• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64InstrInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/TargetRegistry.h"
25 
26 using namespace llvm;
27 
28 #define GET_INSTRINFO_CTOR_DTOR
29 #include "AArch64GenInstrInfo.inc"
30 
AArch64InstrInfo(const AArch64Subtarget & STI)31 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
32     : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
33       RI(this, &STI), Subtarget(STI) {}
34 
35 /// GetInstSize - Return the number of bytes of code the specified
36 /// instruction may be.  This returns the maximum number of bytes.
GetInstSizeInBytes(const MachineInstr * MI) const37 unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
38   const MachineBasicBlock &MBB = *MI->getParent();
39   const MachineFunction *MF = MBB.getParent();
40   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
41 
42   if (MI->getOpcode() == AArch64::INLINEASM)
43     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
44 
45   const MCInstrDesc &Desc = MI->getDesc();
46   switch (Desc.getOpcode()) {
47   default:
48     // Anything not explicitly designated otherwise is a nomal 4-byte insn.
49     return 4;
50   case TargetOpcode::DBG_VALUE:
51   case TargetOpcode::EH_LABEL:
52   case TargetOpcode::IMPLICIT_DEF:
53   case TargetOpcode::KILL:
54     return 0;
55   }
56 
57   llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
58 }
59 
parseCondBranch(MachineInstr * LastInst,MachineBasicBlock * & Target,SmallVectorImpl<MachineOperand> & Cond)60 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
61                             SmallVectorImpl<MachineOperand> &Cond) {
62   // Block ends with fall-through condbranch.
63   switch (LastInst->getOpcode()) {
64   default:
65     llvm_unreachable("Unknown branch instruction?");
66   case AArch64::Bcc:
67     Target = LastInst->getOperand(1).getMBB();
68     Cond.push_back(LastInst->getOperand(0));
69     break;
70   case AArch64::CBZW:
71   case AArch64::CBZX:
72   case AArch64::CBNZW:
73   case AArch64::CBNZX:
74     Target = LastInst->getOperand(1).getMBB();
75     Cond.push_back(MachineOperand::CreateImm(-1));
76     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
77     Cond.push_back(LastInst->getOperand(0));
78     break;
79   case AArch64::TBZW:
80   case AArch64::TBZX:
81   case AArch64::TBNZW:
82   case AArch64::TBNZX:
83     Target = LastInst->getOperand(2).getMBB();
84     Cond.push_back(MachineOperand::CreateImm(-1));
85     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
86     Cond.push_back(LastInst->getOperand(0));
87     Cond.push_back(LastInst->getOperand(1));
88   }
89 }
90 
91 // Branch analysis.
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const92 bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
93                                    MachineBasicBlock *&TBB,
94                                    MachineBasicBlock *&FBB,
95                                    SmallVectorImpl<MachineOperand> &Cond,
96                                    bool AllowModify) const {
97   // If the block has no terminators, it just falls into the block after it.
98   MachineBasicBlock::iterator I = MBB.end();
99   if (I == MBB.begin())
100     return false;
101   --I;
102   while (I->isDebugValue()) {
103     if (I == MBB.begin())
104       return false;
105     --I;
106   }
107   if (!isUnpredicatedTerminator(I))
108     return false;
109 
110   // Get the last instruction in the block.
111   MachineInstr *LastInst = I;
112 
113   // If there is only one terminator instruction, process it.
114   unsigned LastOpc = LastInst->getOpcode();
115   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
116     if (isUncondBranchOpcode(LastOpc)) {
117       TBB = LastInst->getOperand(0).getMBB();
118       return false;
119     }
120     if (isCondBranchOpcode(LastOpc)) {
121       // Block ends with fall-through condbranch.
122       parseCondBranch(LastInst, TBB, Cond);
123       return false;
124     }
125     return true; // Can't handle indirect branch.
126   }
127 
128   // Get the instruction before it if it is a terminator.
129   MachineInstr *SecondLastInst = I;
130   unsigned SecondLastOpc = SecondLastInst->getOpcode();
131 
132   // If AllowModify is true and the block ends with two or more unconditional
133   // branches, delete all but the first unconditional branch.
134   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
135     while (isUncondBranchOpcode(SecondLastOpc)) {
136       LastInst->eraseFromParent();
137       LastInst = SecondLastInst;
138       LastOpc = LastInst->getOpcode();
139       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
140         // Return now the only terminator is an unconditional branch.
141         TBB = LastInst->getOperand(0).getMBB();
142         return false;
143       } else {
144         SecondLastInst = I;
145         SecondLastOpc = SecondLastInst->getOpcode();
146       }
147     }
148   }
149 
150   // If there are three terminators, we don't know what sort of block this is.
151   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
152     return true;
153 
154   // If the block ends with a B and a Bcc, handle it.
155   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
156     parseCondBranch(SecondLastInst, TBB, Cond);
157     FBB = LastInst->getOperand(0).getMBB();
158     return false;
159   }
160 
161   // If the block ends with two unconditional branches, handle it.  The second
162   // one is not executed, so remove it.
163   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
164     TBB = SecondLastInst->getOperand(0).getMBB();
165     I = LastInst;
166     if (AllowModify)
167       I->eraseFromParent();
168     return false;
169   }
170 
171   // ...likewise if it ends with an indirect branch followed by an unconditional
172   // branch.
173   if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
174     I = LastInst;
175     if (AllowModify)
176       I->eraseFromParent();
177     return true;
178   }
179 
180   // Otherwise, can't handle this.
181   return true;
182 }
183 
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const184 bool AArch64InstrInfo::ReverseBranchCondition(
185     SmallVectorImpl<MachineOperand> &Cond) const {
186   if (Cond[0].getImm() != -1) {
187     // Regular Bcc
188     AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
189     Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
190   } else {
191     // Folded compare-and-branch
192     switch (Cond[1].getImm()) {
193     default:
194       llvm_unreachable("Unknown conditional branch!");
195     case AArch64::CBZW:
196       Cond[1].setImm(AArch64::CBNZW);
197       break;
198     case AArch64::CBNZW:
199       Cond[1].setImm(AArch64::CBZW);
200       break;
201     case AArch64::CBZX:
202       Cond[1].setImm(AArch64::CBNZX);
203       break;
204     case AArch64::CBNZX:
205       Cond[1].setImm(AArch64::CBZX);
206       break;
207     case AArch64::TBZW:
208       Cond[1].setImm(AArch64::TBNZW);
209       break;
210     case AArch64::TBNZW:
211       Cond[1].setImm(AArch64::TBZW);
212       break;
213     case AArch64::TBZX:
214       Cond[1].setImm(AArch64::TBNZX);
215       break;
216     case AArch64::TBNZX:
217       Cond[1].setImm(AArch64::TBZX);
218       break;
219     }
220   }
221 
222   return false;
223 }
224 
RemoveBranch(MachineBasicBlock & MBB) const225 unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
226   MachineBasicBlock::iterator I = MBB.end();
227   if (I == MBB.begin())
228     return 0;
229   --I;
230   while (I->isDebugValue()) {
231     if (I == MBB.begin())
232       return 0;
233     --I;
234   }
235   if (!isUncondBranchOpcode(I->getOpcode()) &&
236       !isCondBranchOpcode(I->getOpcode()))
237     return 0;
238 
239   // Remove the branch.
240   I->eraseFromParent();
241 
242   I = MBB.end();
243 
244   if (I == MBB.begin())
245     return 1;
246   --I;
247   if (!isCondBranchOpcode(I->getOpcode()))
248     return 1;
249 
250   // Remove the branch.
251   I->eraseFromParent();
252   return 2;
253 }
254 
instantiateCondBranch(MachineBasicBlock & MBB,DebugLoc DL,MachineBasicBlock * TBB,const SmallVectorImpl<MachineOperand> & Cond) const255 void AArch64InstrInfo::instantiateCondBranch(
256     MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
257     const SmallVectorImpl<MachineOperand> &Cond) const {
258   if (Cond[0].getImm() != -1) {
259     // Regular Bcc
260     BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
261   } else {
262     // Folded compare-and-branch
263     const MachineInstrBuilder MIB =
264         BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
265     if (Cond.size() > 3)
266       MIB.addImm(Cond[3].getImm());
267     MIB.addMBB(TBB);
268   }
269 }
270 
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const271 unsigned AArch64InstrInfo::InsertBranch(
272     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
273     const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
274   // Shouldn't be a fall through.
275   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
276 
277   if (!FBB) {
278     if (Cond.empty()) // Unconditional branch?
279       BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
280     else
281       instantiateCondBranch(MBB, DL, TBB, Cond);
282     return 1;
283   }
284 
285   // Two-way conditional branch.
