418     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
419     // If NewReg is dead and NewReg's most recent def is not before
420     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
421     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
422            && "Kill and Def maps aren't consistent for AntiDepReg!");
423     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
424            && "Kill and Def maps aren't consistent for NewReg!");
425     if (KillIndices[NewReg] != ~0u ||
426         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
427         KillIndices[AntiDepReg] > DefIndices[NewReg])
428       continue;
429     // If NewReg overlaps any of the forbidden registers, we can't use it.
430     bool Forbidden = false;
431     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
432            ite = Forbid.end(); it != ite; ++it)
433       if (TRI->regsOverlap(NewReg, *it)) {
434         Forbidden = true;
435         break;
436       }
437     if (Forbidden) continue;
438     return NewReg;
439   }
440 
441   // No registers are free and available!
442   return 0;
443 }
444 
445 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)446 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
447                       MachineBasicBlock::iterator Begin,
448                       MachineBasicBlock::iterator End,
449                       unsigned InsertPosIndex,
450                       DbgValueVector &DbgValues) {
451   // The code below assumes that there is at least one instruction,
452   // so just duck out immediately if the block is empty.
453   if (SUnits.empty()) return 0;
454 
455   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
456   // This is used for updating debug information.
457   //
458   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
459   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
460 
461   // Find the node at the bottom of the critical path.
462   const SUnit *Max = nullptr;
463   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
464     const SUnit *SU = &SUnits[i];
465     MISUnitMap[SU->getInstr()] = SU;
466     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
467       Max = SU;
468   }
469 
470 #ifndef NDEBUG
471   {
472     DEBUG(dbgs() << "Critical path has total latency "
473           << (Max->getDepth() + Max->Latency) << "\n");
474     DEBUG(dbgs() << "Available regs:");
475     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
476       if (KillIndices[Reg] == ~0u)
477         DEBUG(dbgs() << " " << TRI->getName(Reg));
478     }
479     DEBUG(dbgs() << '\n');
480   }
481 #endif
482 
483   // Track progress along the critical path through the SUnit graph as we walk
484   // the instructions.
485   const SUnit *CriticalPathSU = Max;
486   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
487 
488   // Consider this pattern:
489   //   A = ...
490   //   ... = A
491   //   A = ...
492   //   ... = A
493   //   A = ...
494   //   ... = A
495   //   A = ...
496   //   ... = A
497   // There are three anti-dependencies here, and without special care,
498   // we'd break all of them using the same register:
499   //   A = ...
500   //   ... = A
501   //   B = ...
502   //   ... = B
503   //   B = ...
504   //   ... = B
505   //   B = ...
506   //   ... = B
507   // because at each anti-dependence, B is the first register that
508   // isn't A which is free.  This re-introduces anti-dependencies
509   // at all but one of the original anti-dependencies that we were
510   // trying to break.  To avoid this, keep track of the most recent
511   // register that each register was replaced with, avoid
512   // using it to repair an anti-dependence on the same register.
513   // This lets us produce this:
514   //   A = ...
515   //   ... = A
516   //   B = ...
517   //   ... = B
518   //   C = ...
519   //   ... = C
520   //   B = ...
521   //   ... = B
522   // This still has an anti-dependence on B, but at least it isn't on the
523   // original critical path.
524   //
525   // TODO: If we tracked more than one register here, we could potentially
526   // fix that remaining critical edge too. This is a little more involved,
527   // because unlike the most recent register, less recent registers should
528   // still be considered, though only if no other registers are available.
529   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
530 
531   // Attempt to break anti-dependence edges on the critical path. Walk the
532   // instructions from the bottom up, tracking information about liveness
533   // as we go to help determine which registers are available.
534   unsigned Broken = 0;
535   unsigned Count = InsertPosIndex - 1;
536   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
537     MachineInstr *MI = --I;
538     // Kill instructions can define registers but are really nops, and there
539     // might be a real definition earlier that needs to be paired with uses
540     // dominated by this kill.
541 
542     // FIXME: It may be possible to remove the isKill() restriction once PR18663
543     // has been properly fixed. There can be value in processing kills as seen
544     // in the AggressiveAntiDepBreaker class.
545     if (MI->isDebugValue() || MI->isKill())
546       continue;
547 
548     // Check if this instruction has a dependence on the critical path that
549     // is an anti-dependence that we may be able to break. If it is, set
550     // AntiDepReg to the non-zero register associated with the anti-dependence.
551     //
552     // We limit our attention to the critical path as a heuristic to avoid
553     // breaking anti-dependence edges that aren't going to significantly
554     // impact the overall schedule. There are a limited number of registers
555     // and we want to save them for the important edges.
556     //
557     // TODO: Instructions with multiple defs could have multiple
558     // anti-dependencies. The current code here only knows how to break one
559     // edge per instruction. Note that we'd have to be able to break all of
560     // the anti-dependencies in an instruction in order to be effective.
561     unsigned AntiDepReg = 0;
562     if (MI == CriticalPathMI) {
563       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
564         const SUnit *NextSU = Edge->getSUnit();
565 
566         // Only consider anti-dependence edges.
