1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64InstrInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "MCTargetDesc/AArch64AddressingModes.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineInstrBuilder.h"
19 #include "llvm/CodeGen/MachineMemOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/PseudoSourceValue.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/TargetRegistry.h"
25
26 using namespace llvm;
27
28 #define GET_INSTRINFO_CTOR_DTOR
29 #include "AArch64GenInstrInfo.inc"
30
AArch64InstrInfo(const AArch64Subtarget & STI)31 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
32 : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
33 RI(this, &STI), Subtarget(STI) {}
34
35 /// GetInstSize - Return the number of bytes of code the specified
36 /// instruction may be. This returns the maximum number of bytes.
GetInstSizeInBytes(const MachineInstr * MI) const37 unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
38 const MachineBasicBlock &MBB = *MI->getParent();
39 const MachineFunction *MF = MBB.getParent();
40 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
41
42 if (MI->getOpcode() == AArch64::INLINEASM)
43 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
44
45 const MCInstrDesc &Desc = MI->getDesc();
46 switch (Desc.getOpcode()) {
47 default:
48 // Anything not explicitly designated otherwise is a nomal 4-byte insn.
49 return 4;
50 case TargetOpcode::DBG_VALUE:
51 case TargetOpcode::EH_LABEL:
52 case TargetOpcode::IMPLICIT_DEF:
53 case TargetOpcode::KILL:
54 return 0;
55 }
56
57 llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
58 }
59
parseCondBranch(MachineInstr * LastInst,MachineBasicBlock * & Target,SmallVectorImpl<MachineOperand> & Cond)60 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
61 SmallVectorImpl<MachineOperand> &Cond) {
62 // Block ends with fall-through condbranch.
63 switch (LastInst->getOpcode()) {
64 default:
65 llvm_unreachable("Unknown branch instruction?");
66 case AArch64::Bcc:
67 Target = LastInst->getOperand(1).getMBB();
68 Cond.push_back(LastInst->getOperand(0));
69 break;
70 case AArch64::CBZW:
71 case AArch64::CBZX:
72 case AArch64::CBNZW:
73 case AArch64::CBNZX:
74 Target = LastInst->getOperand(1).getMBB();
75 Cond.push_back(MachineOperand::CreateImm(-1));
76 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
77 Cond.push_back(LastInst->getOperand(0));
78 break;
79 case AArch64::TBZW:
80 case AArch64::TBZX:
81 case AArch64::TBNZW:
82 case AArch64::TBNZX:
83 Target = LastInst->getOperand(2).getMBB();
84 Cond.push_back(MachineOperand::CreateImm(-1));
85 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
86 Cond.push_back(LastInst->getOperand(0));
87 Cond.push_back(LastInst->getOperand(1));
88 }
89 }
90
91 // Branch analysis.
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const92 bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
93 MachineBasicBlock *&TBB,
94 MachineBasicBlock *&FBB,
95 SmallVectorImpl<MachineOperand> &Cond,
96 bool AllowModify) const {
97 // If the block has no terminators, it just falls into the block after it.
98 MachineBasicBlock::iterator I = MBB.end();
99 if (I == MBB.begin())
100 return false;
101 --I;
102 while (I->isDebugValue()) {
103 if (I == MBB.begin())
104 return false;
105 --I;
106 }
107 if (!isUnpredicatedTerminator(I))
108 return false;
109
110 // Get the last instruction in the block.
111 MachineInstr *LastInst = I;
112
113 // If there is only one terminator instruction, process it.
114 unsigned LastOpc = LastInst->getOpcode();
115 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
116 if (isUncondBranchOpcode(LastOpc)) {
117 TBB = LastInst->getOperand(0).getMBB();
118 return false;
119 }
120 if (isCondBranchOpcode(LastOpc)) {
121 // Block ends with fall-through condbranch.
122 parseCondBranch(LastInst, TBB, Cond);
123 return false;
124 }
125 return true; // Can't handle indirect branch.
126 }
127
128 // Get the instruction before it if it is a terminator.
129 MachineInstr *SecondLastInst = I;
130 unsigned SecondLastOpc = SecondLastInst->getOpcode();
131
132 // If AllowModify is true and the block ends with two or more unconditional
133 // branches, delete all but the first unconditional branch.
134 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
135 while (isUncondBranchOpcode(SecondLastOpc)) {
136 LastInst->eraseFromParent();
137 LastInst = SecondLastInst;
138 LastOpc = LastInst->getOpcode();
139 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
140 // Return now the only terminator is an unconditional branch.
141 TBB = LastInst->getOperand(0).getMBB();
142 return false;
143 } else {
144 SecondLastInst = I;
145 SecondLastOpc = SecondLastInst->getOpcode();
146 }
147 }
148 }
149
150 // If there are three terminators, we don't know what sort of block this is.
151 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
152 return true;
153
154 // If the block ends with a B and a Bcc, handle it.
155 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
156 parseCondBranch(SecondLastInst, TBB, Cond);
157 FBB = LastInst->getOperand(0).getMBB();
158 return false;
159 }
160
161 // If the block ends with two unconditional branches, handle it. The second
162 // one is not executed, so remove it.
163 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
164 TBB = SecondLastInst->getOperand(0).getMBB();
165 I = LastInst;
166 if (AllowModify)
167 I->eraseFromParent();
168 return false;
169 }
170
171 // ...likewise if it ends with an indirect branch followed by an unconditional
172 // branch.
173 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
174 I = LastInst;
175 if (AllowModify)
176 I->eraseFromParent();
177 return true;
178 }
179
180 // Otherwise, can't handle this.
181 return true;
182 }
183
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const184 bool AArch64InstrInfo::ReverseBranchCondition(
185 SmallVectorImpl<MachineOperand> &Cond) const {
186 if (Cond[0].getImm() != -1) {
187 // Regular Bcc
188 AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
189 Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
190 } else {
191 // Folded compare-and-branch
192 switch (Cond[1].getImm()) {
193 default:
194 llvm_unreachable("Unknown conditional branch!");
195 case AArch64::CBZW:
196 Cond[1].setImm(AArch64::CBNZW);
197 break;
198 case AArch64::CBNZW:
199 Cond[1].setImm(AArch64::CBZW);
200 break;
201 case AArch64::CBZX:
202 Cond[1].setImm(AArch64::CBNZX);
203 break;
204 case AArch64::CBNZX:
205 Cond[1].setImm(AArch64::CBZX);
206 break;
207 case AArch64::TBZW:
208 Cond[1].setImm(AArch64::TBNZW);
209 break;
210 case AArch64::TBNZW:
211 Cond[1].setImm(AArch64::TBZW);
212 break;
213 case AArch64::TBZX:
214 Cond[1].setImm(AArch64::TBNZX);
215 break;
216 case AArch64::TBNZX:
217 Cond[1].setImm(AArch64::TBZX);
218 break;
219 }
220 }
221
222 return false;
223 }
224
RemoveBranch(MachineBasicBlock & MBB) const225 unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
226 MachineBasicBlock::iterator I = MBB.end();
227 if (I == MBB.begin())
228 return 0;
229 --I;
230 while (I->isDebugValue()) {
231 if (I == MBB.begin())
232 return 0;
233 --I;
234 }
235 if (!isUncondBranchOpcode(I->getOpcode()) &&
236 !isCondBranchOpcode(I->getOpcode()))
237 return 0;
238
239 // Remove the branch.
240 I->eraseFromParent();
241
242 I = MBB.end();
243
244 if (I == MBB.begin())
245 return 1;
246 --I;
247 if (!isCondBranchOpcode(I->getOpcode()))
248 return 1;
249
250 // Remove the branch.
251 I->eraseFromParent();
252 return 2;
253 }
254
instantiateCondBranch(MachineBasicBlock & MBB,DebugLoc DL,MachineBasicBlock * TBB,const SmallVectorImpl<MachineOperand> & Cond) const255 void AArch64InstrInfo::instantiateCondBranch(
256 MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
257 const SmallVectorImpl<MachineOperand> &Cond) const {
258 if (Cond[0].getImm() != -1) {
259 // Regular Bcc
260 BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
261 } else {
262 // Folded compare-and-branch
263 const MachineInstrBuilder MIB =
264 BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
265 if (Cond.size() > 3)
266 MIB.addImm(Cond[3].getImm());
267 MIB.addMBB(TBB);
268 }
269 }
270
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const271 unsigned AArch64InstrInfo::InsertBranch(
272 MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
273 const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
274 // Shouldn't be a fall through.
275 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
276
277 if (!FBB) {
278 if (Cond.empty()) // Unconditional branch?
279 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
280 else
281 instantiateCondBranch(MBB, DL, TBB, Cond);
282 return 1;
283 }
284
285 // Two-way conditional branch.
