1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33
34 namespace {
35 class VectorLegalizer {
36 SelectionDAG& DAG;
37 const TargetLowering &TLI;
38 bool Changed; // Keep track of whether anything changed
39
40 /// For nodes that are of legal width, and that have more than one use, this
41 /// map indicates what regularized operand to use. This allows us to avoid
42 /// legalizing the same thing more than once.
43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45 /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46 void AddLegalizedOperand(SDValue From, SDValue To) {
47 LegalizedNodes.insert(std::make_pair(From, To));
48 // If someone requests legalization of the new node, return itself.
49 if (From != To)
50 LegalizedNodes.insert(std::make_pair(To, To));
51 }
52
53 /// \brief Legalizes the given node.
54 SDValue LegalizeOp(SDValue Op);
55
56 /// \brief Assuming the node is legal, "legalize" the results.
57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58
59 /// \brief Implements unrolling a VSETCC.
60 SDValue UnrollVSETCC(SDValue Op);
61
62 /// \brief Implement expand-based legalization of vector operations.
63 ///
64 /// This is just a high-level routine to dispatch to specific code paths for
65 /// operations to legalize them.
66 SDValue Expand(SDValue Op);
67
68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69 /// FSUB isn't legal.
70 ///
71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74
75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76 SDValue ExpandSEXTINREG(SDValue Op);
77
78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79 ///
80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81 /// type. The contents of the bits in the extended part of each element are
82 /// undef.
83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84
85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86 ///
87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88 /// type, then shifts left and arithmetic shifts right to introduce a sign
89 /// extension.
90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91
92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93 ///
94 /// Shuffles the low lanes of the operand into place and blends zeros into
95 /// the remaining lanes, finally bitcasting to the proper type.
96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97
98 /// \brief Expand bswap of vectors into a shuffle if legal.
99 SDValue ExpandBSWAP(SDValue Op);
100
101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102 /// supported by the target.
103 SDValue ExpandVSELECT(SDValue Op);
104 SDValue ExpandSELECT(SDValue Op);
105 SDValue ExpandLoad(SDValue Op);
106 SDValue ExpandStore(SDValue Op);
107 SDValue ExpandFNEG(SDValue Op);
108
109 /// \brief Implements vector promotion.
110 ///
111 /// This is essentially just bitcasting the operands to a different type and
112 /// bitcasting the result back to the original type.
113 SDValue Promote(SDValue Op);
114
115 /// \brief Implements [SU]INT_TO_FP vector promotion.
116 ///
117 /// This is a [zs]ext of the input operand to the next size up.
118 SDValue PromoteINT_TO_FP(SDValue Op);
119
120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
121 ///
122 /// It is promoted to the next size up integer type. The result is then
123 /// truncated back to the original type.
124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
125
126 public:
127 /// \brief Begin legalizer the vector operations in the DAG.
128 bool Run();
VectorLegalizer(SelectionDAG & dag)129 VectorLegalizer(SelectionDAG& dag) :
130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
131 };
132
Run()133 bool VectorLegalizer::Run() {
134 // Before we start legalizing vector nodes, check if there are any vectors.
135 bool HasVectors = false;
136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
138 // Check if the values of the nodes contain vectors. We don't need to check
139 // the operands because we are going to check their values at some point.
140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
141 J != E; ++J)
142 HasVectors |= J->isVector();
143
144 // If we found a vector node we can start the legalization.
145 if (HasVectors)
146 break;
147 }
148
149 // If this basic block has no vectors then no need to legalize vectors.
150 if (!HasVectors)
151 return false;
152
153 // The legalize process is inherently a bottom-up recursive process (users
154 // legalize their uses before themselves). Given infinite stack space, we
155 // could just start legalizing on the root and traverse the whole graph. In
156 // practice however, this causes us to run out of stack space on large basic
157 // blocks. To avoid this problem, compute an ordering of the nodes where each
158 // node is only legalized after all of its operands are legalized.
159 DAG.AssignTopologicalOrder();
160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
162 LegalizeOp(SDValue(I, 0));
163
164 // Finally, it's possible the root changed. Get the new root.
165 SDValue OldRoot = DAG.getRoot();
166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
167 DAG.setRoot(LegalizedNodes[OldRoot]);
168
169 LegalizedNodes.clear();
170
171 // Remove dead nodes now.
