1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // Another instance, in this code:
35 //
36 // sub r1, r3 | sub r1, imm
37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 // bge L1
39 //
40 // If the branch instruction can use flag from "sub", then we can replace
41 // "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 // Loads that can be folded into a later instruction. A load is foldable
46 // if it loads to virtual registers and the virtual register defined has
47 // a single use.
48 //
49 // - Optimize Copies and Bitcast:
50 //
51 // Rewrite copies and bitcasts to avoid cross register bank copies
52 // when possible.
53 // E.g., Consider the following example, where capital and lower
54 // letters denote different register file:
55 // b = copy A <-- cross-bank copy
56 // C = copy b <-- cross-bank copy
57 // =>
58 // b = copy A <-- cross-bank copy
59 // C = copy A <-- same-bank copy
60 //
61 // E.g., for bitcast:
62 // b = bitcast A <-- cross-bank copy
63 // C = bitcast b <-- cross-bank copy
64 // =>
65 // b = bitcast A <-- cross-bank copy
66 // C = copy A <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68
69 #include "llvm/CodeGen/Passes.h"
70 #include "llvm/ADT/DenseMap.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineInstrBuilder.h"
76 #include "llvm/CodeGen/MachineRegisterInfo.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Target/TargetInstrInfo.h"
80 #include "llvm/Target/TargetRegisterInfo.h"
81 using namespace llvm;
82
83 #define DEBUG_TYPE "peephole-opt"
84
85 // Optimize Extensions
86 static cl::opt<bool>
87 Aggressive("aggressive-ext-opt", cl::Hidden,
88 cl::desc("Aggressive extension optimization"));
89
90 static cl::opt<bool>
91 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
92 cl::desc("Disable the peephole optimizer"));
93
94 static cl::opt<bool>
95 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(true),
96 cl::desc("Disable advanced copy optimization"));
97
98 STATISTIC(NumReuse, "Number of extension results reused");
99 STATISTIC(NumCmps, "Number of compares eliminated");
100 STATISTIC(NumImmFold, "Number of move immediate folded");
101 STATISTIC(NumLoadFold, "Number of loads folded");
102 STATISTIC(NumSelects, "Number of selects optimized");
103 STATISTIC(NumCopiesBitcasts, "Number of copies/bitcasts optimized");
104
105 namespace {
106 class PeepholeOptimizer : public MachineFunctionPass {
107 const TargetMachine *TM;
108 const TargetInstrInfo *TII;
109 MachineRegisterInfo *MRI;
110 MachineDominatorTree *DT; // Machine dominator tree
111
112 public:
113 static char ID; // Pass identification
PeepholeOptimizer()114 PeepholeOptimizer() : MachineFunctionPass(ID) {
115 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
116 }
117
118 bool runOnMachineFunction(MachineFunction &MF) override;
119
getAnalysisUsage(AnalysisUsage & AU) const120 void getAnalysisUsage(AnalysisUsage &AU) const override {
121 AU.setPreservesCFG();
122 MachineFunctionPass::getAnalysisUsage(AU);
123 if (Aggressive) {
124 AU.addRequired<MachineDominatorTree>();
125 AU.addPreserved<MachineDominatorTree>();
126 }
127 }
128
129 private:
130 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
131 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
132 SmallPtrSet<MachineInstr*, 8> &LocalMIs);
133 bool optimizeSelect(MachineInstr *MI);
134 bool optimizeCopyOrBitcast(MachineInstr *MI);
135 bool isMoveImmediate(MachineInstr *MI,
136 SmallSet<unsigned, 4> &ImmDefRegs,
137 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
138 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
139 SmallSet<unsigned, 4> &ImmDefRegs,
140 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
141 bool isLoadFoldable(MachineInstr *MI,
142 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
143 };
144
145 /// \brief Helper class to track the possible sources of a value defined by
146 /// a (chain of) copy related instructions.
147 /// Given a definition (instruction and definition index), this class
148 /// follows the use-def chain to find successive suitable sources.
149 /// The given source can be used to rewrite the definition into
150 /// def = COPY src.
151 ///
152 /// For instance, let us consider the following snippet:
153 /// v0 =
154 /// v2 = INSERT_SUBREG v1, v0, sub0
155 /// def = COPY v2.sub0
156 ///
157 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
158 /// suitable sources:
159 /// v2.sub0 and v0.
160 /// Then, def can be rewritten into def = COPY v0.
161 class ValueTracker {
162 private:
163 /// The current point into the use-def chain.
164 const MachineInstr *Def;
165 /// The index of the definition in Def.
166 unsigned DefIdx;
167 /// The sub register index of the definition.
168 unsigned DefSubReg;
169 /// The register where the value can be found.