286 instantiateCondBranch(MBB, DL, TBB, Cond);
287 BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
288 return 2;
289 }
290
291 // Find the original register that VReg is copied from.
removeCopies(const MachineRegisterInfo & MRI,unsigned VReg)292 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
293 while (TargetRegisterInfo::isVirtualRegister(VReg)) {
294 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
295 if (!DefMI->isFullCopy())
296 return VReg;
297 VReg = DefMI->getOperand(1).getReg();
298 }
299 return VReg;
300 }
301
302 // Determine if VReg is defined by an instruction that can be folded into a
303 // csel instruction. If so, return the folded opcode, and the replacement
304 // register.
canFoldIntoCSel(const MachineRegisterInfo & MRI,unsigned VReg,unsigned * NewVReg=nullptr)305 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
306 unsigned *NewVReg = nullptr) {
307 VReg = removeCopies(MRI, VReg);
308 if (!TargetRegisterInfo::isVirtualRegister(VReg))
309 return 0;
310
311 bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
312 const MachineInstr *DefMI = MRI.getVRegDef(VReg);
313 unsigned Opc = 0;
314 unsigned SrcOpNum = 0;
315 switch (DefMI->getOpcode()) {
316 case AArch64::ADDSXri:
317 case AArch64::ADDSWri:
318 // if NZCV is used, do not fold.
319 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
320 return 0;
321 // fall-through to ADDXri and ADDWri.
322 case AArch64::ADDXri:
323 case AArch64::ADDWri:
324 // add x, 1 -> csinc.
325 if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
326 DefMI->getOperand(3).getImm() != 0)
327 return 0;
328 SrcOpNum = 1;
329 Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
330 break;
331
332 case AArch64::ORNXrr:
333 case AArch64::ORNWrr: {
334 // not x -> csinv, represented as orn dst, xzr, src.
335 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
336 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
337 return 0;
338 SrcOpNum = 2;
339 Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
340 break;
341 }
342
343 case AArch64::SUBSXrr:
344 case AArch64::SUBSWrr:
345 // if NZCV is used, do not fold.
346 if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
347 return 0;
348 // fall-through to SUBXrr and SUBWrr.
349 case AArch64::SUBXrr:
350 case AArch64::SUBWrr: {
351 // neg x -> csneg, represented as sub dst, xzr, src.
352 unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
353 if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
354 return 0;
355 SrcOpNum = 2;
356 Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
357 break;
358 }
359 default:
360 return 0;
361 }
362 assert(Opc && SrcOpNum && "Missing parameters");
363
364 if (NewVReg)
365 *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
366 return Opc;
367 }
368
canInsertSelect(const MachineBasicBlock & MBB,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const369 bool AArch64InstrInfo::canInsertSelect(
370 const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
371 unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
372 int &FalseCycles) const {
373 // Check register classes.
374 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
375 const TargetRegisterClass *RC =
376 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
377 if (!RC)
378 return false;
379
380 // Expanding cbz/tbz requires an extra cycle of latency on the condition.
381 unsigned ExtraCondLat = Cond.size() != 1;
382
383 // GPRs are handled by csel.
384 // FIXME: Fold in x+1, -x, and ~x when applicable.
385 if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
386 AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
387 // Single-cycle csel, csinc, csinv, and csneg.
388 CondCycles = 1 + ExtraCondLat;
389 TrueCycles = FalseCycles = 1;
390 if (canFoldIntoCSel(MRI, TrueReg))
391 TrueCycles = 0;
392 else if (canFoldIntoCSel(MRI, FalseReg))
393 FalseCycles = 0;
394 return true;
395 }
396
397 // Scalar floating point is handled by fcsel.
398 // FIXME: Form fabs, fmin, and fmax when applicable.
399 if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
400 AArch64::FPR32RegClass.hasSubClassEq(RC)) {
401 CondCycles = 5 + ExtraCondLat;
402 TrueCycles = FalseCycles = 2;
403 return true;
404 }
405
406 // Can't do vectors.
407 return false;
408 }
409
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DstReg,const SmallVectorImpl<MachineOperand> & Cond,unsigned TrueReg,unsigned FalseReg) const410 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
411 MachineBasicBlock::iterator I, DebugLoc DL,
412 unsigned DstReg,
413 const SmallVectorImpl<MachineOperand> &Cond,
414 unsigned TrueReg, unsigned FalseReg) const {
415 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
416
417 // Parse the condition code, see parseCondBranch() above.
418 AArch64CC::CondCode CC;
419 switch (Cond.size()) {
420 default:
421 llvm_unreachable("Unknown condition opcode in Cond");
422 case 1: // b.cc
423 CC = AArch64CC::CondCode(Cond[0].getImm());
424 break;
425 case 3: { // cbz/cbnz
426 // We must insert a compare against 0.
427 bool Is64Bit;
428 switch (Cond[1].getImm()) {
429 default:
430 llvm_unreachable("Unknown branch opcode in Cond");
431 case AArch64::CBZW:
432 Is64Bit = 0;
433 CC = AArch64CC::EQ;
434 break;
435 case AArch64::CBZX:
436 Is64Bit = 1;
437 CC = AArch64CC::EQ;
438 break;
439 case AArch64::CBNZW:
440 Is64Bit = 0;
441 CC = AArch64CC::NE;
442 break;
443 case AArch64::CBNZX:
444 Is64Bit = 1;
445 CC = AArch64CC::NE;
446 break;
447 }
448 unsigned SrcReg = Cond[2].getReg();
449 if (Is64Bit) {
450 // cmp reg, #0 is actually subs xzr, reg, #0.
451 MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
452 BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
453 .addReg(SrcReg)
454 .addImm(0)
455 .addImm(0);
456 } else {
457 MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
458 BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
459 .addReg(SrcReg)
460 .addImm(0)
461 .addImm(0);
462 }
463 break;
464 }
465 case 4: { // tbz/tbnz
466 // We must insert a tst instruction.
467 switch (Cond[1].getImm()) {
468 default:
469 llvm_unreachable("Unknown branch opcode in Cond");
470 case AArch64::TBZW:
471 case AArch64::TBZX:
472 CC = AArch64CC::EQ;
473 break;
474 case AArch64::TBNZW:
475 case AArch64::TBNZX:
476 CC = AArch64CC::NE;
477 break;
478 }
479 // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
480 if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
481 BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
482 .addReg(Cond[2].getReg())
483 .addImm(
484 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
485 else
486 BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
487 .addReg(Cond[2].getReg())
488 .addImm(
489 AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
490 break;
491 }
492 }
493
494 unsigned Opc = 0;
495 const TargetRegisterClass *RC = nullptr;
496 bool TryFold = false;
497 if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
498 RC = &AArch64::GPR64RegClass;
499 Opc = AArch64::CSELXr;
500 TryFold = true;
501 } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
502 RC = &AArch64::GPR32RegClass;
503 Opc = AArch64::CSELWr;
504 TryFold = true;
505 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
506 RC = &AArch64::FPR64RegClass;
507 Opc = AArch64::FCSELDrrr;
508 } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
509 RC = &AArch64::FPR32RegClass;
510 Opc = AArch64::FCSELSrrr;
511 }
512 assert(RC && "Unsupported regclass");
513
514 // Try folding simple instructions into the csel.
515 if (TryFold) {
516 unsigned NewVReg = 0;
517 unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
518 if (FoldedOpc) {
519 // The folded opcodes csinc, csinc and csneg apply the operation to
520 // FalseReg, so we need to invert the condition.
521 CC = AArch64CC::getInvertedCondCode(CC);
522 TrueReg = FalseReg;
523 } else
524 FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
525
526 // Fold the operation. Leave any dead instructions for DCE to clean up.
527 if (FoldedOpc) {
528 FalseReg = NewVReg;
529 Opc = FoldedOpc;
530 // The extends the live range of NewVReg.
531 MRI.clearKillFlags(NewVReg);
532 }
533 }
534
535 // Pull all virtual register into the appropriate class.
536 MRI.constrainRegClass(TrueReg, RC);
537 MRI.constrainRegClass(FalseReg, RC);
538
539 // Insert the csel.
540 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
541 CC);
542 }
543
544 // FIXME: this implementation should be micro-architecture dependent, so a
545 // micro-architecture target hook should be introduced here in future.
isAsCheapAsAMove(const MachineInstr * MI) const546 bool AArch64InstrInfo::isAsCheapAsAMove(const MachineInstr *MI) const {
547 if (!Subtarget.isCortexA57() && !Subtarget.isCortexA53())
548 return MI->isAsCheapAsAMove();
549
550 switch (MI->getOpcode()) {
551 default:
552 return false;
553
554 // add/sub on register without shift
555 case AArch64::ADDWri:
556 case AArch64::ADDXri:
557 case AArch64::SUBWri:
558 case AArch64::SUBXri:
559 return (MI->getOperand(3).getImm() == 0);
560
561 // logical ops on immediate
562 case AArch64::ANDWri:
563 case AArch64::ANDXri:
564 case AArch64::EORWri:
565 case AArch64::EORXri:
566 case AArch64::ORRWri:
567 case AArch64::ORRXri:
568 return true;
569
570 // logical ops on register without shift
571 case AArch64::ANDWrr:
572 case AArch64::ANDXrr:
573 case AArch64::BICWrr:
574 case AArch64::BICXrr:
575 case AArch64::EONWrr:
576 case AArch64::EONXrr:
577 case AArch64::EORWrr:
578 case AArch64::EORXrr:
579 case AArch64::ORNWrr:
580 case AArch64::ORNXrr:
581 case AArch64::ORRWrr:
582 case AArch64::ORRXrr:
583 return true;
584 }
585
586 llvm_unreachable("Unknown opcode to check as cheap as a move!");
587 }
588
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const589 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
590 unsigned &SrcReg, unsigned &DstReg,
591 unsigned &SubIdx) const {
592 switch (MI.getOpcode()) {
593 default:
594 return false;
595 case AArch64::SBFMXri: // aka sxtw
596 case AArch64::UBFMXri: // aka uxtw
597 // Check for the 32 -> 64 bit extension case, these instructions can do
598 // much more.