172 DAG.RemoveDeadNodes();
173
174 return Changed;
175 }
176
TranslateLegalizeResults(SDValue Op,SDValue Result)177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
178 // Generic legalization: just pass the operand through.
179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
181 return Result.getValue(Op.getResNo());
182 }
183
LegalizeOp(SDValue Op)184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
185 // Note that LegalizeOp may be reentered even from single-use nodes, which
186 // means that we always must cache transformed nodes.
187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
188 if (I != LegalizedNodes.end()) return I->second;
189
190 SDNode* Node = Op.getNode();
191
192 // Legalize the operands
193 SmallVector<SDValue, 8> Ops;
194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
195 Ops.push_back(LegalizeOp(Node->getOperand(i)));
196
197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
198
199 if (Op.getOpcode() == ISD::LOAD) {
200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
201 ISD::LoadExtType ExtType = LD->getExtensionType();
202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
203 if (TLI.isLoadExtLegal(LD->getExtensionType(), LD->getMemoryVT()))
204 return TranslateLegalizeResults(Op, Result);
205 Changed = true;
206 return LegalizeOp(ExpandLoad(Op));
207 }
208 } else if (Op.getOpcode() == ISD::STORE) {
209 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
210 EVT StVT = ST->getMemoryVT();
211 MVT ValVT = ST->getValue().getSimpleValueType();
212 if (StVT.isVector() && ST->isTruncatingStore())
213 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
214 default: llvm_unreachable("This action is not supported yet!");
215 case TargetLowering::Legal:
216 return TranslateLegalizeResults(Op, Result);
217 case TargetLowering::Custom:
218 Changed = true;
219 return TranslateLegalizeResults(Op, TLI.LowerOperation(Result, DAG));
220 case TargetLowering::Expand:
221 Changed = true;
222 return LegalizeOp(ExpandStore(Op));
223 }
224 }
225
226 bool HasVectorValue = false;
227 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
228 J != E;
229 ++J)
230 HasVectorValue |= J->isVector();
231 if (!HasVectorValue)
232 return TranslateLegalizeResults(Op, Result);
233
234 EVT QueryType;
235 switch (Op.getOpcode()) {
236 default:
237 return TranslateLegalizeResults(Op, Result);
238 case ISD::ADD:
239 case ISD::SUB:
240 case ISD::MUL:
241 case ISD::SDIV:
242 case ISD::UDIV:
243 case ISD::SREM:
244 case ISD::UREM:
245 case ISD::FADD:
246 case ISD::FSUB:
247 case ISD::FMUL:
248 case ISD::FDIV:
249 case ISD::FREM:
250 case ISD::AND:
251 case ISD::OR:
252 case ISD::XOR:
253 case ISD::SHL:
254 case ISD::SRA:
255 case ISD::SRL:
256 case ISD::ROTL:
257 case ISD::ROTR:
258 case ISD::BSWAP:
259 case ISD::CTLZ:
260 case ISD::CTTZ:
261 case ISD::CTLZ_ZERO_UNDEF:
262 case ISD::CTTZ_ZERO_UNDEF:
263 case ISD::CTPOP:
264 case ISD::SELECT:
265 case ISD::VSELECT:
266 case ISD::SELECT_CC:
267 case ISD::SETCC:
268 case ISD::ZERO_EXTEND:
269 case ISD::ANY_EXTEND:
270 case ISD::TRUNCATE:
271 case ISD::SIGN_EXTEND:
272 case ISD::FP_TO_SINT:
273 case ISD::FP_TO_UINT:
274 case ISD::FNEG:
275 case ISD::FABS:
276 case ISD::FCOPYSIGN:
277 case ISD::FSQRT:
278 case ISD::FSIN:
279 case ISD::FCOS:
280 case ISD::FPOWI:
281 case ISD::FPOW:
282 case ISD::FLOG:
283 case ISD::FLOG2:
284 case ISD::FLOG10:
285 case ISD::FEXP:
286 case ISD::FEXP2:
287 case ISD::FCEIL:
288 case ISD::FTRUNC:
289 case ISD::FRINT:
290 case ISD::FNEARBYINT:
291 case ISD::FROUND:
292 case ISD::FFLOOR:
293 case ISD::FP_ROUND:
294 case ISD::FP_EXTEND:
295 case ISD::FMA:
296 case ISD::SIGN_EXTEND_INREG:
297 case ISD::ANY_EXTEND_VECTOR_INREG:
298 case ISD::SIGN_EXTEND_VECTOR_INREG:
299 case ISD::ZERO_EXTEND_VECTOR_INREG:
300 QueryType = Node->getValueType(0);
301 break;
302 case ISD::FP_ROUND_INREG:
303 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
304 break;
305 case ISD::SINT_TO_FP:
306 case ISD::UINT_TO_FP:
307 QueryType = Node->getOperand(0).getValueType();
308 break;
309 }
310
311 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
312 case TargetLowering::Promote:
313 Result = Promote(Op);
314 Changed = true;
315 break;
316 case TargetLowering::Legal:
317 break;
318 case TargetLowering::Custom: {
319 SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
320 if (Tmp1.getNode()) {
321 Result = Tmp1;
322 break;
323 }
324 // FALL THROUGH
325 }
326 case TargetLowering::Expand:
327 Result = Expand(Op);
328 }
329
330 // Make sure that the generated code is itself legal.