170 unsigned Reg;
171 /// Specifiy whether or not the value tracking looks through
172 /// complex instructions. When this is false, the value tracker
173 /// bails on everything that is not a copy or a bitcast.
174 ///
175 /// Note: This could have been implemented as a specialized version of
176 /// the ValueTracker class but that would have complicated the code of
177 /// the users of this class.
178 bool UseAdvancedTracking;
179 /// Optional MachineRegisterInfo used to perform some complex
180 /// tracking.
181 const MachineRegisterInfo *MRI;
182
183 /// \brief Dispatcher to the right underlying implementation of
184 /// getNextSource.
185 bool getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg);
186 /// \brief Specialized version of getNextSource for Copy instructions.
187 bool getNextSourceFromCopy(unsigned &SrcIdx, unsigned &SrcSubReg);
188 /// \brief Specialized version of getNextSource for Bitcast instructions.
189 bool getNextSourceFromBitcast(unsigned &SrcIdx, unsigned &SrcSubReg);
190 /// \brief Specialized version of getNextSource for RegSequence
191 /// instructions.
192 bool getNextSourceFromRegSequence(unsigned &SrcIdx, unsigned &SrcSubReg);
193 /// \brief Specialized version of getNextSource for InsertSubreg
194 /// instructions.
195 bool getNextSourceFromInsertSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
196 /// \brief Specialized version of getNextSource for ExtractSubreg
197 /// instructions.
198 bool getNextSourceFromExtractSubreg(unsigned &SrcIdx, unsigned &SrcSubReg);
199 /// \brief Specialized version of getNextSource for SubregToReg
200 /// instructions.
201 bool getNextSourceFromSubregToReg(unsigned &SrcIdx, unsigned &SrcSubReg);
202
203 public:
204 /// \brief Create a ValueTracker instance for the value defines by \p MI
205 /// at the operand index \p DefIdx.
206 /// \p DefSubReg represents the sub register index the value tracker will
207 /// track. It does not need to match the sub register index used in \p MI.
208 /// \p UseAdvancedTracking specifies whether or not the value tracker looks
209 /// through complex instructions. By default (false), it handles only copy
210 /// and bitcast instructions.
211 /// \p MRI useful to perform some complex checks.
ValueTracker(const MachineInstr & MI,unsigned DefIdx,unsigned DefSubReg,bool UseAdvancedTracking=false,const MachineRegisterInfo * MRI=nullptr)212 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
213 bool UseAdvancedTracking = false,
214 const MachineRegisterInfo *MRI = nullptr)
215 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
216 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI) {
217 assert(Def->getOperand(DefIdx).isDef() &&
218 Def->getOperand(DefIdx).isReg() &&
219 "Definition does not match machine instruction");
220 // Initially the value is in the defined register.
221 Reg = Def->getOperand(DefIdx).getReg();
222 }
223
224 /// \brief Following the use-def chain, get the next available source
225 /// for the tracked value.
226 /// When the returned value is not nullptr, getReg() gives the register
227 /// that contain the tracked value.
228 /// \note The sub register index returned in \p SrcSubReg must be used
229 /// on that getReg() to access the actual value.
230 /// \return Unless the returned value is nullptr (i.e., no source found),
231 /// \p SrcIdx gives the index of the next source in the returned
232 /// instruction and \p SrcSubReg the index to be used on that source to
233 /// get the tracked value. When nullptr is returned, no alternative source
234 /// has been found.
235 const MachineInstr *getNextSource(unsigned &SrcIdx, unsigned &SrcSubReg);
236
237 /// \brief Get the last register where the initial value can be found.
238 /// Initially this is the register of the definition.
239 /// Then, after each successful call to getNextSource, this is the
240 /// register of the last source.
getReg() const241 unsigned getReg() const { return Reg; }
242 };
243 }
244
245 char PeepholeOptimizer::ID = 0;
246 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
247 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
248 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
250 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
251 "Peephole Optimizations", false, false)
252
253 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
254 /// a single register and writes a single register and it does not modify the
255 /// source, and if the source value is preserved as a sub-register of the
256 /// result, then replace all reachable uses of the source with the subreg of the
257 /// result.
258 ///
259 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
260 /// the code. Since this code does not currently share EXTRACTs, just ignore all
261 /// debug uses.
262 bool PeepholeOptimizer::
263 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
264 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
265 unsigned SrcReg, DstReg, SubIdx;
266 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
267 return false;
268
269 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
270 TargetRegisterInfo::isPhysicalRegister(SrcReg))
271 return false;
272
273 if (MRI->hasOneNonDBGUse(SrcReg))
274 // No other uses.
275 return false;
276
277 // Ensure DstReg can get a register class that actually supports
278 // sub-registers. Don't change the class until we commit.