599 if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
600 return false;
601 // This is a signed or unsigned 32 -> 64 bit extension.
602 SrcReg = MI.getOperand(1).getReg();
603 DstReg = MI.getOperand(0).getReg();
604 SubIdx = AArch64::sub_32;
605 return true;
606 }
607 }
608
609 /// analyzeCompare - For a comparison instruction, return the source registers
610 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
611 /// Return true if the comparison instruction can be analyzed.
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const612 bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
613 unsigned &SrcReg2, int &CmpMask,
614 int &CmpValue) const {
615 switch (MI->getOpcode()) {
616 default:
617 break;
618 case AArch64::SUBSWrr:
619 case AArch64::SUBSWrs:
620 case AArch64::SUBSWrx:
621 case AArch64::SUBSXrr:
622 case AArch64::SUBSXrs:
623 case AArch64::SUBSXrx:
624 case AArch64::ADDSWrr:
625 case AArch64::ADDSWrs:
626 case AArch64::ADDSWrx:
627 case AArch64::ADDSXrr:
628 case AArch64::ADDSXrs:
629 case AArch64::ADDSXrx:
630 // Replace SUBSWrr with SUBWrr if NZCV is not used.
631 SrcReg = MI->getOperand(1).getReg();
632 SrcReg2 = MI->getOperand(2).getReg();
633 CmpMask = ~0;
634 CmpValue = 0;
635 return true;
636 case AArch64::SUBSWri:
637 case AArch64::ADDSWri:
638 case AArch64::SUBSXri:
639 case AArch64::ADDSXri:
640 SrcReg = MI->getOperand(1).getReg();
641 SrcReg2 = 0;
642 CmpMask = ~0;
643 CmpValue = MI->getOperand(2).getImm();
644 return true;
645 case AArch64::ANDSWri:
646 case AArch64::ANDSXri:
647 // ANDS does not use the same encoding scheme as the others xxxS
648 // instructions.
649 SrcReg = MI->getOperand(1).getReg();
650 SrcReg2 = 0;
651 CmpMask = ~0;
652 CmpValue = AArch64_AM::decodeLogicalImmediate(
653 MI->getOperand(2).getImm(),
654 MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
655 return true;
656 }
657
658 return false;
659 }
660
UpdateOperandRegClass(MachineInstr * Instr)661 static bool UpdateOperandRegClass(MachineInstr *Instr) {
662 MachineBasicBlock *MBB = Instr->getParent();
663 assert(MBB && "Can't get MachineBasicBlock here");
664 MachineFunction *MF = MBB->getParent();
665 assert(MF && "Can't get MachineFunction here");
666 const TargetMachine *TM = &MF->getTarget();
667 const TargetInstrInfo *TII = TM->getInstrInfo();
668 const TargetRegisterInfo *TRI = TM->getRegisterInfo();
669 MachineRegisterInfo *MRI = &MF->getRegInfo();
670
671 for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
672 ++OpIdx) {
673 MachineOperand &MO = Instr->getOperand(OpIdx);
674 const TargetRegisterClass *OpRegCstraints =
675 Instr->getRegClassConstraint(OpIdx, TII, TRI);
676
677 // If there's no constraint, there's nothing to do.
678 if (!OpRegCstraints)
679 continue;
680 // If the operand is a frame index, there's nothing to do here.
681 // A frame index operand will resolve correctly during PEI.
682 if (MO.isFI())
683 continue;
684
685 assert(MO.isReg() &&
686 "Operand has register constraints without being a register!");
687
688 unsigned Reg = MO.getReg();
689 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
690 if (!OpRegCstraints->contains(Reg))
691 return false;
692 } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
693 !MRI->constrainRegClass(Reg, OpRegCstraints))
694 return false;
695 }
696
697 return true;
698 }
699
700 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
701 /// comparison into one that sets the zero bit in the flags register.
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const702 bool AArch64InstrInfo::optimizeCompareInstr(
703 MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
704 int CmpValue, const MachineRegisterInfo *MRI) const {
705
706 // Replace SUBSWrr with SUBWrr if NZCV is not used.
707 int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
708 if (Cmp_NZCV != -1) {
709 unsigned NewOpc;
710 switch (CmpInstr->getOpcode()) {
711 default:
712 return false;
713 case AArch64::ADDSWrr: NewOpc = AArch64::ADDWrr; break;
714 case AArch64::ADDSWri: NewOpc = AArch64::ADDWri; break;
715 case AArch64::ADDSWrs: NewOpc = AArch64::ADDWrs; break;
716 case AArch64::ADDSWrx: NewOpc = AArch64::ADDWrx; break;
717 case AArch64::ADDSXrr: NewOpc = AArch64::ADDXrr; break;
718 case AArch64::ADDSXri: NewOpc = AArch64::ADDXri; break;
719 case AArch64::ADDSXrs: NewOpc = AArch64::ADDXrs; break;
720 case AArch64::ADDSXrx: NewOpc = AArch64::ADDXrx; break;
721 case AArch64::SUBSWrr: NewOpc = AArch64::SUBWrr; break;
722 case AArch64::SUBSWri: NewOpc = AArch64::SUBWri; break;
723 case AArch64::SUBSWrs: NewOpc = AArch64::SUBWrs; break;
724 case AArch64::SUBSWrx: NewOpc = AArch64::SUBWrx; break;
725 case AArch64::SUBSXrr: NewOpc = AArch64::SUBXrr; break;
726 case AArch64::SUBSXri: NewOpc = AArch64::SUBXri; break;
727 case AArch64::SUBSXrs: NewOpc = AArch64::SUBXrs; break;
728 case AArch64::SUBSXrx: NewOpc = AArch64::SUBXrx; break;
729 }
730
731 const MCInstrDesc &MCID = get(NewOpc);
732 CmpInstr->setDesc(MCID);
733 CmpInstr->RemoveOperand(Cmp_NZCV);
734 bool succeeded = UpdateOperandRegClass(CmpInstr);
735 (void)succeeded;
736 assert(succeeded && "Some operands reg class are incompatible!");
737 return true;
738 }
739
740 // Continue only if we have a "ri" where immediate is zero.
741 if (CmpValue != 0 || SrcReg2 != 0)
742 return false;
743
744 // CmpInstr is a Compare instruction if destination register is not used.
745 if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
746 return false;
747
748 // Get the unique definition of SrcReg.
749 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
750 if (!MI)
751 return false;
752
753 // We iterate backward, starting from the instruction before CmpInstr and
754 // stop when reaching the definition of the source register or done with the
755 // basic block, to check whether NZCV is used or modified in between.
756 MachineBasicBlock::iterator I = CmpInstr, E = MI,
757 B = CmpInstr->getParent()->begin();
758
759 // Early exit if CmpInstr is at the beginning of the BB.
760 if (I == B)
761 return false;
762
763 // Check whether the definition of SrcReg is in the same basic block as
764 // Compare. If not, we can't optimize away the Compare.
765 if (MI->getParent() != CmpInstr->getParent())
766 return false;
767
768 // Check that NZCV isn't set between the comparison instruction and the one we
769 // want to change.
770 const TargetRegisterInfo *TRI = &getRegisterInfo();
771 for (--I; I != E; --I) {
772 const MachineInstr &Instr = *I;
773
774 if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
775 Instr.readsRegister(AArch64::NZCV, TRI))
776 // This instruction modifies or uses NZCV after the one we want to
777 // change. We can't do this transformation.
778 return false;
779 if (I == B)
780 // The 'and' is below the comparison instruction.
781 return false;
782 }
783
784 unsigned NewOpc = MI->getOpcode();
785 switch (MI->getOpcode()) {
786 default:
787 return false;
788 case AArch64::ADDSWrr:
789 case AArch64::ADDSWri:
790 case AArch64::ADDSXrr:
791 case AArch64::ADDSXri:
792 case AArch64::SUBSWrr:
793 case AArch64::SUBSWri:
794 case AArch64::SUBSXrr:
795 case AArch64::SUBSXri:
796 break;
797 case AArch64::ADDWrr: NewOpc = AArch64::ADDSWrr; break;
798 case AArch64::ADDWri: NewOpc = AArch64::ADDSWri; break;
799 case AArch64::ADDXrr: NewOpc = AArch64::ADDSXrr; break;
800 case AArch64::ADDXri: NewOpc = AArch64::ADDSXri; break;
801 case AArch64::ADCWr: NewOpc = AArch64::ADCSWr; break;
802 case AArch64::ADCXr: NewOpc = AArch64::ADCSXr; break;
803 case AArch64::SUBWrr: NewOpc = AArch64::SUBSWrr; break;
804 case AArch64::SUBWri: NewOpc = AArch64::SUBSWri; break;
805 case AArch64::SUBXrr: NewOpc = AArch64::SUBSXrr; break;
806 case AArch64::SUBXri: NewOpc = AArch64::SUBSXri; break;
807 case AArch64::SBCWr: NewOpc = AArch64::SBCSWr; break;
808 case AArch64::SBCXr: NewOpc = AArch64::SBCSXr; break;
809 case AArch64::ANDWri: NewOpc = AArch64::ANDSWri; break;
810 case AArch64::ANDXri: NewOpc = AArch64::ANDSXri; break;
811 }
812
813 // Scan forward for the use of NZCV.