286   instantiateCondBranch(MBB, DL, TBB, Cond);
287   BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
288   return 2;
289 }
290 
291 // Find the original register that VReg is copied from.
removeCopies(const MachineRegisterInfo & MRI,unsigned VReg)292 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
293   while (TargetRegisterInfo::isVirtualRegister(VReg)) {
294     const MachineInstr *DefMI = MRI.getVRegDef(VReg);
295     if (!DefMI->isFullCopy())
296       return VReg;
297     VReg = DefMI->getOperand(1).getReg();
298   }
299   return VReg;
300 }
301 
302 // Determine if VReg is defined by an instruction that can be folded into a
303 // csel instruction. If so, return the folded opcode, and the replacement
304 // register.
canFoldIntoCSel(const MachineRegisterInfo & MRI,unsigned VReg,unsigned * NewVReg=nullptr)305 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
306                                 unsigned *NewVReg = nullptr) {
307   VReg = removeCopies(MRI, VReg);
308   if (!TargetRegisterInfo::isVirtualRegister(VReg))
309     return 0;
310 
311   bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
312   const MachineInstr *DefMI = MRI.getVRegDef(VReg);
313   unsigned Opc = 0;
314   unsigned SrcOpNum = 0;
315   switch (DefMI->getOpcode()) {
316   case AArch64::ADDSXri:
317   case AArch64::ADDSWri:
318     // if NZCV is used, do not fold.
319     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
320       return 0;
321   // fall-through to ADDXri and ADDWri.
322   case AArch64::ADDXri:
323   case AArch64::ADDWri:
324     // add x, 1 -> csinc.
325     if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
326         DefMI->getOperand(3).getImm() != 0)
327       return 0;
328     SrcOpNum = 1;
329     Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
330     break;
331 
332   case AArch64::ORNXrr:
333   case AArch64::ORNWrr: {
334     // not x -> csinv, represented as orn dst, xzr, src.
335     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
336     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
337       return 0;
338     SrcOpNum = 2;
339     Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
340     break;
341   }
342 
343   case AArch64::SUBSXrr:
344   case AArch64::SUBSWrr:
345     // if NZCV is used, do not fold.
346     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
347       return 0;
348   // fall-through to SUBXrr and SUBWrr.
349   case AArch64::SUBXrr:
350   case AArch64::SUBWrr: {
351     // neg x -> csneg, represented as sub dst, xzr, src.
352     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
353     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
354       return 0;
355     SrcOpNum = 2;
356     Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
357     break;
358   }
359   default:
360     return 0;
361   }
362   assert(Opc && SrcOpNum && "Missing parameters");
363 
364   if (NewVReg)
365     *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
366   return Opc;
367 }
368 
canInsertSelect(const MachineBasicBlock & MBB,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const369 bool AArch64InstrInfo::canInsertSelect(
370     const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
371     unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
372     int &FalseCycles) const {
373   // Check register classes.
374   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
375   const TargetRegisterClass *RC =
376       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
377   if (!RC)
378     return false;
379 
380   // Expanding cbz/tbz requires an extra cycle of latency on the condition.
381   unsigned ExtraCondLat = Cond.size() != 1;
382 
383   // GPRs are handled by csel.
384   // FIXME: Fold in x+1, -x, and ~x when applicable.
385   if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
386       AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
387     // Single-cycle csel, csinc, csinv, and csneg.
388     CondCycles = 1 + ExtraCondLat;
389     TrueCycles = FalseCycles = 1;
390     if (canFoldIntoCSel(MRI, TrueReg))
391       TrueCycles = 0;
392     else if (canFoldIntoCSel(MRI, FalseReg))
393       FalseCycles = 0;
394     return true;
395   }
396 
397   // Scalar floating point is handled by fcsel.
398   // FIXME: Form fabs, fmin, and fmax when applicable.
399   if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
400       AArch64::FPR32RegClass.hasSubClassEq(RC)) {
401     CondCycles = 5 + ExtraCondLat;
402     TrueCycles = FalseCycles = 2;
403     return true;
404   }
405 
406   // Can't do vectors.
407   return false;
408 }
409 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg) const410 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
411                                     MachineBasicBlock::iterator I, DebugLoc DL,
412                                     unsigned DstReg,
413                                     const SmallVectorImpl<MachineOperand> &Cond,
414                                     unsigned TrueReg, unsigned FalseReg) const {
415   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
416 
417   // Parse the condition code, see parseCondBranch() above.
418   AArch64CC::CondCode CC;
419   switch (Cond.size()) {
420   default:
421     llvm_unreachable("Unknown condition opcode in Cond");
422   case 1: // b.cc
423     CC = AArch64CC::CondCode(Cond[0].getImm());
424     break;
425   case 3: { // cbz/cbnz
426     // We must insert a compare against 0.
427     bool Is64Bit;
428     switch (Cond[1].getImm()) {
429     default:
430       llvm_unreachable("Unknown branch opcode in Cond");
431     case AArch64::CBZW:
432       Is64Bit = 0;
433       CC = AArch64CC::EQ;
434       break;
435     case AArch64::CBZX:
436       Is64Bit = 1;
437       CC = AArch64CC::EQ;
438       break;
439     case AArch64::CBNZW:
440       Is64Bit = 0;
441       CC = AArch64CC::NE;
442       break;
443     case AArch64::CBNZX:
444       Is64Bit = 1;
445       CC = AArch64CC::NE;
446       break;
447     }
448     unsigned SrcReg = Cond[2].getReg();
449     if (Is64Bit) {
450       // cmp reg, #0 is actually subs xzr, reg, #0.
451       MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
452       BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
453           .addReg(SrcReg)
454           .addImm(0)
455           .addImm(0);
456     } else {
457       MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
458       BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
459           .addReg(SrcReg)
460           .addImm(0)
461           .addImm(0);
462     }
463     break;
464   }
465   case 4: { // tbz/tbnz
466     // We must insert a tst instruction.
467     switch (Cond[1].getImm()) {
468     default:
469       llvm_unreachable("Unknown branch opcode in Cond");
470     case AArch64::TBZW:
471     case AArch64::TBZX:
472       CC = AArch64CC::EQ;
473       break;
474     case AArch64::TBNZW:
475     case AArch64::TBNZX:
476       CC = AArch64CC::NE;
477       break;
478     }
479     // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
480     if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
481       BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
482           .addReg(Cond[2].getReg())
483           .addImm(
484               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
485     else
486       BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
487           .addReg(Cond[2].getReg())
488           .addImm(
489               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
490     break;
491   }
492   }
493 
494   unsigned Opc = 0;
495   const TargetRegisterClass *RC = nullptr;
496   bool TryFold = false;
497   if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
498     RC = &AArch64::GPR64RegClass;
499     Opc = AArch64::CSELXr;
500     TryFold = true;
501   } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
502     RC = &AArch64::GPR32RegClass;
503     Opc = AArch64::CSELWr;
504     TryFold = true;
505   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
506     RC = &AArch64::FPR64RegClass;
507     Opc = AArch64::FCSELDrrr;
508   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
509     RC = &AArch64::FPR32RegClass;
510     Opc = AArch64::FCSELSrrr;
511   }
512   assert(RC && "Unsupported regclass");
513 
514   // Try folding simple instructions into the csel.
515   if (TryFold) {
516     unsigned NewVReg = 0;
517     unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
518     if (FoldedOpc) {
519       // The folded opcodes csinc, csinc and csneg apply the operation to
520       // FalseReg, so we need to invert the condition.
521       CC = AArch64CC::getInvertedCondCode(CC);
522       TrueReg = FalseReg;
523     } else
524       FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
525 
526     // Fold the operation. Leave any dead instructions for DCE to clean up.
527     if (FoldedOpc) {
528       FalseReg = NewVReg;
529       Opc = FoldedOpc;
530       // The extends the live range of NewVReg.
531       MRI.clearKillFlags(NewVReg);
532     }
533   }
534 
535   // Pull all virtual register into the appropriate class.
536   MRI.constrainRegClass(TrueReg, RC);
537   MRI.constrainRegClass(FalseReg, RC);
538 
539   // Insert the csel.
540   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
541       CC);
542 }
543 
544 // FIXME: this implementation should be micro-architecture dependent, so a
545 // micro-architecture target hook should be introduced here in future.
isAsCheapAsAMove(const MachineInstr * MI) const546 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const {
547   if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53())
548     return MI->isAsCheapAsAMove();
549 
550   switch (MI->getOpcode()) {
551   default:
552     return false;
553 
554   // add/sub on register without shift
555   case AArch64::ADDWri:
556   case AArch64::ADDXri:
557   case AArch64::SUBWri:
558   case AArch64::SUBXri:
559     return (MI->getOperand(3).getImm() == 0);
560 
561   // logical ops on immediate
562   case AArch64::ANDWri:
563   case AArch64::ANDXri:
564   case AArch64::EORWri:
565   case AArch64::EORXri:
566   case AArch64::ORRWri:
567   case AArch64::ORRXri:
568     return true;
569 
570   // logical ops on register without shift
571   case AArch64::ANDWrr:
572   case AArch64::ANDXrr:
573   case AArch64::BICWrr:
574   case AArch64::BICXrr:
575   case AArch64::EONWrr:
576   case AArch64::EONXrr:
577   case AArch64::EORWrr:
578   case AArch64::EORXrr:
579   case AArch64::ORNWrr:
580   case AArch64::ORNXrr:
581   case AArch64::ORRWrr:
582   case AArch64::ORRXrr:
583     return true;
584   }
585 
586   llvm_unreachable("Unknown opcode to check as cheap as a move!");
587 }
588 
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const589 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
590                                              unsigned &SrcReg, unsigned &DstReg,
591                                              unsigned &SubIdx) const {
592   switch (MI.getOpcode()) {
593   default:
594     return false;
595   case AArch64::SBFMXri: // aka sxtw
596   case AArch64::UBFMXri: // aka uxtw
597     // Check for the 32 -> 64 bit extension case, these instructions can do
598     // much more.