331 if (Result != Op) {
332 Result = LegalizeOp(Result);
333 Changed = true;
334 }
335
336 // Note that LegalizeOp may be reentered even from single-use nodes, which
337 // means that we always must cache transformed nodes.
338 AddLegalizedOperand(Op, Result);
339 return Result;
340 }
341
Promote(SDValue Op)342 SDValue VectorLegalizer::Promote(SDValue Op) {
343 // For a few operations there is a specific concept for promotion based on
344 // the operand's type.
345 switch (Op.getOpcode()) {
346 case ISD::SINT_TO_FP:
347 case ISD::UINT_TO_FP:
348 // "Promote" the operation by extending the operand.
349 return PromoteINT_TO_FP(Op);
350 case ISD::FP_TO_UINT:
351 case ISD::FP_TO_SINT:
352 // Promote the operation by extending the operand.
353 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
354 }
355
356 // The rest of the time, vector "promotion" is basically just bitcasting and
357 // doing the operation in a different type. For example, x86 promotes
358 // ISD::AND on v2i32 to v1i64.
359 MVT VT = Op.getSimpleValueType();
360 assert(Op.getNode()->getNumValues() == 1 &&
361 "Can't promote a vector with multiple results!");
362 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
363 SDLoc dl(Op);
364 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
365
366 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
367 if (Op.getOperand(j).getValueType().isVector())
368 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
369 else
370 Operands[j] = Op.getOperand(j);
371 }
372
373 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
374
375 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
376 }
377
PromoteINT_TO_FP(SDValue Op)378 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
379 // INT_TO_FP operations may require the input operand be promoted even
380 // when the type is otherwise legal.
381 EVT VT = Op.getOperand(0).getValueType();
382 assert(Op.getNode()->getNumValues() == 1 &&
383 "Can't promote a vector with multiple results!");
384
385 // Normal getTypeToPromoteTo() doesn't work here, as that will promote
386 // by widening the vector w/ the same element width and twice the number
387 // of elements. We want the other way around, the same number of elements,
388 // each twice the width.
389 //
390 // Increase the bitwidth of the element to the next pow-of-two
391 // (which is greater than 8 bits).
392
393 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
394 assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
395 SDLoc dl(Op);
396 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
397
398 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
399 ISD::SIGN_EXTEND;
400 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
401 if (Op.getOperand(j).getValueType().isVector())
402 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
403 else
404 Operands[j] = Op.getOperand(j);
405 }
406
407 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
408 }
409
410 // For FP_TO_INT we promote the result type to a vector type with wider
411 // elements and then truncate the result. This is different from the default
412 // PromoteVector which uses bitcast to promote thus assumning that the
413 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)414 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
415 assert(Op.getNode()->getNumValues() == 1 &&
416 "Can't promote a vector with multiple results!");
417 EVT VT = Op.getValueType();
418
419 EVT NewVT;
420 unsigned NewOpc;
421 while (1) {
422 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
423 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
424 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
425 NewOpc = ISD::FP_TO_SINT;
426 break;
427 }
428 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
429 NewOpc = ISD::FP_TO_UINT;
430 break;
431 }
432 }
433
434 SDLoc loc(Op);
435 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
436 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
437 }
438
439
ExpandLoad(SDValue Op)440 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
441 SDLoc dl(Op);
442 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
443 SDValue Chain = LD->getChain();
444 SDValue BasePTR = LD->getBasePtr();
445 EVT SrcVT = LD->getMemoryVT();
446 ISD::LoadExtType ExtType = LD->getExtensionType();
447
448 SmallVector<SDValue, 8> Vals;
449 SmallVector<SDValue, 8> LoadChains;
450 unsigned NumElem = SrcVT.getVectorNumElements();
451
452 EVT SrcEltVT = SrcVT.getScalarType();
453 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
454
455 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
456 // When elements in a vector is not byte-addressable, we cannot directly
457 // load each element by advancing pointer, which could only address bytes.