814 // When checking against MI: if it's a conditional code requires
815 // checking of V bit, then this is not safe to do.
816 // It is safe to remove CmpInstr if NZCV is redefined or killed.
817 // If we are done with the basic block, we need to check whether NZCV is
818 // live-out.
819 bool IsSafe = false;
820 for (MachineBasicBlock::iterator I = CmpInstr,
821 E = CmpInstr->getParent()->end();
822 !IsSafe && ++I != E;) {
823 const MachineInstr &Instr = *I;
824 for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
825 ++IO) {
826 const MachineOperand &MO = Instr.getOperand(IO);
827 if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
828 IsSafe = true;
829 break;
830 }
831 if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
832 continue;
833 if (MO.isDef()) {
834 IsSafe = true;
835 break;
836 }
837
838 // Decode the condition code.
839 unsigned Opc = Instr.getOpcode();
840 AArch64CC::CondCode CC;
841 switch (Opc) {
842 default:
843 return false;
844 case AArch64::Bcc:
845 CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
846 break;
847 case AArch64::CSINVWr:
848 case AArch64::CSINVXr:
849 case AArch64::CSINCWr:
850 case AArch64::CSINCXr:
851 case AArch64::CSELWr:
852 case AArch64::CSELXr:
853 case AArch64::CSNEGWr:
854 case AArch64::CSNEGXr:
855 case AArch64::FCSELSrrr:
856 case AArch64::FCSELDrrr:
857 CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
858 break;
859 }
860
861 // It is not safe to remove Compare instruction if Overflow(V) is used.
862 switch (CC) {
863 default:
864 // NZCV can be used multiple times, we should continue.
865 break;
866 case AArch64CC::VS:
867 case AArch64CC::VC:
868 case AArch64CC::GE:
869 case AArch64CC::LT:
870 case AArch64CC::GT:
871 case AArch64CC::LE:
872 return false;
873 }
874 }
875 }
876
877 // If NZCV is not killed nor re-defined, we should check whether it is
878 // live-out. If it is live-out, do not optimize.
879 if (!IsSafe) {
880 MachineBasicBlock *ParentBlock = CmpInstr->getParent();
881 for (auto *MBB : ParentBlock->successors())
882 if (MBB->isLiveIn(AArch64::NZCV))
883 return false;
884 }
885
886 // Update the instruction to set NZCV.
887 MI->setDesc(get(NewOpc));
888 CmpInstr->eraseFromParent();
889 bool succeeded = UpdateOperandRegClass(MI);
890 (void)succeeded;
891 assert(succeeded && "Some operands reg class are incompatible!");
892 MI->addRegisterDefined(AArch64::NZCV, TRI);
893 return true;
894 }
895
896 /// Return true if this is this instruction has a non-zero immediate
hasShiftedReg(const MachineInstr * MI) const897 bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
898 switch (MI->getOpcode()) {
899 default:
900 break;
901 case AArch64::ADDSWrs:
902 case AArch64::ADDSXrs:
903 case AArch64::ADDWrs:
904 case AArch64::ADDXrs:
905 case AArch64::ANDSWrs:
906 case AArch64::ANDSXrs:
907 case AArch64::ANDWrs:
908 case AArch64::ANDXrs:
909 case AArch64::BICSWrs:
910 case AArch64::BICSXrs:
911 case AArch64::BICWrs:
912 case AArch64::BICXrs:
913 case AArch64::CRC32Brr:
914 case AArch64::CRC32CBrr:
915 case AArch64::CRC32CHrr:
916 case AArch64::CRC32CWrr:
917 case AArch64::CRC32CXrr:
918 case AArch64::CRC32Hrr:
919 case AArch64::CRC32Wrr:
920 case AArch64::CRC32Xrr:
921 case AArch64::EONWrs:
922 case AArch64::EONXrs:
923 case AArch64::EORWrs:
924 case AArch64::EORXrs:
925 case AArch64::ORNWrs:
926 case AArch64::ORNXrs:
927 case AArch64::ORRWrs:
928 case AArch64::ORRXrs:
929 case AArch64::SUBSWrs:
930 case AArch64::SUBSXrs:
931 case AArch64::SUBWrs:
932 case AArch64::SUBXrs:
933 if (MI->getOperand(3).isImm()) {
934 unsigned val = MI->getOperand(3).getImm();
935 return (val != 0);
936 }
937 break;
938 }
939 return false;
940 }
941
942 /// Return true if this is this instruction has a non-zero immediate
hasExtendedReg(const MachineInstr * MI) const943 bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
944 switch (MI->getOpcode()) {
945 default:
946 break;
947 case AArch64::ADDSWrx:
948 case AArch64::ADDSXrx:
949 case AArch64::ADDSXrx64:
950 case AArch64::ADDWrx:
951 case AArch64::ADDXrx:
952 case AArch64::ADDXrx64:
953 case AArch64::SUBSWrx:
954 case AArch64::SUBSXrx:
955 case AArch64::SUBSXrx64:
956 case AArch64::SUBWrx:
957 case AArch64::SUBXrx:
958 case AArch64::SUBXrx64:
959 if (MI->getOperand(3).isImm()) {
960 unsigned val = MI->getOperand(3).getImm();
961 return (val != 0);
962 }
963 break;
964 }
965
966 return false;
967 }
968
969 // Return true if this instruction simply sets its single destination register
970 // to zero. This is equivalent to a register rename of the zero-register.
isGPRZero(const MachineInstr * MI) const971 bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
972 switch (MI->getOpcode()) {
973 default:
974 break;
975 case AArch64::MOVZWi:
976 case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
977 if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
978 assert(MI->getDesc().getNumOperands() == 3 &&
979 MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
980 return true;
981 }
982 break;
983 case AArch64::ANDWri: // and Rd, Rzr, #imm
984 return MI->getOperand(1).getReg() == AArch64::WZR;
985 case AArch64::ANDXri:
986 return MI->getOperand(1).getReg() == AArch64::XZR;
987 case TargetOpcode::COPY:
988 return MI->getOperand(1).getReg() == AArch64::WZR;
989 }
990 return false;
991 }
992
993 // Return true if this instruction simply renames a general register without
994 // modifying bits.
isGPRCopy(const MachineInstr * MI) const995 bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
996 switch (MI->getOpcode()) {
997 default:
998 break;
999 case TargetOpcode::COPY: {
1000 // GPR32 copies will by lowered to ORRXrs
1001 unsigned DstReg = MI->getOperand(0).getReg();
1002 return (AArch64::GPR32RegClass.contains(DstReg) ||
1003 AArch64::GPR64RegClass.contains(DstReg));
1004 }
1005 case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
1006 if (MI->getOperand(1).getReg() == AArch64::XZR) {
1007 assert(MI->getDesc().getNumOperands() == 4 &&
1008 MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
1009 return true;
1010 }
1011 case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
1012 if (MI->getOperand(2).getImm() == 0) {
1013 assert(MI->getDesc().getNumOperands() == 4 &&
1014 MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
1015 return true;
1016 }
1017 }
1018 return false;
1019 }
1020
1021 // Return true if this instruction simply renames a general register without
1022 // modifying bits.
isFPRCopy(const MachineInstr * MI) const1023 bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
1024 switch (MI->getOpcode()) {
1025 default:
1026 break;
1027 case TargetOpcode::COPY: {
1028 // FPR64 copies will by lowered to ORR.16b
1029 unsigned DstReg = MI->getOperand(0).getReg();
1030 return (AArch64::FPR64RegClass.contains(DstReg) ||
1031 AArch64::FPR128RegClass.contains(DstReg));
1032 }
1033 case AArch64::ORRv16i8:
1034 if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
1035 assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
1036 "invalid ORRv16i8 operands");
1037 return true;
1038 }
1039 }
1040 return false;
1041 }
1042
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const1043 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1044 int &FrameIndex) const {
1045 switch (MI->getOpcode()) {
1046 default:
1047 break;
1048 case AArch64::LDRWui:
1049 case AArch64::LDRXui:
1050 case AArch64::LDRBui:
1051 case AArch64::LDRHui:
1052 case AArch64::LDRSui:
1053 case AArch64::LDRDui:
1054 case AArch64::LDRQui:
1055 if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1056 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1057 FrameIndex = MI->getOperand(1).getIndex();
1058 return MI->getOperand(0).getReg();
1059 }
1060 break;
1061 }
1062
1063 return 0;
1064 }
1065
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const1066 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1067 int &FrameIndex) const {
1068 switch (MI->getOpcode()) {
1069 default:
1070 break;
1071 case AArch64::STRWui:
1072 case AArch64::STRXui:
1073 case AArch64::STRBui:
1074 case AArch64::STRHui:
1075 case AArch64::STRSui:
1076 case AArch64::STRDui:
1077 case AArch64::STRQui:
1078 if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
1079 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
1080 FrameIndex = MI->getOperand(1).getIndex();
1081 return MI->getOperand(0).getReg();
1082 }
1083 break;
1084 }
1085 return 0;
1086 }
1087
1088 /// Return true if this is load/store scales or extends its register offset.