599     if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
600       return false;
601     // This is a signed or unsigned 32 -> 64 bit extension.
602     SrcReg = MI.getOperand(1).getReg();
603     DstReg = MI.getOperand(0).getReg();
604     SubIdx = AArch64::sub_32;
605     return true;
606   }
607 }
608 
609 /// analyzeCompare - For a comparison instruction, return the source registers
610 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
611 /// Return true if the comparison instruction can be analyzed.
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const612 bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
613                                       unsigned &SrcReg2, int &CmpMask,
614                                       int &CmpValue) const {
615   switch (MI->getOpcode()) {
616   default:
617     break;
618   case AArch64::SUBSWrr:
619   case AArch64::SUBSWrs:
620   case AArch64::SUBSWrx:
621   case AArch64::SUBSXrr:
622   case AArch64::SUBSXrs:
623   case AArch64::SUBSXrx:
624   case AArch64::ADDSWrr:
625   case AArch64::ADDSWrs:
626   case AArch64::ADDSWrx:
627   case AArch64::ADDSXrr:
628   case AArch64::ADDSXrs:
629   case AArch64::ADDSXrx:
630     // Replace SUBSWrr with SUBWrr if NZCV is not used.
631     SrcReg = MI->getOperand(1).getReg();
632     SrcReg2 = MI->getOperand(2).getReg();
633     CmpMask = ~0;
634     CmpValue = 0;
635     return true;
636   case AArch64::SUBSWri:
637   case AArch64::ADDSWri:
638   case AArch64::SUBSXri:
639   case AArch64::ADDSXri:
640     SrcReg = MI->getOperand(1).getReg();
641     SrcReg2 = 0;
642     CmpMask = ~0;
643     CmpValue = MI->getOperand(2).getImm();
644     return true;
645   case AArch64::ANDSWri:
646   case AArch64::ANDSXri:
647     // ANDS does not use the same encoding scheme as the others xxxS
648     // instructions.
649     SrcReg = MI->getOperand(1).getReg();
650     SrcReg2 = 0;
651     CmpMask = ~0;
652     CmpValue = AArch64_AM::decodeLogicalImmediate(
653         MI->getOperand(2).getImm(),
654         MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
655     return true;
656   }
657 
658   return false;
659 }
660 
UpdateOperandRegClass(MachineInstr * Instr)661 static bool UpdateOperandRegClass(MachineInstr *Instr) {
662   MachineBasicBlock *MBB = Instr->getParent();
663   assert(MBB && "Can't get MachineBasicBlock here");
664   MachineFunction *MF = MBB->getParent();
665   assert(MF && "Can't get MachineFunction here");
666   const TargetMachine *TM = &MF->getTarget();
667   const TargetInstrInfo *TII = TM->getInstrInfo();
668   const TargetRegisterInfo *TRI = TM->getRegisterInfo();
669   MachineRegisterInfo *MRI = &MF->getRegInfo();
670 
671   for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
672        ++OpIdx) {
673     MachineOperand &MO = Instr->getOperand(OpIdx);
674     const TargetRegisterClass *OpRegCstraints =
675         Instr->getRegClassConstraint(OpIdx, TII, TRI);
676 
677     // If there's no constraint, there's nothing to do.
678     if (!OpRegCstraints)
679       continue;
680     // If the operand is a frame index, there's nothing to do here.
681     // A frame index operand will resolve correctly during PEI.
682     if (MO.isFI())
683       continue;
684 
685     assert(MO.isReg() &&
686            "Operand has register constraints without being a register!");
687 
688     unsigned Reg = MO.getReg();
689     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
690       if (!OpRegCstraints->contains(Reg))
691         return false;
692     } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
693                !MRI->constrainRegClass(Reg, OpRegCstraints))
694       return false;
695   }
696 
697   return true;
698 }
699 
700 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
701 /// comparison into one that sets the zero bit in the flags register.
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const702 bool AArch64InstrInfo::optimizeCompareInstr(
703     MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
704     int CmpValue, const MachineRegisterInfo *MRI) const {
705 
706   // Replace SUBSWrr with SUBWrr if NZCV is not used.
707   int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
708   if (Cmp_NZCV != -1) {
709     unsigned NewOpc;
710     switch (CmpInstr->getOpcode()) {
711     default:
712       return false;
713     case AArch64::ADDSWrr:      NewOpc = AArch64::ADDWrr; break;
714     case AArch64::ADDSWri:      NewOpc = AArch64::ADDWri; break;
715     case AArch64::ADDSWrs:      NewOpc = AArch64::ADDWrs; break;
716     case AArch64::ADDSWrx:      NewOpc = AArch64::ADDWrx; break;
717     case AArch64::ADDSXrr:      NewOpc = AArch64::ADDXrr; break;
718     case AArch64::ADDSXri:      NewOpc = AArch64::ADDXri; break;
719     case AArch64::ADDSXrs:      NewOpc = AArch64::ADDXrs; break;
720     case AArch64::ADDSXrx:      NewOpc = AArch64::ADDXrx; break;
721     case AArch64::SUBSWrr:      NewOpc = AArch64::SUBWrr; break;
722     case AArch64::SUBSWri:      NewOpc = AArch64::SUBWri; break;
723     case AArch64::SUBSWrs:      NewOpc = AArch64::SUBWrs; break;
724     case AArch64::SUBSWrx:      NewOpc = AArch64::SUBWrx; break;
725     case AArch64::SUBSXrr:      NewOpc = AArch64::SUBXrr; break;
726     case AArch64::SUBSXri:      NewOpc = AArch64::SUBXri; break;
727     case AArch64::SUBSXrs:      NewOpc = AArch64::SUBXrs; break;
728     case AArch64::SUBSXrx:      NewOpc = AArch64::SUBXrx; break;
729     }
730 
731     const MCInstrDesc &MCID = get(NewOpc);
732     CmpInstr->setDesc(MCID);
733     CmpInstr->RemoveOperand(Cmp_NZCV);
734     bool succeeded = UpdateOperandRegClass(CmpInstr);
735     (void)succeeded;
736     assert(succeeded && "Some operands reg class are incompatible!");
737     return true;
738   }
739 
740   // Continue only if we have a "ri" where immediate is zero.
741   if (CmpValue != 0 || SrcReg2 != 0)
742     return false;
743 
744   // CmpInstr is a Compare instruction if destination register is not used.
745   if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
746     return false;
747 
748   // Get the unique definition of SrcReg.
749   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
750   if (!MI)
751     return false;
752 
753   // We iterate backward, starting from the instruction before CmpInstr and
754   // stop when reaching the definition of the source register or done with the
755   // basic block, to check whether NZCV is used or modified in between.
756   MachineBasicBlock::iterator I = CmpInstr, E = MI,
757                               B = CmpInstr->getParent()->begin();
758 
759   // Early exit if CmpInstr is at the beginning of the BB.
760   if (I == B)
761     return false;
762 
763   // Check whether the definition of SrcReg is in the same basic block as
764   // Compare. If not, we can't optimize away the Compare.
765   if (MI->getParent() != CmpInstr->getParent())
766     return false;
767 
768   // Check that NZCV isn't set between the comparison instruction and the one we
769   // want to change.
770   const TargetRegisterInfo *TRI = &getRegisterInfo();
771   for (--I; I != E; --I) {
772     const MachineInstr &Instr = *I;
773 
774     if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
775         Instr.readsRegister(AArch64::NZCV, TRI))
776       // This instruction modifies or uses NZCV after the one we want to
777       // change. We can't do this transformation.
778       return false;
779     if (I == B)
780       // The 'and' is below the comparison instruction.
781       return false;
782   }
783 
784   unsigned NewOpc = MI->getOpcode();
785   switch (MI->getOpcode()) {
786   default:
787     return false;
788   case AArch64::ADDSWrr:
789   case AArch64::ADDSWri:
790   case AArch64::ADDSXrr:
791   case AArch64::ADDSXri:
792   case AArch64::SUBSWrr:
793   case AArch64::SUBSWri:
794   case AArch64::SUBSXrr:
795   case AArch64::SUBSXri:
796     break;
797   case AArch64::ADDWrr:    NewOpc = AArch64::ADDSWrr; break;
798   case AArch64::ADDWri:    NewOpc = AArch64::ADDSWri; break;
799   case AArch64::ADDXrr:    NewOpc = AArch64::ADDSXrr; break;
800   case AArch64::ADDXri:    NewOpc = AArch64::ADDSXri; break;
801   case AArch64::ADCWr:     NewOpc = AArch64::ADCSWr; break;
802   case AArch64::ADCXr:     NewOpc = AArch64::ADCSXr; break;
803   case AArch64::SUBWrr:    NewOpc = AArch64::SUBSWrr; break;
804   case AArch64::SUBWri:    NewOpc = AArch64::SUBSWri; break;
805   case AArch64::SUBXrr:    NewOpc = AArch64::SUBSXrr; break;
806   case AArch64::SUBXri:    NewOpc = AArch64::SUBSXri; break;
807   case AArch64::SBCWr:     NewOpc = AArch64::SBCSWr; break;
808   case AArch64::SBCXr:     NewOpc = AArch64::SBCSXr; break;
809   case AArch64::ANDWri:    NewOpc = AArch64::ANDSWri; break;
810   case AArch64::ANDXri:    NewOpc = AArch64::ANDSXri; break;
811   }
812 
813   // Scan forward for the use of NZCV.