458 // Instead, we load all significant words, mask bits off, and concatenate
459 // them to form each element. Finally, they are extended to destination
460 // scalar type to build the destination vector.
461 EVT WideVT = TLI.getPointerTy();
462
463 assert(WideVT.isRound() &&
464 "Could not handle the sophisticated case when the widest integer is"
465 " not power of 2.");
466 assert(WideVT.bitsGE(SrcEltVT) &&
467 "Type is not legalized?");
468
469 unsigned WideBytes = WideVT.getStoreSize();
470 unsigned Offset = 0;
471 unsigned RemainingBytes = SrcVT.getStoreSize();
472 SmallVector<SDValue, 8> LoadVals;
473
474 while (RemainingBytes > 0) {
475 SDValue ScalarLoad;
476 unsigned LoadBytes = WideBytes;
477
478 if (RemainingBytes >= LoadBytes) {
479 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
480 LD->getPointerInfo().getWithOffset(Offset),
481 LD->isVolatile(), LD->isNonTemporal(),
482 LD->isInvariant(), LD->getAlignment(),
483 LD->getTBAAInfo());
484 } else {
485 EVT LoadVT = WideVT;
486 while (RemainingBytes < LoadBytes) {
487 LoadBytes >>= 1; // Reduce the load size by half.
488 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
489 }
490 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
491 LD->getPointerInfo().getWithOffset(Offset),
492 LoadVT, LD->isVolatile(),
493 LD->isNonTemporal(), LD->getAlignment(),
494 LD->getTBAAInfo());
495 }
496
497 RemainingBytes -= LoadBytes;
498 Offset += LoadBytes;
499 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
500 DAG.getConstant(LoadBytes, BasePTR.getValueType()));
501
502 LoadVals.push_back(ScalarLoad.getValue(0));
503 LoadChains.push_back(ScalarLoad.getValue(1));
504 }
505
506 // Extract bits, pack and extend/trunc them into destination type.
507 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
508 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
509
510 unsigned BitOffset = 0;
511 unsigned WideIdx = 0;
512 unsigned WideBits = WideVT.getSizeInBits();
513
514 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
515 SDValue Lo, Hi, ShAmt;
516
517 if (BitOffset < WideBits) {
518 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
519 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
520 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
521 }
522
523 BitOffset += SrcEltBits;
524 if (BitOffset >= WideBits) {
525 WideIdx++;
526 Offset -= WideBits;
527 if (Offset > 0) {
528 ShAmt = DAG.getConstant(SrcEltBits - Offset,
529 TLI.getShiftAmountTy(WideVT));
530 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
531 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
532 }
533 }
534
535 if (Hi.getNode())
536 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
537
538 switch (ExtType) {
539 default: llvm_unreachable("Unknown extended-load op!");
540 case ISD::EXTLOAD:
541 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
542 break;
543 case ISD::ZEXTLOAD:
544 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
545 break;
546 case ISD::SEXTLOAD:
547 ShAmt = DAG.getConstant(WideBits - SrcEltBits,
548 TLI.getShiftAmountTy(WideVT));
549 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
550 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
551 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
552 break;
553 }
554 Vals.push_back(Lo);
555 }
556 } else {
557 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
558
559 for (unsigned Idx=0; Idx<NumElem; Idx++) {
560 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
561 Op.getNode()->getValueType(0).getScalarType(),
562 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
563 SrcVT.getScalarType(),
564 LD->isVolatile(), LD->isNonTemporal(),
565 LD->getAlignment(), LD->getTBAAInfo());
566
567 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
568 DAG.getConstant(Stride, BasePTR.getValueType()));
569
570 Vals.push_back(ScalarLoad.getValue(0));