279 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
280 DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
281 if (!DstRC)
282 return false;
283
284 // The ext instr may be operating on a sub-register of SrcReg as well.
285 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
286 // register.
287 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
288 // SrcReg:SubIdx should be replaced.
289 bool UseSrcSubIdx = TM->getRegisterInfo()->
290 getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
291
292 // The source has other uses. See if we can replace the other uses with use of
293 // the result of the extension.
294 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
295 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
296 ReachedBBs.insert(UI.getParent());
297
298 // Uses that are in the same BB of uses of the result of the instruction.
299 SmallVector<MachineOperand*, 8> Uses;
300
301 // Uses that the result of the instruction can reach.
302 SmallVector<MachineOperand*, 8> ExtendedUses;
303
304 bool ExtendLife = true;
305 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
306 MachineInstr *UseMI = UseMO.getParent();
307 if (UseMI == MI)
308 continue;
309
310 if (UseMI->isPHI()) {
311 ExtendLife = false;
312 continue;
313 }
314
315 // Only accept uses of SrcReg:SubIdx.
316 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
317 continue;
318
319 // It's an error to translate this:
320 //
321 // %reg1025 = <sext> %reg1024
322 // ...
323 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
324 //
325 // into this:
326 //
327 // %reg1025 = <sext> %reg1024
328 // ...
329 // %reg1027 = COPY %reg1025:4
330 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
331 //
332 // The problem here is that SUBREG_TO_REG is there to assert that an
333 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
334 // the COPY here, it will give us the value after the <sext>, not the
335 // original value of %reg1024 before <sext>.
336 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
337 continue;
338
339 MachineBasicBlock *UseMBB = UseMI->getParent();
340 if (UseMBB == MBB) {
341 // Local uses that come after the extension.
342 if (!LocalMIs.count(UseMI))
343 Uses.push_back(&UseMO);
344 } else if (ReachedBBs.count(UseMBB)) {
345 // Non-local uses where the result of the extension is used. Always
346 // replace these unless it's a PHI.
347 Uses.push_back(&UseMO);
348 } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
349 // We may want to extend the live range of the extension result in order
350 // to replace these uses.
351 ExtendedUses.push_back(&UseMO);
352 } else {
353 // Both will be live out of the def MBB anyway. Don't extend live range of
354 // the extension result.
355 ExtendLife = false;
356 break;
357 }
358 }
359
360 if (ExtendLife && !ExtendedUses.empty())
361 // Extend the liveness of the extension result.
362 std::copy(ExtendedUses.begin(), ExtendedUses.end(),
363 std::back_inserter(Uses));
364
365 // Now replace all uses.
366 bool Changed = false;
367 if (!Uses.empty()) {
368 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
369
370 // Look for PHI uses of the extended result, we don't want to extend the
371 // liveness of a PHI input. It breaks all kinds of assumptions down
372 // stream. A PHI use is expected to be the kill of its source values.
373 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
374 if (UI.isPHI())
375 PHIBBs.insert(UI.getParent());
376
377 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
378 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
379 MachineOperand *UseMO = Uses[i];
380 MachineInstr *UseMI = UseMO->getParent();
381 MachineBasicBlock *UseMBB = UseMI->getParent();
382 if (PHIBBs.count(UseMBB))
383 continue;
384
385 // About to add uses of DstReg, clear DstReg's kill flags.
386 if (!Changed) {
387 MRI->clearKillFlags(DstReg);
388 MRI->constrainRegClass(DstReg, DstRC);
389 }
390
391 unsigned NewVR = MRI->createVirtualRegister(RC);
392 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
393 TII->get(TargetOpcode::COPY), NewVR)
394 .addReg(DstReg, 0, SubIdx);
395 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
396 if (UseSrcSubIdx) {
397 Copy->getOperand(0).setSubReg(SubIdx);
398 Copy->getOperand(0).setIsUndef();
399 }
400 UseMO->setReg(NewVR);
401 ++NumReuse;
402 Changed = true;
403 }
404 }
405
406 return Changed;
407 }
408
409 /// optimizeCmpInstr - If the instruction is a compare and the previous
410 /// instruction it's comparing against all ready sets (or could be modified to
411 /// set) the same flag as the compare, then we can remove the comparison and use
412 /// the flag from the previous instruction.
optimizeCmpInstr(MachineInstr * MI,MachineBasicBlock * MBB)413 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
414 MachineBasicBlock *MBB) {
415 // If this instruction is a comparison against zero and isn't comparing a
416 // physical register, we can try to optimize it.
417 unsigned SrcReg, SrcReg2;
418 int CmpMask, CmpValue;
419 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
420 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
421 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
422 return false;
423
424 // Attempt to optimize the comparison instruction.