814   // When checking against MI: if it's a conditional code requires
815   // checking of V bit, then this is not safe to do.
816   // It is safe to remove CmpInstr if NZCV is redefined or killed.
817   // If we are done with the basic block, we need to check whether NZCV is
818   // live-out.
819   bool IsSafe = false;
820   for (MachineBasicBlock::iterator I = CmpInstr,
821                                    E = CmpInstr->getParent()->end();
822        !IsSafe && ++I != E;) {
823     const MachineInstr &Instr = *I;
824     for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
825          ++IO) {
826       const MachineOperand &MO = Instr.getOperand(IO);
827       if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
828         IsSafe = true;
829         break;
830       }
831       if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
832         continue;
833       if (MO.isDef()) {
834         IsSafe = true;
835         break;
836       }
837 
838       // Decode the condition code.
839       unsigned Opc = Instr.getOpcode();
840       AArch64CC::CondCode CC;
841       switch (Opc) {
842       default:
843         return false;
844       case AArch64::Bcc:
845         CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
846         break;
847       case AArch64::CSINVWr:
848       case AArch64::CSINVXr:
849       case AArch64::CSINCWr:
850       case AArch64::CSINCXr:
851       case AArch64::CSELWr:
852       case AArch64::CSELXr:
853       case AArch64::CSNEGWr:
854       case AArch64::CSNEGXr:
855       case AArch64::FCSELSrrr:
856       case AArch64::FCSELDrrr:
857         CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
858         break;
859       }
860 
861       // It is not safe to remove Compare instruction if Overflow(V) is used.
862       switch (CC) {
863       default:
864         // NZCV can be used multiple times, we should continue.
865         break;
866       case AArch64CC::VS:
867       case AArch64CC::VC:
868       case AArch64CC::GE:
869       case AArch64CC::LT:
870       case AArch64CC::GT:
871       case AArch64CC::LE:
872         return false;
873       }
874     }
875   }
876 
877   // If NZCV is not killed nor re-defined, we should check whether it is
878   // live-out. If it is live-out, do not optimize.
879   if (!IsSafe) {
880     MachineBasicBlock *ParentBlock = CmpInstr->getParent();
881     for (auto *MBB : ParentBlock->successors())
882       if (MBB->isLiveIn(AArch64::NZCV))
883         return false;
884   }
885 
886   // Update the instruction to set NZCV.
887   MI->setDesc(get(NewOpc));
888   CmpInstr->eraseFromParent();
889   bool succeeded = UpdateOperandRegClass(MI);
890   (void)succeeded;
891   assert(succeeded && "Some operands reg class are incompatible!");
892   MI->addRegisterDefined(AArch64::NZCV, TRI);
893   return true;
894 }
895 
896 /// Return true if this is this instruction has a non-zero immediate
hasShiftedReg(const MachineInstr * MI) const897 bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
898   switch (MI->getOpcode()) {
899   default:
900     break;
901   case AArch64::ADDSWrs:
902   case AArch64::ADDSXrs:
903   case AArch64::ADDWrs:
904   case AArch64::ADDXrs:
905   case AArch64::ANDSWrs:
906   case AArch64::ANDSXrs:
907   case AArch64::ANDWrs:
908   case AArch64::ANDXrs:
909   case AArch64::BICSWrs:
910   case AArch64::BICSXrs:
911   case AArch64::BICWrs:
912   case AArch64::BICXrs:
913   case AArch64::CRC32Brr:
914   case AArch64::CRC32CBrr:
915   case AArch64::CRC32CHrr:
916   case AArch64::CRC32CWrr:
917   case AArch64::CRC32CXrr:
918   case AArch64::CRC32Hrr:
919   case AArch64::CRC32Wrr:
920   case AArch64::CRC32Xrr:
921   case AArch64::EONWrs:
922   case AArch64::EONXrs:
923   case AArch64::EORWrs:
924   case AArch64::EORXrs:
925   case AArch64::ORNWrs:
926   case AArch64::ORNXrs:
927   case AArch64::ORRWrs:
928   case AArch64::ORRXrs:
929   case AArch64::SUBSWrs:
930   case AArch64::SUBSXrs:
931   case AArch64::SUBWrs:
932   case AArch64::SUBXrs:
933     if (MI->getOperand(3).isImm()) {
934       unsigned val = MI->getOperand(3).getImm();
935       return (val != 0);
936     }
937     break;
938   }
939   return false;
940 }
941 
942 /// Return true if this is this instruction has a non-zero immediate
hasExtendedReg(const MachineInstr * MI) const943 bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
944   switch (MI->getOpcode()) {
945   default:
946     break;
947   case AArch64::ADDSWrx:
948   case AArch64::ADDSXrx:
949   case AArch64::ADDSXrx64:
950   case AArch64::ADDWrx:
951   case AArch64::ADDXrx:
952   case AArch64::ADDXrx64:
953   case AArch64::SUBSWrx:
954   case AArch64::SUBSXrx:
955   case AArch64::SUBSXrx64:
956   case AArch64::SUBWrx:
957   case AArch64::SUBXrx:
958   case AArch64::SUBXrx64:
959     if (MI->getOperand(3).isImm()) {
960       unsigned val = MI->getOperand(3).getImm();
961       return (val != 0);
962     }
963     break;
964   }
965 
966   return false;
967 }
968 
969 // Return true if this instruction simply sets its single destination register
970 // to zero. This is equivalent to a register rename of the zero-register.
isGPRZero(const MachineInstr * MI) const971 bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
972   switch (MI->getOpcode()) {
973   default:
974     break;
975   case AArch64::MOVZWi:
976   case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
977     if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
978       assert(MI->getDesc().getNumOperands() == 3 &&
979              MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
980       return true;
981     }
982     break;
983   case AArch64::ANDWri: // and Rd, Rzr, #imm
984     return MI->getOperand(1).getReg() == AArch64::WZR;
985   case AArch64::ANDXri:
986     return MI->getOperand(1).getReg() == AArch64::XZR;
987   case TargetOpcode::COPY:
988     return MI->getOperand(1).getReg() == AArch64::WZR;
989   }
990   return false;
991 }
992 
993 // Return true if this instruction simply renames a general register without
994 // modifying bits.
isGPRCopy(const MachineInstr * MI) const995 bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
996   switch (MI->getOpcode()) {
997   default:
998     break;
999   case TargetOpcode::COPY: {
1000     // GPR32 copies will by lowered to ORRXrs
1001     unsigned DstReg = MI->getOperand(0).getReg();
1002     return (AArch64::GPR32RegClass.contains(DstReg) ||
1003             AArch64::GPR64RegClass.contains(DstReg));
1004   }
1005   case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
1006     if (MI->getOperand(1).getReg() == AArch64::XZR) {
1007       assert(MI->getDesc().getNumOperands() == 4 &&
1008              MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1009       return true;
1010     }
1011   case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
1012     if (MI->getOperand(2).getImm() == 0) {
1013       assert(MI->getDesc().getNumOperands() == 4 &&
1014              MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1015       return true;
1016     }
1017   }
1018   return false;
1019 }
1020 
1021 // Return true if this instruction simply renames a general register without
1022 // modifying bits.
isFPRCopy(const MachineInstr * MI) const1023 bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
1024   switch (MI->getOpcode()) {
1025   default:
1026     break;
1027   case TargetOpcode::COPY: {
1028     // FPR64 copies will by lowered to ORR.16b
1029     unsigned DstReg = MI->getOperand(0).getReg();
1030     return (AArch64::FPR64RegClass.contains(DstReg) ||
1031             AArch64::FPR128RegClass.contains(DstReg));
1032   }
1033   case AArch64::ORRv16i8:
1034     if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
1035       assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
1036              "invalid ORRv16i8 operands");
1037       return true;
1038     }
1039   }
1040   return false;
1041 }
1042 
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const1043 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1044                                                int &FrameIndex) const {
1045   switch (MI->getOpcode()) {
1046   default:
1047     break;
1048   case AArch64::LDRWui:
1049   case AArch64::LDRXui:
1050   case AArch64::LDRBui:
1051   case AArch64::LDRHui:
1052   case AArch64::LDRSui:
1053   case AArch64::LDRDui:
1054   case AArch64::LDRQui:
1055     if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1056         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1057       FrameIndex = MI->getOperand(1).getIndex();
1058       return MI->getOperand(0).getReg();
1059     }
1060     break;
1061   }
1062 
1063   return 0;
1064 }
1065 
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const1066 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1067                                               int &FrameIndex) const {
1068   switch (MI->getOpcode()) {
1069   default:
1070     break;
1071   case AArch64::STRWui:
1072   case AArch64::STRXui:
1073   case AArch64::STRBui:
1074   case AArch64::STRHui:
1075   case AArch64::STRSui:
1076   case AArch64::STRDui:
1077   case AArch64::STRQui:
1078     if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1079         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1080       FrameIndex = MI->getOperand(1).getIndex();
1081       return MI->getOperand(0).getReg();
1082     }
1083     break;
1084   }
1085   return 0;
1086 }
1087 
1088 /// Return true if this is load/store scales or extends its register offset.
1089 /// This refers to scaling a dynamic index as opposed to scaled immediates.