571 LoadChains.push_back(ScalarLoad.getValue(1));
572 }
573 }
574
575 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
576 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
577 Op.getNode()->getValueType(0), Vals);
578
579 AddLegalizedOperand(Op.getValue(0), Value);
580 AddLegalizedOperand(Op.getValue(1), NewChain);
581
582 return (Op.getResNo() ? NewChain : Value);
583 }
584
ExpandStore(SDValue Op)585 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
586 SDLoc dl(Op);
587 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
588 SDValue Chain = ST->getChain();
589 SDValue BasePTR = ST->getBasePtr();
590 SDValue Value = ST->getValue();
591 EVT StVT = ST->getMemoryVT();
592
593 unsigned Alignment = ST->getAlignment();
594 bool isVolatile = ST->isVolatile();
595 bool isNonTemporal = ST->isNonTemporal();
596 const MDNode *TBAAInfo = ST->getTBAAInfo();
597
598 unsigned NumElem = StVT.getVectorNumElements();
599 // The type of the data we want to save
600 EVT RegVT = Value.getValueType();
601 EVT RegSclVT = RegVT.getScalarType();
602 // The type of data as saved in memory.
603 EVT MemSclVT = StVT.getScalarType();
604
605 // Cast floats into integers
606 unsigned ScalarSize = MemSclVT.getSizeInBits();
607
608 // Round odd types to the next pow of two.
609 if (!isPowerOf2_32(ScalarSize))
610 ScalarSize = NextPowerOf2(ScalarSize);
611
612 // Store Stride in bytes
613 unsigned Stride = ScalarSize/8;
614 // Extract each of the elements from the original vector
615 // and save them into memory individually.
616 SmallVector<SDValue, 8> Stores;
617 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
618 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
619 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
620
621 // This scalar TruncStore may be illegal, but we legalize it later.
622 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
623 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
624 isVolatile, isNonTemporal, Alignment, TBAAInfo);
625
626 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
627 DAG.getConstant(Stride, BasePTR.getValueType()));
628
629 Stores.push_back(Store);
630 }
631 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
632 AddLegalizedOperand(Op, TF);
633 return TF;
634 }
635
Expand(SDValue Op)636 SDValue VectorLegalizer::Expand(SDValue Op) {
637 switch (Op->getOpcode()) {
638 case ISD::SIGN_EXTEND_INREG:
639 return ExpandSEXTINREG(Op);
640 case ISD::ANY_EXTEND_VECTOR_INREG:
641 return ExpandANY_EXTEND_VECTOR_INREG(Op);
642 case ISD::SIGN_EXTEND_VECTOR_INREG:
643 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
644 case ISD::ZERO_EXTEND_VECTOR_INREG:
645 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
646 case ISD::BSWAP:
647 return ExpandBSWAP(Op);
648 case ISD::VSELECT:
649 return ExpandVSELECT(Op);
650 case ISD::SELECT:
651 return ExpandSELECT(Op);
652 case ISD::UINT_TO_FP:
653 return ExpandUINT_TO_FLOAT(Op);
654 case ISD::FNEG:
655 return ExpandFNEG(Op);
656 case ISD::SETCC:
657 return UnrollVSETCC(Op);
658 default:
659 return DAG.UnrollVectorOp(Op.getNode());
660 }
661 }
662
ExpandSELECT(SDValue Op)663 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
664 // Lower a select instruction where the condition is a scalar and the
665 // operands are vectors. Lower this select to VSELECT and implement it
666 // using XOR AND OR. The selector bit is broadcasted.
667 EVT VT = Op.getValueType();
668 SDLoc DL(Op);
669
670 SDValue Mask = Op.getOperand(0);
671 SDValue Op1 = Op.getOperand(1);
672 SDValue Op2 = Op.getOperand(2);
673
674 assert(VT.isVector() && !Mask.getValueType().isVector()
675 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
676
677 unsigned NumElem = VT.getVectorNumElements();
678
679 // If we can't even use the basic vector operations of
680 // AND,OR,XOR, we will have to scalarize the op.