425 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
426 ++NumCmps;
427 return true;
428 }
429
430 return false;
431 }
432
433 /// Optimize a select instruction.
optimizeSelect(MachineInstr * MI)434 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
435 unsigned TrueOp = 0;
436 unsigned FalseOp = 0;
437 bool Optimizable = false;
438 SmallVector<MachineOperand, 4> Cond;
439 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
440 return false;
441 if (!Optimizable)
442 return false;
443 if (!TII->optimizeSelect(MI))
444 return false;
445 MI->eraseFromParent();
446 ++NumSelects;
447 return true;
448 }
449
450 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
451 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)452 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
453 const TargetRegisterClass *DefRC,
454 unsigned DefSubReg,
455 const TargetRegisterClass *SrcRC,
456 unsigned SrcSubReg) {
457 // Same register class.
458 if (DefRC == SrcRC)
459 return true;
460
461 // Both operands are sub registers. Check if they share a register class.
462 unsigned SrcIdx, DefIdx;
463 if (SrcSubReg && DefSubReg)
464 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
465 SrcIdx, DefIdx) != nullptr;
466 // At most one of the register is a sub register, make it Src to avoid
467 // duplicating the test.
468 if (!SrcSubReg) {
469 std::swap(DefSubReg, SrcSubReg);
470 std::swap(DefRC, SrcRC);
471 }
472
473 // One of the register is a sub register, check if we can get a superclass.
474 if (SrcSubReg)
475 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
476 // Plain copy.
477 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
478 }
479
480 /// \brief Get the index of the definition and source for \p Copy
481 /// instruction.
482 /// \pre Copy.isCopy() or Copy.isBitcast().
483 /// \return True if the Copy instruction has only one register source
484 /// and one register definition. Otherwise, \p DefIdx and \p SrcIdx
485 /// are invalid.
getCopyOrBitcastDefUseIdx(const MachineInstr & Copy,unsigned & DefIdx,unsigned & SrcIdx)486 static bool getCopyOrBitcastDefUseIdx(const MachineInstr &Copy,
487 unsigned &DefIdx, unsigned &SrcIdx) {
488 assert((Copy.isCopy() || Copy.isBitcast()) && "Wrong operation type.");
489 if (Copy.isCopy()) {
490 // Copy instruction are supposed to be: Def = Src.
491 if (Copy.getDesc().getNumOperands() != 2)
492 return false;
493 DefIdx = 0;
494 SrcIdx = 1;
495 assert(Copy.getOperand(DefIdx).isDef() && "Use comes before def!");
496 return true;
497 }
498 // Bitcast case.
499 // Bitcasts with more than one def are not supported.
500 if (Copy.getDesc().getNumDefs() != 1)
501 return false;
502 // Initialize SrcIdx to an undefined operand.
503 SrcIdx = Copy.getDesc().getNumOperands();
504 for (unsigned OpIdx = 0, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; ++OpIdx) {
505 const MachineOperand &MO = Copy.getOperand(OpIdx);
506 if (!MO.isReg() || !MO.getReg())
507 continue;
508 if (MO.isDef())
509 DefIdx = OpIdx;
510 else if (SrcIdx != EndOpIdx)
511 // Multiple sources?
512 return false;
513 SrcIdx = OpIdx;
514 }
515 return true;
516 }
517
518 /// \brief Optimize a copy or bitcast instruction to avoid cross
519 /// register bank copy. The optimization looks through a chain of
520 /// copies and try to find a source that has a compatible register
521 /// class.
522 /// Two register classes are considered to be compatible if they share
523 /// the same register bank.
524 /// New copies issued by this optimization are register allocator
525 /// friendly. This optimization does not remove any copy as it may
526 /// overconstraint the register allocator, but replaces some when
527 /// possible.
528 /// \pre \p MI is a Copy (MI->isCopy() is true)
529 /// \return True, when \p MI has been optimized. In that case, \p MI has
530 /// been removed from its parent.
optimizeCopyOrBitcast(MachineInstr * MI)531 bool PeepholeOptimizer::optimizeCopyOrBitcast(MachineInstr *MI) {
532 unsigned DefIdx, SrcIdx;
533 if (!MI || !getCopyOrBitcastDefUseIdx(*MI, DefIdx, SrcIdx))
534 return false;
535
536 const MachineOperand &MODef = MI->getOperand(DefIdx);
537 assert(MODef.isReg() && "Copies must be between registers.");
538 unsigned Def = MODef.getReg();
539
540 if (TargetRegisterInfo::isPhysicalRegister(Def))
541 return false;
542
543 const TargetRegisterClass *DefRC = MRI->getRegClass(Def);
544 unsigned DefSubReg = MODef.getSubReg();
545
546 unsigned Src;
547 unsigned SrcSubReg;
548 bool ShouldRewrite = false;
549 const TargetRegisterInfo &TRI = *TM->getRegisterInfo();
550
551 // Follow the chain of copies until we reach the top of the use-def chain
552 // or find a more suitable source.