1090 /// MI should be a memory op that allows scaled addressing.
isScaledAddr(const MachineInstr * MI) const1091 bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
1092   switch (MI->getOpcode()) {
1093   default:
1094     break;
1095   case AArch64::LDRBBroW:
1096   case AArch64::LDRBroW:
1097   case AArch64::LDRDroW:
1098   case AArch64::LDRHHroW:
1099   case AArch64::LDRHroW:
1100   case AArch64::LDRQroW:
1101   case AArch64::LDRSBWroW:
1102   case AArch64::LDRSBXroW:
1103   case AArch64::LDRSHWroW:
1104   case AArch64::LDRSHXroW:
1105   case AArch64::LDRSWroW:
1106   case AArch64::LDRSroW:
1107   case AArch64::LDRWroW:
1108   case AArch64::LDRXroW:
1109   case AArch64::STRBBroW:
1110   case AArch64::STRBroW:
1111   case AArch64::STRDroW:
1112   case AArch64::STRHHroW:
1113   case AArch64::STRHroW:
1114   case AArch64::STRQroW:
1115   case AArch64::STRSroW:
1116   case AArch64::STRWroW:
1117   case AArch64::STRXroW:
1118   case AArch64::LDRBBroX:
1119   case AArch64::LDRBroX:
1120   case AArch64::LDRDroX:
1121   case AArch64::LDRHHroX:
1122   case AArch64::LDRHroX:
1123   case AArch64::LDRQroX:
1124   case AArch64::LDRSBWroX:
1125   case AArch64::LDRSBXroX:
1126   case AArch64::LDRSHWroX:
1127   case AArch64::LDRSHXroX:
1128   case AArch64::LDRSWroX:
1129   case AArch64::LDRSroX:
1130   case AArch64::LDRWroX:
1131   case AArch64::LDRXroX:
1132   case AArch64::STRBBroX:
1133   case AArch64::STRBroX:
1134   case AArch64::STRDroX:
1135   case AArch64::STRHHroX:
1136   case AArch64::STRHroX:
1137   case AArch64::STRQroX:
1138   case AArch64::STRSroX:
1139   case AArch64::STRWroX:
1140   case AArch64::STRXroX:
1141 
1142     unsigned Val = MI->getOperand(3).getImm();
1143     AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
1144     return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
1145   }
1146   return false;
1147 }
1148 
1149 /// Check all MachineMemOperands for a hint to suppress pairing.
isLdStPairSuppressed(const MachineInstr * MI) const1150 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
1151   assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1152          "Too many target MO flags");
1153   for (auto *MM : MI->memoperands()) {
1154     if (MM->getFlags() &
1155         (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
1156       return true;
1157     }
1158   }
1159   return false;
1160 }
1161 
1162 /// Set a flag on the first MachineMemOperand to suppress pairing.
suppressLdStPair(MachineInstr * MI) const1163 void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
1164   if (MI->memoperands_empty())
1165     return;
1166 
1167   assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1168          "Too many target MO flags");
1169   (*MI->memoperands_begin())
1170       ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
1171 }
1172 
1173 bool
getLdStBaseRegImmOfs(MachineInstr * LdSt,unsigned & BaseReg,unsigned & Offset,const TargetRegisterInfo * TRI) const1174 AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
1175                                        unsigned &Offset,
1176                                        const TargetRegisterInfo *TRI) const {
1177   switch (LdSt->getOpcode()) {
1178   default:
1179     return false;
1180   case AArch64::STRSui:
1181   case AArch64::STRDui:
1182   case AArch64::STRQui:
1183   case AArch64::STRXui:
1184   case AArch64::STRWui:
1185   case AArch64::LDRSui:
1186   case AArch64::LDRDui:
1187   case AArch64::LDRQui:
1188   case AArch64::LDRXui:
1189   case AArch64::LDRWui:
1190     if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
1191       return false;
1192     BaseReg = LdSt->getOperand(1).getReg();
1193     MachineFunction &MF = *LdSt->getParent()->getParent();
1194     unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
1195     Offset = LdSt->getOperand(2).getImm() * Width;
1196     return true;
1197   };
1198 }
1199 
1200 /// Detect opportunities for ldp/stp formation.
1201 ///
1202 /// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
shouldClusterLoads(MachineInstr * FirstLdSt,MachineInstr * SecondLdSt,unsigned NumLoads) const1203 bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
1204                                           MachineInstr *SecondLdSt,
1205                                           unsigned NumLoads) const {
1206   // Only cluster up to a single pair.
1207   if (NumLoads > 1)
1208     return false;
1209   if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
1210     return false;
1211   // getLdStBaseRegImmOfs guarantees that oper 2 isImm.
1212   unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
1213   // Allow 6 bits of positive range.
1214   if (Ofs1 > 64)
1215     return false;
1216   // The caller should already have ordered First/SecondLdSt by offset.
1217   unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
1218   return Ofs1 + 1 == Ofs2;
1219 }
1220 
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second) const1221 bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
1222                                               MachineInstr *Second) const {
1223   // Cyclone can fuse CMN, CMP followed by Bcc.
1224 
1225   // FIXME: B0 can also fuse:
1226   // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
1227   if (Second->getOpcode() != AArch64::Bcc)
1228     return false;
1229   switch (First->getOpcode()) {
1230   default:
1231     return false;
1232   case AArch64::SUBSWri:
1233   case AArch64::ADDSWri:
1234   case AArch64::ANDSWri:
1235   case AArch64::SUBSXri:
1236   case AArch64::ADDSXri:
1237   case AArch64::ANDSXri:
1238     return true;
1239   }
1240 }
1241 
emitFrameIndexDebugValue(MachineFunction & MF,int FrameIx,uint64_t Offset,const MDNode * MDPtr,DebugLoc DL) const1242 MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1243                                                          int FrameIx,
1244                                                          uint64_t Offset,
1245                                                          const MDNode *MDPtr,
1246                                                          DebugLoc DL) const {
1247   MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
1248                                 .addFrameIndex(FrameIx)
1249                                 .addImm(0)
1250                                 .addImm(Offset)
1251                                 .addMetadata(MDPtr);
1252   return &*MIB;
1253 }
1254 
AddSubReg(const MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI)1255 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
1256                                             unsigned Reg, unsigned SubIdx,
1257                                             unsigned State,
1258                                             const TargetRegisterInfo *TRI) {
1259   if (!SubIdx)
1260     return MIB.addReg(Reg, State);
1261 
1262   if (TargetRegisterInfo::isPhysicalRegister(Reg))
1263     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1264   return MIB.addReg(Reg, State, SubIdx);
1265 }
1266 
forwardCopyWillClobberTuple(unsigned DestReg,unsigned SrcReg,unsigned NumRegs)1267 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
1268                                         unsigned NumRegs) {
1269   // We really want the positive remainder mod 32 here, that happens to be
1270   // easily obtainable with a mask.
1271   return ((DestReg - SrcReg) & 0x1f) < NumRegs;
1272 }
1273 
copyPhysRegTuple(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc,unsigned Opcode,llvm::ArrayRef<unsigned> Indices) const1274 void AArch64InstrInfo::copyPhysRegTuple(
1275     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
1276     unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
1277     llvm::ArrayRef<unsigned> Indices) const {
1278   assert(Subtarget.hasNEON() &&
1279          "Unexpected register copy without NEON");
1280   const TargetRegisterInfo *TRI = &getRegisterInfo();
1281   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
1282   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
1283   unsigned NumRegs = Indices.size();
1284 
1285   int SubReg = 0, End = NumRegs, Incr = 1;
1286   if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
1287     SubReg = NumRegs - 1;
1288     End = -1;
1289     Incr = -1;
1290   }
1291 
1292   for (; SubReg != End; SubReg += Incr) {
1293     const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
1294     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
1295     AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
1296     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
1297   }
1298 }
1299 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const1300 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1301                                    MachineBasicBlock::iterator I, DebugLoc DL,
1302                                    unsigned DestReg, unsigned SrcReg,
1303                                    bool KillSrc) const {
1304   if (AArch64::GPR32spRegClass.contains(DestReg) &&
1305       (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
1306     const TargetRegisterInfo *TRI = &getRegisterInfo();
1307 
1308     if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
1309       // If either operand is WSP, expand to ADD #0.
1310       if (Subtarget.hasZeroCycleRegMove()) {
1311         // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
1312         unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1313                                                      &AArch64::GPR64spRegClass);
1314         unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1315                                                     &AArch64::GPR64spRegClass);
1316         // This instruction is reading and writing X registers.  This may upset
1317         // the register scavenger and machine verifier, so we need to indicate
1318         // that we are reading an undefined value from SrcRegX, but a proper
1319         // value from SrcReg.
1320         BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
1321             .addReg(SrcRegX, RegState::Undef)
1322             .addImm(0)
1323             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1324             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1325       } else {
1326         BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
1327             .addReg(SrcReg, getKillRegState(KillSrc))
1328             .addImm(0)
1329             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1330       }
1331     } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
1332       BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
1333           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1334     } else {
1335       if (Subtarget.hasZeroCycleRegMove()) {
1336         // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
1337         unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1338                                                      &AArch64::GPR64spRegClass);
1339         unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1340                                                     &AArch64::GPR64spRegClass);
1341         // This instruction is reading and writing X registers.  This may upset
1342         // the register scavenger and machine verifier, so we need to indicate
1343         // that we are reading an undefined value from SrcRegX, but a proper
1344         // value from SrcReg.