567         if (Edge->getKind() == SDep::Anti) {
568           AntiDepReg = Edge->getReg();
569           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
570           if (!MRI.isAllocatable(AntiDepReg))
571             // Don't break anti-dependencies on non-allocatable registers.
572             AntiDepReg = 0;
573           else if (KeepRegs.test(AntiDepReg))
574             // Don't break anti-dependencies if a use down below requires
575             // this exact register.
576             AntiDepReg = 0;
577           else {
578             // If the SUnit has other dependencies on the SUnit that it
579             // anti-depends on, don't bother breaking the anti-dependency
580             // since those edges would prevent such units from being
581             // scheduled past each other regardless.
582             //
583             // Also, if there are dependencies on other SUnits with the
584             // same register as the anti-dependency, don't attempt to
585             // break it.
586             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
587                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
588               if (P->getSUnit() == NextSU ?
589                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
590                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
591                 AntiDepReg = 0;
592                 break;
593               }
594           }
595         }
596         CriticalPathSU = NextSU;
597         CriticalPathMI = CriticalPathSU->getInstr();
598       } else {
599         // We've reached the end of the critical path.
600         CriticalPathSU = nullptr;
601         CriticalPathMI = nullptr;
602       }
603     }
604 
605     PrescanInstruction(MI);
606 
607     SmallVector<unsigned, 2> ForbidRegs;
608 
609     // If MI's defs have a special allocation requirement, don't allow
610     // any def registers to be changed. Also assume all registers
611     // defined in a call must not be changed (ABI).
612     if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
613       // If this instruction's defs have special allocation requirement, don't
614       // break this anti-dependency.
615       AntiDepReg = 0;
616     else if (AntiDepReg) {
617       // If this instruction has a use of AntiDepReg, breaking it
618       // is invalid.  If the instruction defines other registers,
619       // save a list of them so that we don't pick a new register
620       // that overlaps any of them.
621       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
622         MachineOperand &MO = MI->getOperand(i);
623         if (!MO.isReg()) continue;
624         unsigned Reg = MO.getReg();
625         if (Reg == 0) continue;
626         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
627           AntiDepReg = 0;
628           break;
629         }
630         if (MO.isDef() && Reg != AntiDepReg)
631           ForbidRegs.push_back(Reg);
632       }
633     }
634 
635     // Determine AntiDepReg's register class, if it is live and is
636     // consistently used within a single class.
637     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
638                                                     : nullptr;
639     assert((AntiDepReg == 0 || RC != nullptr) &&
640            "Register should be live if it's causing an anti-dependence!");
641     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
642       AntiDepReg = 0;
643 
644     // Look for a suitable register to use to break the anti-dependence.
645     //
646     // TODO: Instead of picking the first free register, consider which might
647     // be the best.
648     if (AntiDepReg != 0) {
649       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
650                 std::multimap<unsigned, MachineOperand *>::iterator>
651         Range = RegRefs.equal_range(AntiDepReg);
652       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
653                                                      AntiDepReg,
654                                                      LastNewReg[AntiDepReg],
655                                                      RC, ForbidRegs)) {
656         DEBUG(dbgs() << "Breaking anti-dependence edge on "
657               << TRI->getName(AntiDepReg)
658               << " with " << RegRefs.count(AntiDepReg) << " references"
659               << " using " << TRI->getName(NewReg) << "!\n");
660 
661         // Update the references to the old register to refer to the new
662         // register.
663         for (std::multimap<unsigned, MachineOperand *>::iterator
664              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
665           Q->second->setReg(NewReg);
666           // If the SU for the instruction being updated has debug information
667           // related to the anti-dependency register, make sure to update that
668           // as well.
669           const SUnit *SU = MISUnitMap[Q->second->getParent()];
670           if (!SU) continue;
671           for (DbgValueVector::iterator DVI = DbgValues.begin(),
672                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
673             if (DVI->second == Q->second->getParent())
674               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
675         }
676 
677         // We just went back in time and modified history; the
678         // liveness information for the anti-dependence reg is now
679         // inconsistent. Set the state as if it were dead.
680         Classes[NewReg] = Classes[AntiDepReg];
681         DefIndices[NewReg] = DefIndices[AntiDepReg];
682         KillIndices[NewReg] = KillIndices[AntiDepReg];
683         assert(((KillIndices[NewReg] == ~0u) !=
684                 (DefIndices[NewReg] == ~0u)) &&
685              "Kill and Def maps aren't consistent for NewReg!");
686 
687         Classes[AntiDepReg] = nullptr;
688         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
689         KillIndices[AntiDepReg] = ~0u;
690         assert(((KillIndices[AntiDepReg] == ~0u) !=
691                 (DefIndices[AntiDepReg] == ~0u)) &&
692              "Kill and Def maps aren't consistent for AntiDepReg!");
693 
694         RegRefs.erase(AntiDepReg);
695         LastNewReg[AntiDepReg] = NewReg;
696         ++Broken;
697       }
698     }
699 
700     ScanInstruction(MI, Count);
701   }
702 
703   return Broken;
704 }
705