553 ValueTracker ValTracker(*MI, DefIdx, DefSubReg, !DisableAdvCopyOpt, MRI);
554 do {
555 unsigned CopySrcIdx, CopySrcSubReg;
556 if (!ValTracker.getNextSource(CopySrcIdx, CopySrcSubReg))
557 break;
558 Src = ValTracker.getReg();
559 SrcSubReg = CopySrcSubReg;
560
561 // Do not extend the live-ranges of physical registers as they add
562 // constraints to the register allocator.
563 // Moreover, if we want to extend the live-range of a physical register,
564 // unlike SSA virtual register, we will have to check that they are not
565 // redefine before the related use.
566 if (TargetRegisterInfo::isPhysicalRegister(Src))
567 break;
568
569 const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
570
571 // If this source does not incur a cross register bank copy, use it.
572 ShouldRewrite = shareSameRegisterFile(TRI, DefRC, DefSubReg, SrcRC,
573 SrcSubReg);
574 } while (!ShouldRewrite);
575
576 // If we did not find a more suitable source, there is nothing to optimize.
577 if (!ShouldRewrite || Src == MI->getOperand(SrcIdx).getReg())
578 return false;
579
580 // Rewrite the copy to avoid a cross register bank penalty.
581 unsigned NewVR = TargetRegisterInfo::isPhysicalRegister(Def) ? Def :
582 MRI->createVirtualRegister(DefRC);
583 MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
584 TII->get(TargetOpcode::COPY), NewVR)
585 .addReg(Src, 0, SrcSubReg);
586 NewCopy->getOperand(0).setSubReg(DefSubReg);
587
588 MRI->replaceRegWith(Def, NewVR);
589 MRI->clearKillFlags(NewVR);
590 // We extended the lifetime of Src.
591 // Clear the kill flags to account for that.
592 MRI->clearKillFlags(Src);
593 MI->eraseFromParent();
594 ++NumCopiesBitcasts;
595 return true;
596 }
597
598 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
599 /// instruction. We only fold loads to virtual registers and the virtual
600 /// register defined has a single use.
isLoadFoldable(MachineInstr * MI,SmallSet<unsigned,16> & FoldAsLoadDefCandidates)601 bool PeepholeOptimizer::isLoadFoldable(
602 MachineInstr *MI,
603 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
604 if (!MI->canFoldAsLoad() || !MI->mayLoad())
605 return false;
606 const MCInstrDesc &MCID = MI->getDesc();
607 if (MCID.getNumDefs() != 1)
608 return false;
609
610 unsigned Reg = MI->getOperand(0).getReg();
611 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
612 // loads. It should be checked when processing uses of the load, since
613 // uses can be removed during peephole.
614 if (!MI->getOperand(0).getSubReg() &&
615 TargetRegisterInfo::isVirtualRegister(Reg) &&
616 MRI->hasOneNonDBGUse(Reg)) {
617 FoldAsLoadDefCandidates.insert(Reg);
618 return true;
619 }
620 return false;
621 }
622
isMoveImmediate(MachineInstr * MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)623 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
624 SmallSet<unsigned, 4> &ImmDefRegs,
625 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
626 const MCInstrDesc &MCID = MI->getDesc();
627 if (!MI->isMoveImmediate())
628 return false;
629 if (MCID.getNumDefs() != 1)
630 return false;
631 unsigned Reg = MI->getOperand(0).getReg();
632 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
633 ImmDefMIs.insert(std::make_pair(Reg, MI));
634 ImmDefRegs.insert(Reg);
635 return true;
636 }
637
638 return false;
639 }
640
641 /// foldImmediate - Try folding register operands that are defined by move
642 /// immediate instructions, i.e. a trivial constant folding optimization, if
643 /// and only if the def and use are in the same BB.