1345         BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
1346             .addReg(AArch64::XZR)
1347             .addReg(SrcRegX, RegState::Undef)
1348             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1349       } else {
1350         // Otherwise, expand to ORR WZR.
1351         BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
1352             .addReg(AArch64::WZR)
1353             .addReg(SrcReg, getKillRegState(KillSrc));
1354       }
1355     }
1356     return;
1357   }
1358 
1359   if (AArch64::GPR64spRegClass.contains(DestReg) &&
1360       (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
1361     if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
1362       // If either operand is SP, expand to ADD #0.
1363       BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
1364           .addReg(SrcReg, getKillRegState(KillSrc))
1365           .addImm(0)
1366           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1367     } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
1368       BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
1369           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1370     } else {
1371       // Otherwise, expand to ORR XZR.
1372       BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
1373           .addReg(AArch64::XZR)
1374           .addReg(SrcReg, getKillRegState(KillSrc));
1375     }
1376     return;
1377   }
1378 
1379   // Copy a DDDD register quad by copying the individual sub-registers.
1380   if (AArch64::DDDDRegClass.contains(DestReg) &&
1381       AArch64::DDDDRegClass.contains(SrcReg)) {
1382     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1383                                         AArch64::dsub2, AArch64::dsub3 };
1384     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1385                      Indices);
1386     return;
1387   }
1388 
1389   // Copy a DDD register triple by copying the individual sub-registers.
1390   if (AArch64::DDDRegClass.contains(DestReg) &&
1391       AArch64::DDDRegClass.contains(SrcReg)) {
1392     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1393                                         AArch64::dsub2 };
1394     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1395                      Indices);
1396     return;
1397   }
1398 
1399   // Copy a DD register pair by copying the individual sub-registers.
1400   if (AArch64::DDRegClass.contains(DestReg) &&
1401       AArch64::DDRegClass.contains(SrcReg)) {
1402     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
1403     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1404                      Indices);
1405     return;
1406   }
1407 
1408   // Copy a QQQQ register quad by copying the individual sub-registers.
1409   if (AArch64::QQQQRegClass.contains(DestReg) &&
1410       AArch64::QQQQRegClass.contains(SrcReg)) {
1411     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1412                                         AArch64::qsub2, AArch64::qsub3 };
1413     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1414                      Indices);
1415     return;
1416   }
1417 
1418   // Copy a QQQ register triple by copying the individual sub-registers.
1419   if (AArch64::QQQRegClass.contains(DestReg) &&
1420       AArch64::QQQRegClass.contains(SrcReg)) {
1421     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1422                                         AArch64::qsub2 };
1423     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1424                      Indices);
1425     return;
1426   }
1427 
1428   // Copy a QQ register pair by copying the individual sub-registers.
1429   if (AArch64::QQRegClass.contains(DestReg) &&
1430       AArch64::QQRegClass.contains(SrcReg)) {
1431     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
1432     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1433                      Indices);
1434     return;
1435   }
1436 
1437   if (AArch64::FPR128RegClass.contains(DestReg) &&
1438       AArch64::FPR128RegClass.contains(SrcReg)) {
1439     if(Subtarget.hasNEON()) {
1440       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1441           .addReg(SrcReg)
1442           .addReg(SrcReg, getKillRegState(KillSrc));
1443     } else {
1444       BuildMI(MBB, I, DL, get(AArch64::STRQpre))
1445         .addReg(AArch64::SP, RegState::Define)
1446         .addReg(SrcReg, getKillRegState(KillSrc))
1447         .addReg(AArch64::SP)
1448         .addImm(-16);
1449       BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
1450         .addReg(AArch64::SP, RegState::Define)
1451         .addReg(DestReg, RegState::Define)
1452         .addReg(AArch64::SP)
1453         .addImm(16);
1454     }
1455     return;
1456   }
1457 
1458   if (AArch64::FPR64RegClass.contains(DestReg) &&
1459       AArch64::FPR64RegClass.contains(SrcReg)) {
1460     if(Subtarget.hasNEON()) {
1461       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
1462                                        &AArch64::FPR128RegClass);
1463       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
1464                                       &AArch64::FPR128RegClass);
1465       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1466           .addReg(SrcReg)
1467           .addReg(SrcReg, getKillRegState(KillSrc));
1468     } else {
1469       BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
1470           .addReg(SrcReg, getKillRegState(KillSrc));
1471     }
1472     return;
1473   }
1474 
1475   if (AArch64::FPR32RegClass.contains(DestReg) &&
1476       AArch64::FPR32RegClass.contains(SrcReg)) {
1477     if(Subtarget.hasNEON()) {
1478       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
1479                                        &AArch64::FPR128RegClass);
1480       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
1481                                       &AArch64::FPR128RegClass);
1482       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1483           .addReg(SrcReg)
1484           .addReg(SrcReg, getKillRegState(KillSrc));
1485     } else {
1486       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1487           .addReg(SrcReg, getKillRegState(KillSrc));
1488     }
1489     return;
1490   }
1491 
1492   if (AArch64::FPR16RegClass.contains(DestReg) &&
1493       AArch64::FPR16RegClass.contains(SrcReg)) {
1494     if(Subtarget.hasNEON()) {
1495       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1496                                        &AArch64::FPR128RegClass);
1497       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1498                                       &AArch64::FPR128RegClass);
1499       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1500           .addReg(SrcReg)
1501           .addReg(SrcReg, getKillRegState(KillSrc));
1502     } else {
1503       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1504                                        &AArch64::FPR32RegClass);
1505       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1506                                       &AArch64::FPR32RegClass);
1507       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1508           .addReg(SrcReg, getKillRegState(KillSrc));
1509     }
1510     return;
1511   }
1512 
1513   if (AArch64::FPR8RegClass.contains(DestReg) &&
1514       AArch64::FPR8RegClass.contains(SrcReg)) {
1515     if(Subtarget.hasNEON()) {
1516       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1517                                        &AArch64::FPR128RegClass);
1518       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1519                                       &AArch64::FPR128RegClass);
1520       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1521           .addReg(SrcReg)
1522           .addReg(SrcReg, getKillRegState(KillSrc));
1523     } else {
1524       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1525                                        &AArch64::FPR32RegClass);
1526       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1527                                       &AArch64::FPR32RegClass);
1528       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1529           .addReg(SrcReg, getKillRegState(KillSrc));
1530     }
1531     return;
1532   }
1533 
1534   // Copies between GPR64 and FPR64.
1535   if (AArch64::FPR64RegClass.contains(DestReg) &&
1536       AArch64::GPR64RegClass.contains(SrcReg)) {
1537     BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
1538         .addReg(SrcReg, getKillRegState(KillSrc));
1539     return;
1540   }
1541   if (AArch64::GPR64RegClass.contains(DestReg) &&
1542       AArch64::FPR64RegClass.contains(SrcReg)) {
1543     BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
1544         .addReg(SrcReg, getKillRegState(KillSrc));
1545     return;
1546   }
1547   // Copies between GPR32 and FPR32.