1089 /// This refers to scaling a dynamic index as opposed to scaled immediates.
1090 /// MI should be a memory op that allows scaled addressing.
isScaledAddr(const MachineInstr * MI) const1091 bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
1092 switch (MI->getOpcode()) {
1093 default:
1094 break;
1095 case AArch64::LDRBBroW:
1096 case AArch64::LDRBroW:
1097 case AArch64::LDRDroW:
1098 case AArch64::LDRHHroW:
1099 case AArch64::LDRHroW:
1100 case AArch64::LDRQroW:
1101 case AArch64::LDRSBWroW:
1102 case AArch64::LDRSBXroW:
1103 case AArch64::LDRSHWroW:
1104 case AArch64::LDRSHXroW:
1105 case AArch64::LDRSWroW:
1106 case AArch64::LDRSroW:
1107 case AArch64::LDRWroW:
1108 case AArch64::LDRXroW:
1109 case AArch64::STRBBroW:
1110 case AArch64::STRBroW:
1111 case AArch64::STRDroW:
1112 case AArch64::STRHHroW:
1113 case AArch64::STRHroW:
1114 case AArch64::STRQroW:
1115 case AArch64::STRSroW:
1116 case AArch64::STRWroW:
1117 case AArch64::STRXroW:
1118 case AArch64::LDRBBroX:
1119 case AArch64::LDRBroX:
1120 case AArch64::LDRDroX:
1121 case AArch64::LDRHHroX:
1122 case AArch64::LDRHroX:
1123 case AArch64::LDRQroX:
1124 case AArch64::LDRSBWroX:
1125 case AArch64::LDRSBXroX:
1126 case AArch64::LDRSHWroX:
1127 case AArch64::LDRSHXroX:
1128 case AArch64::LDRSWroX:
1129 case AArch64::LDRSroX:
1130 case AArch64::LDRWroX:
1131 case AArch64::LDRXroX:
1132 case AArch64::STRBBroX:
1133 case AArch64::STRBroX:
1134 case AArch64::STRDroX:
1135 case AArch64::STRHHroX:
1136 case AArch64::STRHroX:
1137 case AArch64::STRQroX:
1138 case AArch64::STRSroX:
1139 case AArch64::STRWroX:
1140 case AArch64::STRXroX:
1141
1142 unsigned Val = MI->getOperand(3).getImm();
1143 AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
1144 return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
1145 }
1146 return false;
1147 }
1148
1149 /// Check all MachineMemOperands for a hint to suppress pairing.
isLdStPairSuppressed(const MachineInstr * MI) const1150 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
1151 assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1152 "Too many target MO flags");
1153 for (auto *MM : MI->memoperands()) {
1154 if (MM->getFlags() &
1155 (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
1156 return true;
1157 }
1158 }
1159 return false;
1160 }
1161
1162 /// Set a flag on the first MachineMemOperand to suppress pairing.
suppressLdStPair(MachineInstr * MI) const1163 void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
1164 if (MI->memoperands_empty())
1165 return;
1166
1167 assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
1168 "Too many target MO flags");
1169 (*MI->memoperands_begin())
1170 ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
1171 }
1172
1173 bool
getLdStBaseRegImmOfs(MachineInstr * LdSt,unsigned & BaseReg,unsigned & Offset,const TargetRegisterInfo * TRI) const1174 AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
1175 unsigned &Offset,
1176 const TargetRegisterInfo *TRI) const {
1177 switch (LdSt->getOpcode()) {
1178 default:
1179 return false;
1180 case AArch64::STRSui:
1181 case AArch64::STRDui:
1182 case AArch64::STRQui:
1183 case AArch64::STRXui:
1184 case AArch64::STRWui:
1185 case AArch64::LDRSui:
1186 case AArch64::LDRDui:
1187 case AArch64::LDRQui:
1188 case AArch64::LDRXui:
1189 case AArch64::LDRWui:
1190 if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
1191 return false;
1192 BaseReg = LdSt->getOperand(1).getReg();
1193 MachineFunction &MF = *LdSt->getParent()->getParent();
1194 unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
1195 Offset = LdSt->getOperand(2).getImm() * Width;
1196 return true;
1197 };
1198 }
1199
1200 /// Detect opportunities for ldp/stp formation.
1201 ///
1202 /// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
shouldClusterLoads(MachineInstr * FirstLdSt,MachineInstr * SecondLdSt,unsigned NumLoads) const1203 bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
1204 MachineInstr *SecondLdSt,
1205 unsigned NumLoads) const {
1206 // Only cluster up to a single pair.
1207 if (NumLoads > 1)
1208 return false;
1209 if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
1210 return false;
1211 // getLdStBaseRegImmOfs guarantees that oper 2 isImm.
1212 unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
1213 // Allow 6 bits of positive range.
1214 if (Ofs1 > 64)
1215 return false;
1216 // The caller should already have ordered First/SecondLdSt by offset.
1217 unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
1218 return Ofs1 + 1 == Ofs2;
1219 }
1220
shouldScheduleAdjacent(MachineInstr * First,MachineInstr * Second) const1221 bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
1222 MachineInstr *Second) const {
1223 // Cyclone can fuse CMN, CMP followed by Bcc.
1224
1225 // FIXME: B0 can also fuse:
1226 // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
1227 if (Second->getOpcode() != AArch64::Bcc)
1228 return false;
1229 switch (First->getOpcode()) {
1230 default:
1231 return false;
1232 case AArch64::SUBSWri:
1233 case AArch64::ADDSWri:
1234 case AArch64::ANDSWri:
1235 case AArch64::SUBSXri:
1236 case AArch64::ADDSXri:
1237 case AArch64::ANDSXri:
1238 return true;
1239 }
1240 }
1241
emitFrameIndexDebugValue(MachineFunction & MF,int FrameIx,uint64_t Offset,const MDNode * MDPtr,DebugLoc DL) const1242 MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1243 int FrameIx,
1244 uint64_t Offset,
1245 const MDNode *MDPtr,
1246 DebugLoc DL) const {
1247 MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
1248 .addFrameIndex(FrameIx)
1249 .addImm(0)
1250 .addImm(Offset)
1251 .addMetadata(MDPtr);
1252 return &*MIB;
1253 }
1254
AddSubReg(const MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI)1255 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
1256 unsigned Reg, unsigned SubIdx,
1257 unsigned State,
1258 const TargetRegisterInfo *TRI) {
1259 if (!SubIdx)
1260 return MIB.addReg(Reg, State);
1261
1262 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1263 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1264 return MIB.addReg(Reg, State, SubIdx);
1265 }
1266
forwardCopyWillClobberTuple(unsigned DestReg,unsigned SrcReg,unsigned NumRegs)1267 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
1268 unsigned NumRegs) {
1269 // We really want the positive remainder mod 32 here, that happens to be
1270 // easily obtainable with a mask.
1271 return ((DestReg - SrcReg) & 0x1f) < NumRegs;
1272 }
1273
copyPhysRegTuple(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc,unsigned Opcode,llvm::ArrayRef<unsigned> Indices) const1274 void AArch64InstrInfo::copyPhysRegTuple(
1275 MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
1276 unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
1277 llvm::ArrayRef<unsigned> Indices) const {
1278 assert(Subtarget.hasNEON() &&
1279 "Unexpected register copy without NEON");
1280 const TargetRegisterInfo *TRI = &getRegisterInfo();
1281 uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
1282 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
1283 unsigned NumRegs = Indices.size();
1284
1285 int SubReg = 0, End = NumRegs, Incr = 1;
1286 if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
1287 SubReg = NumRegs - 1;
1288 End = -1;
1289 Incr = -1;
1290 }
1291
1292 for (; SubReg != End; SubReg += Incr) {
1293 const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
1294 AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
1295 AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
1296 AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
1297 }
1298 }
1299
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const1300 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1301 MachineBasicBlock::iterator I, DebugLoc DL,
1302 unsigned DestReg, unsigned SrcReg,
1303 bool KillSrc) const {
1304 if (AArch64::GPR32spRegClass.contains(DestReg) &&
1305 (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
1306 const TargetRegisterInfo *TRI = &getRegisterInfo();
1307
1308 if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
1309 // If either operand is WSP, expand to ADD #0.
1310 if (Subtarget.hasZeroCycleRegMove()) {
1311 // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
1312 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1313 &AArch64::GPR64spRegClass);
1314 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1315 &AArch64::GPR64spRegClass);
1316 // This instruction is reading and writing X registers. This may upset
1317 // the register scavenger and machine verifier, so we need to indicate
1318 // that we are reading an undefined value from SrcRegX, but a proper
1319 // value from SrcReg.