681 // Notice that the operation may be 'promoted' which means that it is
682 // 'bitcasted' to another type which is handled.
683 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
684 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
685 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
686 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
687 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
688 return DAG.UnrollVectorOp(Op.getNode());
689
690 // Generate a mask operand.
691 EVT MaskTy = VT.changeVectorElementTypeToInteger();
692
693 // What is the size of each element in the vector mask.
694 EVT BitTy = MaskTy.getScalarType();
695
696 Mask = DAG.getSelect(DL, BitTy, Mask,
697 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
698 DAG.getConstant(0, BitTy));
699
700 // Broadcast the mask so that the entire vector is all-one or all zero.
701 SmallVector<SDValue, 8> Ops(NumElem, Mask);
702 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
703
704 // Bitcast the operands to be the same type as the mask.
705 // This is needed when we select between FP types because
706 // the mask is a vector of integers.
707 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
708 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
709
710 SDValue AllOnes = DAG.getConstant(
711 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
712 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
713
714 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
715 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
716 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
717 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
718 }
719
ExpandSEXTINREG(SDValue Op)720 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
721 EVT VT = Op.getValueType();
722
723 // Make sure that the SRA and SHL instructions are available.
724 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
725 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
726 return DAG.UnrollVectorOp(Op.getNode());
727
728 SDLoc DL(Op);
729 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
730
731 unsigned BW = VT.getScalarType().getSizeInBits();
732 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
733 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
734
735 Op = Op.getOperand(0);
736 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
737 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
738 }
739
740 // Generically expand a vector anyext in register to a shuffle of the relevant
741 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)742 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
743 SDLoc DL(Op);
744 EVT VT = Op.getValueType();
745 int NumElements = VT.getVectorNumElements();
746 SDValue Src = Op.getOperand(0);
747 EVT SrcVT = Src.getValueType();
748 int NumSrcElements = SrcVT.getVectorNumElements();
749
750 // Build a base mask of undef shuffles.
751 SmallVector<int, 16> ShuffleMask;
752 ShuffleMask.resize(NumSrcElements, -1);
753
754 // Place the extended lanes into the correct locations.
755 int ExtLaneScale = NumSrcElements / NumElements;
756 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
757 for (int i = 0; i < NumElements; ++i)
758 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
759
760 return DAG.getNode(
761 ISD::BITCAST, DL, VT,
762 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
763 }
764
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)765 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
766 SDLoc DL(Op);
767 EVT VT = Op.getValueType();
768 SDValue Src = Op.getOperand(0);
769 EVT SrcVT = Src.getValueType();
770
771 // First build an any-extend node which can be legalized above when we
772 // recurse through it.
773 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
774
775 // Now we need sign extend. Do this by shifting the elements. Even if these
776 // aren't legal operations, they have a better chance of being legalized
777 // without full scalarization than the sign extension does.
778 unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
779 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
780 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT);
781 return DAG.getNode(ISD::SRA, DL, VT,
782 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
783 ShiftAmount);
784 }
785
786 // Generically expand a vector zext in register to a shuffle of the relevant
787 // lanes into the appropriate locations, a blend of zero into the high bits,
788 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)789 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
790 SDLoc DL(Op);
791 EVT VT = Op.getValueType();
792 int NumElements = VT.getVectorNumElements();
793 SDValue Src = Op.getOperand(0);
794 EVT SrcVT = Src.getValueType();
795 int NumSrcElements = SrcVT.getVectorNumElements();
796
797 // Build up a zero vector to blend into this one.
798 EVT SrcScalarVT = SrcVT.getScalarType();
799 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT);
800 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
801 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
802
803 // Shuffle the incoming lanes into the correct position, and pull all other
804 // lanes from the zero vector.
805 SmallVector<int, 16> ShuffleMask;
806 ShuffleMask.reserve(NumSrcElements);
807 for (int i = 0; i < NumSrcElements; ++i)
808 ShuffleMask.push_back(i);
809
810 int ExtLaneScale = NumSrcElements / NumElements;
811 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
812 for (int i = 0; i < NumElements; ++i)
813 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
814
815 return DAG.getNode(ISD::BITCAST, DL, VT,
816 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
817 }
818
ExpandBSWAP(SDValue Op)819 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
820 EVT VT = Op.getValueType();
821
822 // Generate a byte wise shuffle mask for the BSWAP.