1548   if (AArch64::FPR32RegClass.contains(DestReg) &&
1549       AArch64::GPR32RegClass.contains(SrcReg)) {
1550     BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
1551         .addReg(SrcReg, getKillRegState(KillSrc));
1552     return;
1553   }
1554   if (AArch64::GPR32RegClass.contains(DestReg) &&
1555       AArch64::FPR32RegClass.contains(SrcReg)) {
1556     BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
1557         .addReg(SrcReg, getKillRegState(KillSrc));
1558     return;
1559   }
1560 
1561   if (DestReg == AArch64::NZCV) {
1562     assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
1563     BuildMI(MBB, I, DL, get(AArch64::MSR))
1564       .addImm(AArch64SysReg::NZCV)
1565       .addReg(SrcReg, getKillRegState(KillSrc))
1566       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
1567     return;
1568   }
1569 
1570   if (SrcReg == AArch64::NZCV) {
1571     assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
1572     BuildMI(MBB, I, DL, get(AArch64::MRS))
1573       .addReg(DestReg)
1574       .addImm(AArch64SysReg::NZCV)
1575       .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
1576     return;
1577   }
1578 
1579   llvm_unreachable("unimplemented reg-to-reg copy");
1580 }
1581 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1582 void AArch64InstrInfo::storeRegToStackSlot(
1583     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
1584     bool isKill, int FI, const TargetRegisterClass *RC,
1585     const TargetRegisterInfo *TRI) const {
1586   DebugLoc DL;
1587   if (MBBI != MBB.end())
1588     DL = MBBI->getDebugLoc();
1589   MachineFunction &MF = *MBB.getParent();
1590   MachineFrameInfo &MFI = *MF.getFrameInfo();
1591   unsigned Align = MFI.getObjectAlignment(FI);
1592 
1593   MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1594   MachineMemOperand *MMO = MF.getMachineMemOperand(
1595       PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
1596   unsigned Opc = 0;
1597   bool Offset = true;
1598   switch (RC->getSize()) {
1599   case 1:
1600     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1601       Opc = AArch64::STRBui;
1602     break;
1603   case 2:
1604     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1605       Opc = AArch64::STRHui;
1606     break;
1607   case 4:
1608     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1609       Opc = AArch64::STRWui;
1610       if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1611         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
1612       else
1613         assert(SrcReg != AArch64::WSP);
1614     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1615       Opc = AArch64::STRSui;
1616     break;
1617   case 8:
1618     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1619       Opc = AArch64::STRXui;
1620       if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1621         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1622       else
1623         assert(SrcReg != AArch64::SP);
1624     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1625       Opc = AArch64::STRDui;
1626     break;
1627   case 16:
1628     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1629       Opc = AArch64::STRQui;
1630     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1631       assert(Subtarget.hasNEON() &&
1632              "Unexpected register store without NEON");
1633       Opc = AArch64::ST1Twov1d, Offset = false;
1634     }
1635     break;
1636   case 24:
1637     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1638       assert(Subtarget.hasNEON() &&
1639              "Unexpected register store without NEON");
1640       Opc = AArch64::ST1Threev1d, Offset = false;
1641     }
1642     break;
1643   case 32:
1644     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1645       assert(Subtarget.hasNEON() &&
1646              "Unexpected register store without NEON");
1647       Opc = AArch64::ST1Fourv1d, Offset = false;
1648     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1649       assert(Subtarget.hasNEON() &&
1650              "Unexpected register store without NEON");
1651       Opc = AArch64::ST1Twov2d, Offset = false;
1652     }
1653     break;
1654   case 48:
1655     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1656       assert(Subtarget.hasNEON() &&
1657              "Unexpected register store without NEON");
1658       Opc = AArch64::ST1Threev2d, Offset = false;
1659     }
1660     break;
1661   case 64:
1662     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1663       assert(Subtarget.hasNEON() &&
1664              "Unexpected register store without NEON");
1665       Opc = AArch64::ST1Fourv2d, Offset = false;
1666     }
1667     break;
1668   }
1669   assert(Opc && "Unknown register class");
1670 
1671   const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1672                                       .addReg(SrcReg, getKillRegState(isKill))
1673                                       .addFrameIndex(FI);
1674 
1675   if (Offset)
1676     MI.addImm(0);
1677   MI.addMemOperand(MMO);
1678 }
1679 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1680 void AArch64InstrInfo::loadRegFromStackSlot(
1681     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
1682     int FI, const TargetRegisterClass *RC,
1683     const TargetRegisterInfo *TRI) const {
1684   DebugLoc DL;
1685   if (MBBI != MBB.end())
1686     DL = MBBI->getDebugLoc();
1687   MachineFunction &MF = *MBB.getParent();
1688   MachineFrameInfo &MFI = *MF.getFrameInfo();
1689   unsigned Align = MFI.getObjectAlignment(FI);
1690   MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1691   MachineMemOperand *MMO = MF.getMachineMemOperand(
1692       PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
1693 
1694   unsigned Opc = 0;
1695   bool Offset = true;
1696   switch (RC->getSize()) {
1697   case 1:
1698     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1699       Opc = AArch64::LDRBui;
1700     break;
1701   case 2:
1702     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1703       Opc = AArch64::LDRHui;
1704     break;
1705   case 4:
1706     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1707       Opc = AArch64::LDRWui;
1708       if (TargetRegisterInfo::isVirtualRegister(DestReg))
1709         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
1710       else
1711         assert(DestReg != AArch64::WSP);
1712     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1713       Opc = AArch64::LDRSui;
1714     break;
1715   case 8:
1716     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1717       Opc = AArch64::LDRXui;
1718       if (TargetRegisterInfo::isVirtualRegister(DestReg))
1719         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
1720       else
1721         assert(DestReg != AArch64::SP);
1722     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1723       Opc = AArch64::LDRDui;
1724     break;
1725   case 16:
1726     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1727       Opc = AArch64::LDRQui;
1728     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1729       assert(Subtarget.hasNEON() &&
1730              "Unexpected register load without NEON");
1731       Opc = AArch64::LD1Twov1d, Offset = false;
1732     }
1733     break;
1734   case 24:
1735     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1736       assert(Subtarget.hasNEON() &&
1737              "Unexpected register load without NEON");
1738       Opc = AArch64::LD1Threev1d, Offset = false;
1739     }
1740     break;
1741   case 32:
1742     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1743       assert(Subtarget.hasNEON() &&
1744              "Unexpected register load without NEON");
1745       Opc = AArch64::LD1Fourv1d, Offset = false;
1746     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1747       assert(Subtarget.hasNEON() &&
1748              "Unexpected register load without NEON");
1749       Opc = AArch64::LD1Twov2d, Offset = false;
1750     }
1751     break;
1752   case 48:
1753     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1754       assert(Subtarget.hasNEON() &&
1755              "Unexpected register load without NEON");
1756       Opc = AArch64::LD1Threev2d, Offset = false;
1757     }
1758     break;
1759   case 64:
1760     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1761       assert(Subtarget.hasNEON() &&
1762              "Unexpected register load without NEON");
1763       Opc = AArch64::LD1Fourv2d, Offset = false;
1764     }
1765     break;
1766   }
1767   assert(Opc && "Unknown register class");
1768 
1769   const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1770                                       .addReg(DestReg, getDefRegState(true))
1771                                       .addFrameIndex(FI);
1772   if (Offset)
1773     MI.addImm(0);
1774   MI.addMemOperand(MMO);
1775 }
1776 
emitFrameOffset(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,int Offset,const TargetInstrInfo * TII,MachineInstr::MIFlag Flag,bool SetNZCV)1777 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
1778                            MachineBasicBlock::iterator MBBI, DebugLoc DL,
1779                            unsigned DestReg, unsigned SrcReg, int Offset,
1780                            const TargetInstrInfo *TII,
1781                            MachineInstr::MIFlag Flag, bool SetNZCV) {
1782   if (DestReg == SrcReg && Offset == 0)
1783     return;
1784 
1785   bool isSub = Offset < 0;
1786   if (isSub)
1787     Offset = -Offset;
1788 
1789   // FIXME: If the offset won't fit in 24-bits, compute the offset into a
1790   // scratch register.  If DestReg is a virtual register, use it as the
1791   // scratch register; otherwise, create a new virtual register (to be
1792   // replaced by the scavenger at the end of PEI).  That case can be optimized
1793   // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
1794   // register can be loaded with offset%8 and the add/sub can use an extending
1795   // instruction with LSL#3.
1796   // Currently the function handles any offsets but generates a poor sequence
1797   // of code.
1798   //  assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
1799 
1800   unsigned Opc;
1801   if (SetNZCV)
1802     Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
1803   else
1804     Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
1805   const unsigned MaxEncoding = 0xfff;
1806   const unsigned ShiftSize = 12;
1807   const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
1808   while (((unsigned)Offset) >= (1 << ShiftSize)) {
1809     unsigned ThisVal;
1810     if (((unsigned)Offset) > MaxEncodableValue) {
1811       ThisVal = MaxEncodableValue;
1812     } else {
1813       ThisVal = Offset & MaxEncodableValue;
1814     }
1815     assert((ThisVal >> ShiftSize) <= MaxEncoding &&
1816            "Encoding cannot handle value that big");
1817     BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1818         .addReg(SrcReg)
1819         .addImm(ThisVal >> ShiftSize)
1820         .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
1821         .setMIFlag(Flag);
1822 
1823     SrcReg = DestReg;
1824     Offset -= ThisVal;
1825     if (Offset == 0)
1826       return;
1827   }
1828   BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1829       .addReg(SrcReg)
1830       .addImm(Offset)
1831       .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1832       .setMIFlag(Flag);
1833 }
1834 
1835 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,int FrameIndex) const1836 AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
1837                                         const SmallVectorImpl<unsigned> &Ops,
1838                                         int FrameIndex) const {
1839   // This is a bit of a hack. Consider this instruction:
1840   //
1841   //   %vreg0<def> = COPY %SP; GPR64all:%vreg0
1842   //
1843   // We explicitly chose GPR64all for the virtual register so such a copy might
1844   // be eliminated by RegisterCoalescer. However, that may not be possible, and
1845   // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
1846   // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
1847   //
1848   // To prevent that, we are going to constrain the %vreg0 register class here.
1849   //
1850   // <rdar://problem/11522048>
1851   //
1852   if (MI->isCopy()) {
1853     unsigned DstReg = MI->getOperand(0).getReg();
1854     unsigned SrcReg = MI->getOperand(1).getReg();
1855     if (SrcReg == AArch64::SP &&
1856         TargetRegisterInfo::isVirtualRegister(DstReg)) {
1857       MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
1858       return nullptr;
1859     }
1860     if (DstReg == AArch64::SP &&
1861         TargetRegisterInfo::isVirtualRegister(SrcReg)) {
1862       MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1863       return nullptr;
1864     }
1865   }
1866 
1867   // Cannot fold.
1868   return nullptr;
1869 }
1870 
isAArch64FrameOffsetLegal(const MachineInstr & MI,int & Offset,bool * OutUseUnscaledOp,unsigned * OutUnscaledOp,int * EmittableOffset)1871 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
1872                                     bool *OutUseUnscaledOp,
1873                                     unsigned *OutUnscaledOp,
1874                                     int *EmittableOffset) {
1875   int Scale = 1;
1876   bool IsSigned = false;
1877   // The ImmIdx should be changed case by case if it is not 2.