1320 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
1321 .addReg(SrcRegX, RegState::Undef)
1322 .addImm(0)
1323 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1324 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1325 } else {
1326 BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
1327 .addReg(SrcReg, getKillRegState(KillSrc))
1328 .addImm(0)
1329 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1330 }
1331 } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
1332 BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
1333 AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1334 } else {
1335 if (Subtarget.hasZeroCycleRegMove()) {
1336 // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
1337 unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
1338 &AArch64::GPR64spRegClass);
1339 unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
1340 &AArch64::GPR64spRegClass);
1341 // This instruction is reading and writing X registers. This may upset
1342 // the register scavenger and machine verifier, so we need to indicate
1343 // that we are reading an undefined value from SrcRegX, but a proper
1344 // value from SrcReg.
1345 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
1346 .addReg(AArch64::XZR)
1347 .addReg(SrcRegX, RegState::Undef)
1348 .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
1349 } else {
1350 // Otherwise, expand to ORR WZR.
1351 BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
1352 .addReg(AArch64::WZR)
1353 .addReg(SrcReg, getKillRegState(KillSrc));
1354 }
1355 }
1356 return;
1357 }
1358
1359 if (AArch64::GPR64spRegClass.contains(DestReg) &&
1360 (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
1361 if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
1362 // If either operand is SP, expand to ADD #0.
1363 BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
1364 .addReg(SrcReg, getKillRegState(KillSrc))
1365 .addImm(0)
1366 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1367 } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
1368 BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
1369 AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
1370 } else {
1371 // Otherwise, expand to ORR XZR.
1372 BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
1373 .addReg(AArch64::XZR)
1374 .addReg(SrcReg, getKillRegState(KillSrc));
1375 }
1376 return;
1377 }
1378
1379 // Copy a DDDD register quad by copying the individual sub-registers.
1380 if (AArch64::DDDDRegClass.contains(DestReg) &&
1381 AArch64::DDDDRegClass.contains(SrcReg)) {
1382 static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1383 AArch64::dsub2, AArch64::dsub3 };
1384 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1385 Indices);
1386 return;
1387 }
1388
1389 // Copy a DDD register triple by copying the individual sub-registers.
1390 if (AArch64::DDDRegClass.contains(DestReg) &&
1391 AArch64::DDDRegClass.contains(SrcReg)) {
1392 static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
1393 AArch64::dsub2 };
1394 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1395 Indices);
1396 return;
1397 }
1398
1399 // Copy a DD register pair by copying the individual sub-registers.
1400 if (AArch64::DDRegClass.contains(DestReg) &&
1401 AArch64::DDRegClass.contains(SrcReg)) {
1402 static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
1403 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
1404 Indices);
1405 return;
1406 }
1407
1408 // Copy a QQQQ register quad by copying the individual sub-registers.
1409 if (AArch64::QQQQRegClass.contains(DestReg) &&
1410 AArch64::QQQQRegClass.contains(SrcReg)) {
1411 static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1412 AArch64::qsub2, AArch64::qsub3 };
1413 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1414 Indices);
1415 return;
1416 }
1417
1418 // Copy a QQQ register triple by copying the individual sub-registers.
1419 if (AArch64::QQQRegClass.contains(DestReg) &&
1420 AArch64::QQQRegClass.contains(SrcReg)) {
1421 static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
1422 AArch64::qsub2 };
1423 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1424 Indices);
1425 return;
1426 }
1427
1428 // Copy a QQ register pair by copying the individual sub-registers.
1429 if (AArch64::QQRegClass.contains(DestReg) &&
1430 AArch64::QQRegClass.contains(SrcReg)) {
1431 static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
1432 copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
1433 Indices);
1434 return;
1435 }
1436
1437 if (AArch64::FPR128RegClass.contains(DestReg) &&
1438 AArch64::FPR128RegClass.contains(SrcReg)) {
1439 if(Subtarget.hasNEON()) {
1440 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1441 .addReg(SrcReg)
1442 .addReg(SrcReg, getKillRegState(KillSrc));
1443 } else {
1444 BuildMI(MBB, I, DL, get(AArch64::STRQpre))
1445 .addReg(AArch64::SP, RegState::Define)
1446 .addReg(SrcReg, getKillRegState(KillSrc))
1447 .addReg(AArch64::SP)
1448 .addImm(-16);
1449 BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
1450 .addReg(AArch64::SP, RegState::Define)
1451 .addReg(DestReg, RegState::Define)
1452 .addReg(AArch64::SP)
1453 .addImm(16);
1454 }
1455 return;
1456 }
1457
1458 if (AArch64::FPR64RegClass.contains(DestReg) &&
1459 AArch64::FPR64RegClass.contains(SrcReg)) {
1460 if(Subtarget.hasNEON()) {
1461 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
1462 &AArch64::FPR128RegClass);
1463 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
1464 &AArch64::FPR128RegClass);
1465 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1466 .addReg(SrcReg)
1467 .addReg(SrcReg, getKillRegState(KillSrc));
1468 } else {
1469 BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
1470 .addReg(SrcReg, getKillRegState(KillSrc));
1471 }
1472 return;
1473 }
1474
1475 if (AArch64::FPR32RegClass.contains(DestReg) &&
1476 AArch64::FPR32RegClass.contains(SrcReg)) {
1477 if(Subtarget.hasNEON()) {
1478 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
1479 &AArch64::FPR128RegClass);
1480 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
1481 &AArch64::FPR128RegClass);
1482 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1483 .addReg(SrcReg)
1484 .addReg(SrcReg, getKillRegState(KillSrc));
1485 } else {
1486 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1487 .addReg(SrcReg, getKillRegState(KillSrc));
1488 }
1489 return;
1490 }
1491
1492 if (AArch64::FPR16RegClass.contains(DestReg) &&
1493 AArch64::FPR16RegClass.contains(SrcReg)) {
1494 if(Subtarget.hasNEON()) {
1495 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1496 &AArch64::FPR128RegClass);
1497 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1498 &AArch64::FPR128RegClass);
1499 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1500 .addReg(SrcReg)
1501 .addReg(SrcReg, getKillRegState(KillSrc));
1502 } else {
1503 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
1504 &AArch64::FPR32RegClass);
1505 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
1506 &AArch64::FPR32RegClass);
1507 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1508 .addReg(SrcReg, getKillRegState(KillSrc));
1509 }
1510 return;
1511 }
1512
1513 if (AArch64::FPR8RegClass.contains(DestReg) &&
1514 AArch64::FPR8RegClass.contains(SrcReg)) {
1515 if(Subtarget.hasNEON()) {
1516 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1517 &AArch64::FPR128RegClass);
1518 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1519 &AArch64::FPR128RegClass);
1520 BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
1521 .addReg(SrcReg)
1522 .addReg(SrcReg, getKillRegState(KillSrc));
1523 } else {
1524 DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
1525 &AArch64::FPR32RegClass);
1526 SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
1527 &AArch64::FPR32RegClass);
1528 BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
1529 .addReg(SrcReg, getKillRegState(KillSrc));
1530 }
1531 return;
1532 }
1533
1534 // Copies between GPR64 and FPR64.
1535 if (AArch64::FPR64RegClass.contains(DestReg) &&
1536 AArch64::GPR64RegClass.contains(SrcReg)) {
1537 BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
1538 .addReg(SrcReg, getKillRegState(KillSrc));
1539 return;
1540 }
1541 if (AArch64::GPR64RegClass.contains(DestReg) &&
1542 AArch64::FPR64RegClass.contains(SrcReg)) {
1543 BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
1544 .addReg(SrcReg, getKillRegState(KillSrc));
1545 return;
1546 }
1547 // Copies between GPR32 and FPR32.