foldImmediate(MachineInstr * MI,MachineBasicBlock * MBB,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)644 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
645 SmallSet<unsigned, 4> &ImmDefRegs,
646 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
647 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
648 MachineOperand &MO = MI->getOperand(i);
649 if (!MO.isReg() || MO.isDef())
650 continue;
651 unsigned Reg = MO.getReg();
652 if (!TargetRegisterInfo::isVirtualRegister(Reg))
653 continue;
654 if (ImmDefRegs.count(Reg) == 0)
655 continue;
656 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
657 assert(II != ImmDefMIs.end());
658 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
659 ++NumImmFold;
660 return true;
661 }
662 }
663 return false;
664 }
665
runOnMachineFunction(MachineFunction & MF)666 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
667 if (skipOptnoneFunction(*MF.getFunction()))
668 return false;
669
670 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
671 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
672
673 if (DisablePeephole)
674 return false;
675
676 TM = &MF.getTarget();
677 TII = TM->getInstrInfo();
678 MRI = &MF.getRegInfo();
679 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
680
681 bool Changed = false;
682
683 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
684 MachineBasicBlock *MBB = &*I;
685
686 bool SeenMoveImm = false;
687 SmallPtrSet<MachineInstr*, 8> LocalMIs;
688 SmallSet<unsigned, 4> ImmDefRegs;
689 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
690 SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
691
692 for (MachineBasicBlock::iterator
693 MII = I->begin(), MIE = I->end(); MII != MIE; ) {
694 MachineInstr *MI = &*MII;
695 // We may be erasing MI below, increment MII now.
696 ++MII;
697 LocalMIs.insert(MI);
698
699 // Skip debug values. They should not affect this peephole optimization.
700 if (MI->isDebugValue())
701 continue;
702
703 // If there exists an instruction which belongs to the following
704 // categories, we will discard the load candidates.
705 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
706 MI->isKill() || MI->isInlineAsm() ||
707 MI->hasUnmodeledSideEffects()) {
708 FoldAsLoadDefCandidates.clear();
709 continue;
710 }
711 if (MI->mayStore() || MI->isCall())
712 FoldAsLoadDefCandidates.clear();
713
714 if (((MI->isBitcast() || MI->isCopy()) && optimizeCopyOrBitcast(MI)) ||
715 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
716 (MI->isSelect() && optimizeSelect(MI))) {
717 // MI is deleted.
718 LocalMIs.erase(MI);
719 Changed = true;
720 continue;
721 }
722
723 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
724 SeenMoveImm = true;
725 } else {
726 Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
727 // optimizeExtInstr might have created new instructions after MI
728 // and before the already incremented MII. Adjust MII so that the
729 // next iteration sees the new instructions.
730 MII = MI;
731 ++MII;
732 if (SeenMoveImm)
733 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
734 }
735
736 // Check whether MI is a load candidate for folding into a later
737 // instruction. If MI is not a candidate, check whether we can fold an
738 // earlier load into MI.
739 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
740 !FoldAsLoadDefCandidates.empty()) {
741 const MCInstrDesc &MIDesc = MI->getDesc();
742 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
743 ++i) {
744 const MachineOperand &MOp = MI->getOperand(i);
745 if (!MOp.isReg())
746 continue;
747 unsigned FoldAsLoadDefReg = MOp.getReg();
748 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
749 // We need to fold load after optimizeCmpInstr, since
750 // optimizeCmpInstr can enable folding by converting SUB to CMP.
751 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
752 // we need it for markUsesInDebugValueAsUndef().
753 unsigned FoldedReg = FoldAsLoadDefReg;
754 MachineInstr *DefMI = nullptr;
755 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
756 FoldAsLoadDefReg,
757 DefMI);
758 if (FoldMI) {
759 // Update LocalMIs since we replaced MI with FoldMI and deleted
760 // DefMI.
761 DEBUG(dbgs() << "Replacing: " << *MI);
762 DEBUG(dbgs() << " With: " << *FoldMI);
763 LocalMIs.erase(MI);
764 LocalMIs.erase(DefMI);
765 LocalMIs.insert(FoldMI);
766 MI->eraseFromParent();
767 DefMI->eraseFromParent();
768 MRI->markUsesInDebugValueAsUndef(FoldedReg);
769 FoldAsLoadDefCandidates.erase(FoldedReg);
770 ++NumLoadFold;
771 // MI is replaced with FoldMI.
772 Changed = true;
773 break;
774 }
775 }
776 }
777 }
778 }
779 }
780
781 return Changed;
782 }
783
getNextSourceFromCopy(unsigned & SrcIdx,unsigned & SrcSubReg)784 bool ValueTracker::getNextSourceFromCopy(unsigned &SrcIdx,
785 unsigned &SrcSubReg) {
786 assert(Def->isCopy() && "Invalid definition");
787 // Copy instruction are supposed to be: Def = Src.
788 // If someone breaks this assumption, bad things will happen everywhere.
789 assert(Def->getDesc().getNumOperands() == 2 && "Invalid number of operands");
790
791 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
792 // If we look for a different subreg, it means we want a subreg of src.
793 // Bails as we do not support composing subreg yet.
794 return false;
795 // Otherwise, we want the whole source.