1878   unsigned ImmIdx = 2;
1879   unsigned UnscaledOp = 0;
1880   // Set output values in case of early exit.
1881   if (EmittableOffset)
1882     *EmittableOffset = 0;
1883   if (OutUseUnscaledOp)
1884     *OutUseUnscaledOp = false;
1885   if (OutUnscaledOp)
1886     *OutUnscaledOp = 0;
1887   switch (MI.getOpcode()) {
1888   default:
1889     llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
1890   // Vector spills/fills can't take an immediate offset.
1891   case AArch64::LD1Twov2d:
1892   case AArch64::LD1Threev2d:
1893   case AArch64::LD1Fourv2d:
1894   case AArch64::LD1Twov1d:
1895   case AArch64::LD1Threev1d:
1896   case AArch64::LD1Fourv1d:
1897   case AArch64::ST1Twov2d:
1898   case AArch64::ST1Threev2d:
1899   case AArch64::ST1Fourv2d:
1900   case AArch64::ST1Twov1d:
1901   case AArch64::ST1Threev1d:
1902   case AArch64::ST1Fourv1d:
1903     return AArch64FrameOffsetCannotUpdate;
1904   case AArch64::PRFMui:
1905     Scale = 8;
1906     UnscaledOp = AArch64::PRFUMi;
1907     break;
1908   case AArch64::LDRXui:
1909     Scale = 8;
1910     UnscaledOp = AArch64::LDURXi;
1911     break;
1912   case AArch64::LDRWui:
1913     Scale = 4;
1914     UnscaledOp = AArch64::LDURWi;
1915     break;
1916   case AArch64::LDRBui:
1917     Scale = 1;
1918     UnscaledOp = AArch64::LDURBi;
1919     break;
1920   case AArch64::LDRHui:
1921     Scale = 2;
1922     UnscaledOp = AArch64::LDURHi;
1923     break;
1924   case AArch64::LDRSui:
1925     Scale = 4;
1926     UnscaledOp = AArch64::LDURSi;
1927     break;
1928   case AArch64::LDRDui:
1929     Scale = 8;
1930     UnscaledOp = AArch64::LDURDi;
1931     break;
1932   case AArch64::LDRQui:
1933     Scale = 16;
1934     UnscaledOp = AArch64::LDURQi;
1935     break;
1936   case AArch64::LDRBBui:
1937     Scale = 1;
1938     UnscaledOp = AArch64::LDURBBi;
1939     break;
1940   case AArch64::LDRHHui:
1941     Scale = 2;
1942     UnscaledOp = AArch64::LDURHHi;
1943     break;
1944   case AArch64::LDRSBXui:
1945     Scale = 1;
1946     UnscaledOp = AArch64::LDURSBXi;
1947     break;
1948   case AArch64::LDRSBWui:
1949     Scale = 1;
1950     UnscaledOp = AArch64::LDURSBWi;
1951     break;
1952   case AArch64::LDRSHXui:
1953     Scale = 2;
1954     UnscaledOp = AArch64::LDURSHXi;
1955     break;
1956   case AArch64::LDRSHWui:
1957     Scale = 2;
1958     UnscaledOp = AArch64::LDURSHWi;
1959     break;
1960   case AArch64::LDRSWui:
1961     Scale = 4;
1962     UnscaledOp = AArch64::LDURSWi;
1963     break;
1964 
1965   case AArch64::STRXui:
1966     Scale = 8;
1967     UnscaledOp = AArch64::STURXi;
1968     break;
1969   case AArch64::STRWui:
1970     Scale = 4;
1971     UnscaledOp = AArch64::STURWi;
1972     break;
1973   case AArch64::STRBui:
1974     Scale = 1;
1975     UnscaledOp = AArch64::STURBi;
1976     break;
1977   case AArch64::STRHui:
1978     Scale = 2;
1979     UnscaledOp = AArch64::STURHi;
1980     break;
1981   case AArch64::STRSui:
1982     Scale = 4;
1983     UnscaledOp = AArch64::STURSi;
1984     break;
1985   case AArch64::STRDui:
1986     Scale = 8;
1987     UnscaledOp = AArch64::STURDi;
1988     break;
1989   case AArch64::STRQui:
1990     Scale = 16;
1991     UnscaledOp = AArch64::STURQi;
1992     break;
1993   case AArch64::STRBBui:
1994     Scale = 1;
1995     UnscaledOp = AArch64::STURBBi;
1996     break;
1997   case AArch64::STRHHui:
1998     Scale = 2;
1999     UnscaledOp = AArch64::STURHHi;
2000     break;
2001 
2002   case AArch64::LDPXi:
2003   case AArch64::LDPDi:
2004   case AArch64::STPXi:
2005   case AArch64::STPDi:
2006     IsSigned = true;
2007     Scale = 8;
2008     break;
2009   case AArch64::LDPQi:
2010   case AArch64::STPQi:
2011     IsSigned = true;
2012     Scale = 16;
2013     break;
2014   case AArch64::LDPWi:
2015   case AArch64::LDPSi:
2016   case AArch64::STPWi:
2017   case AArch64::STPSi:
2018     IsSigned = true;
2019     Scale = 4;
2020     break;
2021 
2022   case AArch64::LDURXi:
2023   case AArch64::LDURWi:
2024   case AArch64::LDURBi:
2025   case AArch64::LDURHi:
2026   case AArch64::LDURSi:
2027   case AArch64::LDURDi:
2028   case AArch64::LDURQi:
2029   case AArch64::LDURHHi:
2030   case AArch64::LDURBBi:
2031   case AArch64::LDURSBXi:
2032   case AArch64::LDURSBWi:
2033   case AArch64::LDURSHXi:
2034   case AArch64::LDURSHWi:
2035   case AArch64::LDURSWi:
2036   case AArch64::STURXi:
2037   case AArch64::STURWi:
2038   case AArch64::STURBi:
2039   case AArch64::STURHi:
2040   case AArch64::STURSi:
2041   case AArch64::STURDi:
2042   case AArch64::STURQi:
2043   case AArch64::STURBBi:
2044   case AArch64::STURHHi:
2045     Scale = 1;
2046     break;
2047   }
2048 
2049   Offset += MI.getOperand(ImmIdx).getImm() * Scale;
2050 
2051   bool useUnscaledOp = false;
2052   // If the offset doesn't match the scale, we rewrite the instruction to
2053   // use the unscaled instruction instead. Likewise, if we have a negative
2054   // offset (and have an unscaled op to use).
2055   if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
2056     useUnscaledOp = true;
2057 
2058   // Use an unscaled addressing mode if the instruction has a negative offset
2059   // (or if the instruction is already using an unscaled addressing mode).
2060   unsigned MaskBits;
2061   if (IsSigned) {
2062     // ldp/stp instructions.
2063     MaskBits = 7;
2064     Offset /= Scale;
2065   } else if (UnscaledOp == 0 || useUnscaledOp) {
2066     MaskBits = 9;
2067     IsSigned = true;
2068     Scale = 1;
2069   } else {
2070     MaskBits = 12;
2071     IsSigned = false;
2072     Offset /= Scale;
2073   }
2074 
2075   // Attempt to fold address computation.
2076   int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
2077   int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
2078   if (Offset >= MinOff && Offset <= MaxOff) {
2079     if (EmittableOffset)
2080       *EmittableOffset = Offset;
2081     Offset = 0;
2082   } else {
2083     int NewOff = Offset < 0 ? MinOff : MaxOff;
2084     if (EmittableOffset)
2085       *EmittableOffset = NewOff;
2086     Offset = (Offset - NewOff) * Scale;
2087   }
2088   if (OutUseUnscaledOp)
2089     *OutUseUnscaledOp = useUnscaledOp;
2090   if (OutUnscaledOp)
2091     *OutUnscaledOp = UnscaledOp;
2092   return AArch64FrameOffsetCanUpdate |
2093          (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
2094 }
2095 
rewriteAArch64FrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const AArch64InstrInfo * TII)2096 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2097                                     unsigned FrameReg, int &Offset,
2098                                     const AArch64InstrInfo *TII) {
2099   unsigned Opcode = MI.getOpcode();
2100   unsigned ImmIdx = FrameRegIdx + 1;
2101 
2102   if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
2103     Offset += MI.getOperand(ImmIdx).getImm();
2104     emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
2105                     MI.getOperand(0).getReg(), FrameReg, Offset, TII,
2106                     MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
2107     MI.eraseFromParent();
2108     Offset = 0;
2109     return true;
2110   }
2111 
2112   int NewOffset;
2113   unsigned UnscaledOp;
2114   bool UseUnscaledOp;
2115   int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
2116                                          &UnscaledOp, &NewOffset);
2117   if (Status & AArch64FrameOffsetCanUpdate) {
2118     if (Status & AArch64FrameOffsetIsLegal)
2119       // Replace the FrameIndex with FrameReg.
2120       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2121     if (UseUnscaledOp)
2122       MI.setDesc(TII->get(UnscaledOp));
2123 
2124     MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
2125     return Offset == 0;
2126   }
2127 
2128   return false;
2129 }
2130 
getNoopForMachoTarget(MCInst & NopInst) const2131 void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
2132   NopInst.setOpcode(AArch64::HINT);
2133   NopInst.addOperand(MCOperand::CreateImm(0));
2134 }
2135