1548 if (AArch64::FPR32RegClass.contains(DestReg) &&
1549 AArch64::GPR32RegClass.contains(SrcReg)) {
1550 BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
1551 .addReg(SrcReg, getKillRegState(KillSrc));
1552 return;
1553 }
1554 if (AArch64::GPR32RegClass.contains(DestReg) &&
1555 AArch64::FPR32RegClass.contains(SrcReg)) {
1556 BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
1557 .addReg(SrcReg, getKillRegState(KillSrc));
1558 return;
1559 }
1560
1561 if (DestReg == AArch64::NZCV) {
1562 assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
1563 BuildMI(MBB, I, DL, get(AArch64::MSR))
1564 .addImm(AArch64SysReg::NZCV)
1565 .addReg(SrcReg, getKillRegState(KillSrc))
1566 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
1567 return;
1568 }
1569
1570 if (SrcReg == AArch64::NZCV) {
1571 assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
1572 BuildMI(MBB, I, DL, get(AArch64::MRS))
1573 .addReg(DestReg)
1574 .addImm(AArch64SysReg::NZCV)
1575 .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
1576 return;
1577 }
1578
1579 llvm_unreachable("unimplemented reg-to-reg copy");
1580 }
1581
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1582 void AArch64InstrInfo::storeRegToStackSlot(
1583 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
1584 bool isKill, int FI, const TargetRegisterClass *RC,
1585 const TargetRegisterInfo *TRI) const {
1586 DebugLoc DL;
1587 if (MBBI != MBB.end())
1588 DL = MBBI->getDebugLoc();
1589 MachineFunction &MF = *MBB.getParent();
1590 MachineFrameInfo &MFI = *MF.getFrameInfo();
1591 unsigned Align = MFI.getObjectAlignment(FI);
1592
1593 MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1594 MachineMemOperand *MMO = MF.getMachineMemOperand(
1595 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
1596 unsigned Opc = 0;
1597 bool Offset = true;
1598 switch (RC->getSize()) {
1599 case 1:
1600 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1601 Opc = AArch64::STRBui;
1602 break;
1603 case 2:
1604 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1605 Opc = AArch64::STRHui;
1606 break;
1607 case 4:
1608 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1609 Opc = AArch64::STRWui;
1610 if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1611 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
1612 else
1613 assert(SrcReg != AArch64::WSP);
1614 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1615 Opc = AArch64::STRSui;
1616 break;
1617 case 8:
1618 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1619 Opc = AArch64::STRXui;
1620 if (TargetRegisterInfo::isVirtualRegister(SrcReg))
1621 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1622 else
1623 assert(SrcReg != AArch64::SP);
1624 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1625 Opc = AArch64::STRDui;
1626 break;
1627 case 16:
1628 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1629 Opc = AArch64::STRQui;
1630 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1631 assert(Subtarget.hasNEON() &&
1632 "Unexpected register store without NEON");
1633 Opc = AArch64::ST1Twov1d, Offset = false;
1634 }
1635 break;
1636 case 24:
1637 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1638 assert(Subtarget.hasNEON() &&
1639 "Unexpected register store without NEON");
1640 Opc = AArch64::ST1Threev1d, Offset = false;
1641 }
1642 break;
1643 case 32:
1644 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1645 assert(Subtarget.hasNEON() &&
1646 "Unexpected register store without NEON");
1647 Opc = AArch64::ST1Fourv1d, Offset = false;
1648 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1649 assert(Subtarget.hasNEON() &&
1650 "Unexpected register store without NEON");
1651 Opc = AArch64::ST1Twov2d, Offset = false;
1652 }
1653 break;
1654 case 48:
1655 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1656 assert(Subtarget.hasNEON() &&
1657 "Unexpected register store without NEON");
1658 Opc = AArch64::ST1Threev2d, Offset = false;
1659 }
1660 break;
1661 case 64:
1662 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1663 assert(Subtarget.hasNEON() &&
1664 "Unexpected register store without NEON");
1665 Opc = AArch64::ST1Fourv2d, Offset = false;
1666 }
1667 break;
1668 }
1669 assert(Opc && "Unknown register class");
1670
1671 const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1672 .addReg(SrcReg, getKillRegState(isKill))
1673 .addFrameIndex(FI);
1674
1675 if (Offset)
1676 MI.addImm(0);
1677 MI.addMemOperand(MMO);
1678 }
1679
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1680 void AArch64InstrInfo::loadRegFromStackSlot(
1681 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
1682 int FI, const TargetRegisterClass *RC,
1683 const TargetRegisterInfo *TRI) const {
1684 DebugLoc DL;
1685 if (MBBI != MBB.end())
1686 DL = MBBI->getDebugLoc();
1687 MachineFunction &MF = *MBB.getParent();
1688 MachineFrameInfo &MFI = *MF.getFrameInfo();
1689 unsigned Align = MFI.getObjectAlignment(FI);
1690 MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
1691 MachineMemOperand *MMO = MF.getMachineMemOperand(
1692 PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
1693
1694 unsigned Opc = 0;
1695 bool Offset = true;
1696 switch (RC->getSize()) {
1697 case 1:
1698 if (AArch64::FPR8RegClass.hasSubClassEq(RC))
1699 Opc = AArch64::LDRBui;
1700 break;
1701 case 2:
1702 if (AArch64::FPR16RegClass.hasSubClassEq(RC))
1703 Opc = AArch64::LDRHui;
1704 break;
1705 case 4:
1706 if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
1707 Opc = AArch64::LDRWui;
1708 if (TargetRegisterInfo::isVirtualRegister(DestReg))
1709 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
1710 else
1711 assert(DestReg != AArch64::WSP);
1712 } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
1713 Opc = AArch64::LDRSui;
1714 break;
1715 case 8:
1716 if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
1717 Opc = AArch64::LDRXui;
1718 if (TargetRegisterInfo::isVirtualRegister(DestReg))
1719 MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
1720 else
1721 assert(DestReg != AArch64::SP);
1722 } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
1723 Opc = AArch64::LDRDui;
1724 break;
1725 case 16:
1726 if (AArch64::FPR128RegClass.hasSubClassEq(RC))
1727 Opc = AArch64::LDRQui;
1728 else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
1729 assert(Subtarget.hasNEON() &&
1730 "Unexpected register load without NEON");
1731 Opc = AArch64::LD1Twov1d, Offset = false;
1732 }
1733 break;
1734 case 24:
1735 if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
1736 assert(Subtarget.hasNEON() &&
1737 "Unexpected register load without NEON");
1738 Opc = AArch64::LD1Threev1d, Offset = false;
1739 }
1740 break;
1741 case 32:
1742 if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
1743 assert(Subtarget.hasNEON() &&
1744 "Unexpected register load without NEON");
1745 Opc = AArch64::LD1Fourv1d, Offset = false;
1746 } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
1747 assert(Subtarget.hasNEON() &&
1748 "Unexpected register load without NEON");
1749 Opc = AArch64::LD1Twov2d, Offset = false;
1750 }
1751 break;
1752 case 48:
1753 if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
1754 assert(Subtarget.hasNEON() &&
1755 "Unexpected register load without NEON");
1756 Opc = AArch64::LD1Threev2d, Offset = false;
1757 }
1758 break;
1759 case 64:
1760 if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
1761 assert(Subtarget.hasNEON() &&
1762 "Unexpected register load without NEON");
1763 Opc = AArch64::LD1Fourv2d, Offset = false;
1764 }
1765 break;
1766 }
1767 assert(Opc && "Unknown register class");
1768
1769 const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
1770 .addReg(DestReg, getDefRegState(true))
1771 .addFrameIndex(FI);
1772 if (Offset)
1773 MI.addImm(0);
1774 MI.addMemOperand(MMO);
1775 }
1776
emitFrameOffset(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,int Offset,const TargetInstrInfo * TII,MachineInstr::MIFlag Flag,bool SetNZCV)1777 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
1778 MachineBasicBlock::iterator MBBI, DebugLoc DL,
1779 unsigned DestReg, unsigned SrcReg, int Offset,
1780 const TargetInstrInfo *TII,
1781 MachineInstr::MIFlag Flag, bool SetNZCV) {
1782 if (DestReg == SrcReg && Offset == 0)
1783 return;
1784
1785 bool isSub = Offset < 0;
1786 if (isSub)
1787 Offset = -Offset;
1788
1789 // FIXME: If the offset won't fit in 24-bits, compute the offset into a
1790 // scratch register. If DestReg is a virtual register, use it as the
1791 // scratch register; otherwise, create a new virtual register (to be
1792 // replaced by the scavenger at the end of PEI). That case can be optimized
1793 // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
1794 // register can be loaded with offset%8 and the add/sub can use an extending
1795 // instruction with LSL#3.
1796 // Currently the function handles any offsets but generates a poor sequence
1797 // of code.
1798 // assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
1799
1800 unsigned Opc;
1801 if (SetNZCV)
1802 Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
1803 else
1804 Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
1805 const unsigned MaxEncoding = 0xfff;
1806 const unsigned ShiftSize = 12;
1807 const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
1808 while (((unsigned)Offset) >= (1 << ShiftSize)) {
1809 unsigned ThisVal;
1810 if (((unsigned)Offset) > MaxEncodableValue) {
1811 ThisVal = MaxEncodableValue;
1812 } else {
1813 ThisVal = Offset & MaxEncodableValue;
1814 }
1815 assert((ThisVal >> ShiftSize) <= MaxEncoding &&
1816 "Encoding cannot handle value that big");
1817 BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1818 .addReg(SrcReg)
1819 .addImm(ThisVal >> ShiftSize)
1820 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
1821 .setMIFlag(Flag);
1822
1823 SrcReg = DestReg;
1824 Offset -= ThisVal;
1825 if (Offset == 0)
1826 return;
1827 }
1828 BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
1829 .addReg(SrcReg)
1830 .addImm(Offset)
1831 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1832 .setMIFlag(Flag);
1833 }
1834
1835 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr * MI,const SmallVectorImpl<unsigned> & Ops,int FrameIndex) const1836 AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
1837 const SmallVectorImpl<unsigned> &Ops,
1838 int FrameIndex) const {
1839 // This is a bit of a hack. Consider this instruction:
1840 //
1841 // %vreg0<def> = COPY %SP; GPR64all:%vreg0
1842 //
1843 // We explicitly chose GPR64all for the virtual register so such a copy might
1844 // be eliminated by RegisterCoalescer. However, that may not be possible, and
1845 // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
1846 // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
1847 //
1848 // To prevent that, we are going to constrain the %vreg0 register class here.