796 SrcIdx = 1;
797 SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
798 return true;
799 }
800
getNextSourceFromBitcast(unsigned & SrcIdx,unsigned & SrcSubReg)801 bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcIdx,
802 unsigned &SrcSubReg) {
803 assert(Def->isBitcast() && "Invalid definition");
804
805 // Bail if there are effects that a plain copy will not expose.
806 if (Def->hasUnmodeledSideEffects())
807 return false;
808
809 // Bitcasts with more than one def are not supported.
810 if (Def->getDesc().getNumDefs() != 1)
811 return false;
812 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
813 // If we look for a different subreg, it means we want a subreg of the src.
814 // Bails as we do not support composing subreg yet.
815 return false;
816
817 SrcIdx = Def->getDesc().getNumOperands();
818 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
819 ++OpIdx) {
820 const MachineOperand &MO = Def->getOperand(OpIdx);
821 if (!MO.isReg() || !MO.getReg())
822 continue;
823 assert(!MO.isDef() && "We should have skipped all the definitions by now");
824 if (SrcIdx != EndOpIdx)
825 // Multiple sources?
826 return false;
827 SrcIdx = OpIdx;
828 }
829 SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
830 return true;
831 }
832
getNextSourceFromRegSequence(unsigned & SrcIdx,unsigned & SrcSubReg)833 bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcIdx,
834 unsigned &SrcSubReg) {
835 assert(Def->isRegSequence() && "Invalid definition");
836
837 if (Def->getOperand(DefIdx).getSubReg())
838 // If we are composing subreg, bails out.
839 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
840 // This should almost never happen as the SSA property is tracked at
841 // the register level (as opposed to the subreg level).
842 // I.e.,
843 // Def.sub0 =
844 // Def.sub1 =
845 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
846 // Def. Thus, it must not be generated.
847 // However, some code could theoretically generates a single
848 // Def.sub0 (i.e, not defining the other subregs) and we would
849 // have this case.
850 // If we can ascertain (or force) that this never happens, we could
851 // turn that into an assertion.
852 return false;
853
854 // We are looking at:
855 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
856 // Check if one of the operand defines the subreg we are interested in.
857 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = Def->getNumOperands();
858 OpIdx != EndOpIdx; OpIdx += 2) {
859 const MachineOperand &MOSubIdx = Def->getOperand(OpIdx + 1);
860 assert(MOSubIdx.isImm() &&
861 "One of the subindex of the reg_sequence is not an immediate");
862 if (MOSubIdx.getImm() == DefSubReg) {
863 assert(Def->getOperand(OpIdx).isReg() &&
864 "One of the source of the reg_sequence is not a register");
865 SrcIdx = OpIdx;
866 SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
867 return true;
868 }
869 }
870
871 // If the subreg we are tracking is super-defined by another subreg,
872 // we could follow this value. However, this would require to compose
873 // the subreg and we do not do that for now.
874 return false;
875 }
876
getNextSourceFromInsertSubreg(unsigned & SrcIdx,unsigned & SrcSubReg)877 bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcIdx,
878 unsigned &SrcSubReg) {
879 assert(Def->isInsertSubreg() && "Invalid definition");
880 if (Def->getOperand(DefIdx).getSubReg())
881 // If we are composing subreg, bails out.
882 // Same remark as getNextSourceFromRegSequence.
883 // I.e., this may be turned into an assert.
884 return false;
885
886 // We are looking at:
887 // Def = INSERT_SUBREG v0, v1, sub1
888 // There are two cases:
889 // 1. DefSubReg == sub1, get v1.
890 // 2. DefSubReg != sub1, the value may be available through v0.
891
892 // #1 Check if the inserted register matches the require sub index.
893 unsigned InsertedSubReg = Def->getOperand(3).getImm();
894 if (InsertedSubReg == DefSubReg) {
895 SrcIdx = 2;
896 SrcSubReg = Def->getOperand(SrcIdx).getSubReg();
897 return true;
898 }
899 // #2 Otherwise, if the sub register we are looking for is not partial
900 // defined by the inserted element, we can look through the main
901 // register (v0).
902 // To check the overlapping we need a MRI and a TRI.
903 if (!MRI)
904 return false;
905
906 const MachineOperand &MODef = Def->getOperand(DefIdx);
907 const MachineOperand &MOBase = Def->getOperand(1);
908 // If the result register (Def) and the base register (v0) do not
909 // have the same register class or if we have to compose
910 // subregisters, bails out.
911 if (MRI->getRegClass(MODef.getReg()) != MRI->getRegClass(MOBase.getReg()) ||
912 MOBase.getSubReg())
913 return false;
914
915 // Get the TRI and check if inserted sub register overlaps with the
916 // sub register we are tracking.