823 SmallVector<int, 16> ShuffleMask;
824 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
825 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
826 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
827 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
828
829 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
830
831 // Only emit a shuffle if the mask is legal.
832 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
833 return DAG.UnrollVectorOp(Op.getNode());
834
835 SDLoc DL(Op);
836 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
837 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
838 ShuffleMask.data());
839 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
840 }
841
ExpandVSELECT(SDValue Op)842 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
843 // Implement VSELECT in terms of XOR, AND, OR
844 // on platforms which do not support blend natively.
845 SDLoc DL(Op);
846
847 SDValue Mask = Op.getOperand(0);
848 SDValue Op1 = Op.getOperand(1);
849 SDValue Op2 = Op.getOperand(2);
850
851 EVT VT = Mask.getValueType();
852
853 // If we can't even use the basic vector operations of
854 // AND,OR,XOR, we will have to scalarize the op.
855 // Notice that the operation may be 'promoted' which means that it is
856 // 'bitcasted' to another type which is handled.
857 // This operation also isn't safe with AND, OR, XOR when the boolean
858 // type is 0/1 as we need an all ones vector constant to mask with.
859 // FIXME: Sign extend 1 to all ones if thats legal on the target.
860 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
861 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
862 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
863 TLI.getBooleanContents(Op1.getValueType()) !=
864 TargetLowering::ZeroOrNegativeOneBooleanContent)
865 return DAG.UnrollVectorOp(Op.getNode());
866
867 // If the mask and the type are different sizes, unroll the vector op. This
868 // can occur when getSetCCResultType returns something that is different in
869 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
870 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
871 return DAG.UnrollVectorOp(Op.getNode());
872
873 // Bitcast the operands to be the same type as the mask.
874 // This is needed when we select between FP types because
875 // the mask is a vector of integers.
876 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
877 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
878
879 SDValue AllOnes = DAG.getConstant(
880 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
881 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
882
883 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
884 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
885 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
886 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
887 }
888
ExpandUINT_TO_FLOAT(SDValue Op)889 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
890 EVT VT = Op.getOperand(0).getValueType();
891 SDLoc DL(Op);
892
893 // Make sure that the SINT_TO_FP and SRL instructions are available.
894 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
895 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
896 return DAG.UnrollVectorOp(Op.getNode());
897
898 EVT SVT = VT.getScalarType();
899 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
900 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
901
902 unsigned BW = SVT.getSizeInBits();
903 SDValue HalfWord = DAG.getConstant(BW/2, VT);
904
905 // Constants to clear the upper part of the word.
906 // Notice that we can also use SHL+SHR, but using a constant is slightly
907 // faster on x86.
908 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
909 SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
910
911 // Two to the power of half-word-size.
912 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
913
914 // Clear upper part of LO, lower HI
915 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
916 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
917
918 // Convert hi and lo to floats
919 // Convert the hi part back to the upper values
920 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
921 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
922 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
923
924 // Add the two halves
925 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
926 }
927
928
ExpandFNEG(SDValue Op)929 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
930 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
931 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
932 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
933 Zero, Op.getOperand(0));
934 }
935 return DAG.UnrollVectorOp(Op.getNode());
936 }
937
UnrollVSETCC(SDValue Op)938 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
939 EVT VT = Op.getValueType();
940 unsigned NumElems = VT.getVectorNumElements();
941 EVT EltVT = VT.getVectorElementType();
942 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
943 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
944 SDLoc dl(Op);
945 SmallVector<SDValue, 8> Ops(NumElems);
946 for (unsigned i = 0; i < NumElems; ++i) {
947 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
948 DAG.getConstant(i, TLI.getVectorIdxTy()));
949 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
950 DAG.getConstant(i, TLI.getVectorIdxTy()));
951 Ops[i] = DAG.getNode(ISD::SETCC, dl,
952 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
953 LHSElem, RHSElem, CC);
954 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
955 DAG.getConstant(APInt::getAllOnesValue
956 (EltVT.getSizeInBits()), EltVT),
957 DAG.getConstant(0, EltVT));
958 }
959 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
960 }
961
962 }
963
LegalizeVectors()964 bool SelectionDAG::LegalizeVectors() {
965 return VectorLegalizer(*this).Run();
966 }
967