917 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
918 if (!TRI ||
919 (TRI->getSubRegIndexLaneMask(DefSubReg) &
920 TRI->getSubRegIndexLaneMask(InsertedSubReg)) != 0)
921 return false;
922 // At this point, the value is available in v0 via the same subreg
923 // we used for Def.
924 SrcIdx = 1;
925 SrcSubReg = DefSubReg;
926 return true;
927 }
928
getNextSourceFromExtractSubreg(unsigned & SrcIdx,unsigned & SrcSubReg)929 bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcIdx,
930 unsigned &SrcSubReg) {
931 assert(Def->isExtractSubreg() && "Invalid definition");
932 // We are looking at:
933 // Def = EXTRACT_SUBREG v0, sub0
934
935 // Bails if we have to compose sub registers.
936 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
937 if (DefSubReg)
938 return false;
939
940 // Bails if we have to compose sub registers.
941 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
942 if (Def->getOperand(1).getSubReg())
943 return false;
944 // Otherwise, the value is available in the v0.sub0.
945 SrcIdx = 1;
946 SrcSubReg = Def->getOperand(2).getImm();
947 return true;
948 }
949
getNextSourceFromSubregToReg(unsigned & SrcIdx,unsigned & SrcSubReg)950 bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcIdx,
951 unsigned &SrcSubReg) {
952 assert(Def->isSubregToReg() && "Invalid definition");
953 // We are looking at:
954 // Def = SUBREG_TO_REG Imm, v0, sub0
955
956 // Bails if we have to compose sub registers.
957 // If DefSubReg != sub0, we would have to check that all the bits
958 // we track are included in sub0 and if yes, we would have to
959 // determine the right subreg in v0.
960 if (DefSubReg != Def->getOperand(3).getImm())
961 return false;
962 // Bails if we have to compose sub registers.
963 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
964 if (Def->getOperand(2).getSubReg())
965 return false;
966
967 SrcIdx = 2;
968 SrcSubReg = Def->getOperand(3).getImm();
969 return true;
970 }
971
getNextSourceImpl(unsigned & SrcIdx,unsigned & SrcSubReg)972 bool ValueTracker::getNextSourceImpl(unsigned &SrcIdx, unsigned &SrcSubReg) {
973 assert(Def && "This method needs a valid definition");
974
975 assert(
976 (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
977 Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
978 if (Def->isCopy())
979 return getNextSourceFromCopy(SrcIdx, SrcSubReg);
980 if (Def->isBitcast())
981 return getNextSourceFromBitcast(SrcIdx, SrcSubReg);
982 // All the remaining cases involve "complex" instructions.
983 // Bails if we did not ask for the advanced tracking.
984 if (!UseAdvancedTracking)
985 return false;
986 if (Def->isRegSequence())
987 return getNextSourceFromRegSequence(SrcIdx, SrcSubReg);
988 if (Def->isInsertSubreg())
989 return getNextSourceFromInsertSubreg(SrcIdx, SrcSubReg);
990 if (Def->isExtractSubreg())
991 return getNextSourceFromExtractSubreg(SrcIdx, SrcSubReg);
992 if (Def->isSubregToReg())
993 return getNextSourceFromSubregToReg(SrcIdx, SrcSubReg);
994 return false;
995 }
996
getNextSource(unsigned & SrcIdx,unsigned & SrcSubReg)997 const MachineInstr *ValueTracker::getNextSource(unsigned &SrcIdx,
998 unsigned &SrcSubReg) {
999 // If we reach a point where we cannot move up in the use-def chain,
1000 // there is nothing we can get.
1001 if (!Def)
1002 return nullptr;
1003
1004 const MachineInstr *PrevDef = nullptr;
1005 // Try to find the next source.
1006 if (getNextSourceImpl(SrcIdx, SrcSubReg)) {
1007 // Update definition, definition index, and subregister for the
1008 // next call of getNextSource.
1009 const MachineOperand &MO = Def->getOperand(SrcIdx);
1010 assert(MO.isReg() && !MO.isDef() && "Source is invalid");
1011 // Update the current register.
1012 Reg = MO.getReg();
1013 // Update the return value before moving up in the use-def chain.
1014 PrevDef = Def;
1015 // If we can still move up in the use-def chain, move to the next
1016 // defintion.
1017 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
1018 Def = MRI->getVRegDef(Reg);
1019 DefIdx = MRI->def_begin(Reg).getOperandNo();
1020 DefSubReg = SrcSubReg;
1021 return PrevDef;
1022 }
1023 }
1024 // If we end up here, this means we will not be able to find another source
1025 // for the next iteration.
1026 // Make sure any new call to getNextSource bails out early by cutting the
1027 // use-def chain.
1028 Def = nullptr;
1029 return PrevDef;
1030 }
1031