1849 //
1850 // <rdar://problem/11522048>
1851 //
1852 if (MI->isCopy()) {
1853 unsigned DstReg = MI->getOperand(0).getReg();
1854 unsigned SrcReg = MI->getOperand(1).getReg();
1855 if (SrcReg == AArch64::SP &&
1856 TargetRegisterInfo::isVirtualRegister(DstReg)) {
1857 MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
1858 return nullptr;
1859 }
1860 if (DstReg == AArch64::SP &&
1861 TargetRegisterInfo::isVirtualRegister(SrcReg)) {
1862 MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
1863 return nullptr;
1864 }
1865 }
1866
1867 // Cannot fold.
1868 return nullptr;
1869 }
1870
isAArch64FrameOffsetLegal(const MachineInstr & MI,int & Offset,bool * OutUseUnscaledOp,unsigned * OutUnscaledOp,int * EmittableOffset)1871 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
1872 bool *OutUseUnscaledOp,
1873 unsigned *OutUnscaledOp,
1874 int *EmittableOffset) {
1875 int Scale = 1;
1876 bool IsSigned = false;
1877 // The ImmIdx should be changed case by case if it is not 2.
1878 unsigned ImmIdx = 2;
1879 unsigned UnscaledOp = 0;
1880 // Set output values in case of early exit.
1881 if (EmittableOffset)
1882 *EmittableOffset = 0;
1883 if (OutUseUnscaledOp)
1884 *OutUseUnscaledOp = false;
1885 if (OutUnscaledOp)
1886 *OutUnscaledOp = 0;
1887 switch (MI.getOpcode()) {
1888 default:
1889 llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
1890 // Vector spills/fills can't take an immediate offset.
1891 case AArch64::LD1Twov2d:
1892 case AArch64::LD1Threev2d:
1893 case AArch64::LD1Fourv2d:
1894 case AArch64::LD1Twov1d:
1895 case AArch64::LD1Threev1d:
1896 case AArch64::LD1Fourv1d:
1897 case AArch64::ST1Twov2d:
1898 case AArch64::ST1Threev2d:
1899 case AArch64::ST1Fourv2d:
1900 case AArch64::ST1Twov1d:
1901 case AArch64::ST1Threev1d:
1902 case AArch64::ST1Fourv1d:
1903 return AArch64FrameOffsetCannotUpdate;
1904 case AArch64::PRFMui:
1905 Scale = 8;
1906 UnscaledOp = AArch64::PRFUMi;
1907 break;
1908 case AArch64::LDRXui:
1909 Scale = 8;
1910 UnscaledOp = AArch64::LDURXi;
1911 break;
1912 case AArch64::LDRWui:
1913 Scale = 4;
1914 UnscaledOp = AArch64::LDURWi;
1915 break;
1916 case AArch64::LDRBui:
1917 Scale = 1;
1918 UnscaledOp = AArch64::LDURBi;
1919 break;
1920 case AArch64::LDRHui:
1921 Scale = 2;
1922 UnscaledOp = AArch64::LDURHi;
1923 break;
1924 case AArch64::LDRSui:
1925 Scale = 4;
1926 UnscaledOp = AArch64::LDURSi;
1927 break;
1928 case AArch64::LDRDui:
1929 Scale = 8;
1930 UnscaledOp = AArch64::LDURDi;
1931 break;
1932 case AArch64::LDRQui:
1933 Scale = 16;
1934 UnscaledOp = AArch64::LDURQi;
1935 break;
1936 case AArch64::LDRBBui:
1937 Scale = 1;
1938 UnscaledOp = AArch64::LDURBBi;
1939 break;
1940 case AArch64::LDRHHui:
1941 Scale = 2;
1942 UnscaledOp = AArch64::LDURHHi;
1943 break;
1944 case AArch64::LDRSBXui:
1945 Scale = 1;
1946 UnscaledOp = AArch64::LDURSBXi;
1947 break;
1948 case AArch64::LDRSBWui:
1949 Scale = 1;
1950 UnscaledOp = AArch64::LDURSBWi;
1951 break;
1952 case AArch64::LDRSHXui:
1953 Scale = 2;
1954 UnscaledOp = AArch64::LDURSHXi;
1955 break;
1956 case AArch64::LDRSHWui:
1957 Scale = 2;
1958 UnscaledOp = AArch64::LDURSHWi;
1959 break;
1960 case AArch64::LDRSWui:
1961 Scale = 4;
1962 UnscaledOp = AArch64::LDURSWi;
1963 break;
1964
1965 case AArch64::STRXui:
1966 Scale = 8;
1967 UnscaledOp = AArch64::STURXi;
1968 break;
1969 case AArch64::STRWui:
1970 Scale = 4;
1971 UnscaledOp = AArch64::STURWi;
1972 break;
1973 case AArch64::STRBui:
1974 Scale = 1;
1975 UnscaledOp = AArch64::STURBi;
1976 break;
1977 case AArch64::STRHui:
1978 Scale = 2;
1979 UnscaledOp = AArch64::STURHi;
1980 break;
1981 case AArch64::STRSui:
1982 Scale = 4;
1983 UnscaledOp = AArch64::STURSi;
1984 break;
1985 case AArch64::STRDui:
1986 Scale = 8;
1987 UnscaledOp = AArch64::STURDi;
1988 break;
1989 case AArch64::STRQui:
1990 Scale = 16;
1991 UnscaledOp = AArch64::STURQi;
1992 break;
1993 case AArch64::STRBBui:
1994 Scale = 1;
1995 UnscaledOp = AArch64::STURBBi;
1996 break;
1997 case AArch64::STRHHui:
1998 Scale = 2;
1999 UnscaledOp = AArch64::STURHHi;
2000 break;
2001
2002 case AArch64::LDPXi:
2003 case AArch64::LDPDi:
2004 case AArch64::STPXi:
2005 case AArch64::STPDi:
2006 IsSigned = true;
2007 Scale = 8;
2008 break;
2009 case AArch64::LDPQi:
2010 case AArch64::STPQi:
2011 IsSigned = true;
2012 Scale = 16;
2013 break;
2014 case AArch64::LDPWi:
2015 case AArch64::LDPSi:
2016 case AArch64::STPWi:
2017 case AArch64::STPSi:
2018 IsSigned = true;
2019 Scale = 4;
2020 break;
2021
2022 case AArch64::LDURXi:
2023 case AArch64::LDURWi:
2024 case AArch64::LDURBi:
2025 case AArch64::LDURHi:
2026 case AArch64::LDURSi:
2027 case AArch64::LDURDi:
2028 case AArch64::LDURQi:
2029 case AArch64::LDURHHi:
2030 case AArch64::LDURBBi:
2031 case AArch64::LDURSBXi:
2032 case AArch64::LDURSBWi:
2033 case AArch64::LDURSHXi:
2034 case AArch64::LDURSHWi:
2035 case AArch64::LDURSWi:
2036 case AArch64::STURXi:
2037 case AArch64::STURWi:
2038 case AArch64::STURBi:
2039 case AArch64::STURHi:
2040 case AArch64::STURSi:
2041 case AArch64::STURDi:
2042 case AArch64::STURQi:
2043 case AArch64::STURBBi:
2044 case AArch64::STURHHi:
2045 Scale = 1;
2046 break;
2047 }
2048
2049 Offset += MI.getOperand(ImmIdx).getImm() * Scale;
2050
2051 bool useUnscaledOp = false;
2052 // If the offset doesn't match the scale, we rewrite the instruction to
2053 // use the unscaled instruction instead. Likewise, if we have a negative
2054 // offset (and have an unscaled op to use).
2055 if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
2056 useUnscaledOp = true;
2057
2058 // Use an unscaled addressing mode if the instruction has a negative offset
2059 // (or if the instruction is already using an unscaled addressing mode).
2060 unsigned MaskBits;
2061 if (IsSigned) {
2062 // ldp/stp instructions.
2063 MaskBits = 7;
2064 Offset /= Scale;
2065 } else if (UnscaledOp == 0 || useUnscaledOp) {
2066 MaskBits = 9;
2067 IsSigned = true;
2068 Scale = 1;
2069 } else {
2070 MaskBits = 12;
2071 IsSigned = false;
2072 Offset /= Scale;
2073 }
2074
2075 // Attempt to fold address computation.
2076 int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
2077 int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
2078 if (Offset >= MinOff && Offset <= MaxOff) {
2079 if (EmittableOffset)
2080 *EmittableOffset = Offset;
2081 Offset = 0;
2082 } else {
2083 int NewOff = Offset < 0 ? MinOff : MaxOff;
2084 if (EmittableOffset)
2085 *EmittableOffset = NewOff;
2086 Offset = (Offset - NewOff) * Scale;
2087 }
2088 if (OutUseUnscaledOp)
2089 *OutUseUnscaledOp = useUnscaledOp;
2090 if (OutUnscaledOp)
2091 *OutUnscaledOp = UnscaledOp;
2092 return AArch64FrameOffsetCanUpdate |
2093 (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
2094 }
2095
rewriteAArch64FrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const AArch64InstrInfo * TII)2096 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2097 unsigned FrameReg, int &Offset,
2098 const AArch64InstrInfo *TII) {
2099 unsigned Opcode = MI.getOpcode();
2100 unsigned ImmIdx = FrameRegIdx + 1;
2101
2102 if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
2103 Offset += MI.getOperand(ImmIdx).getImm();
2104 emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
2105 MI.getOperand(0).getReg(), FrameReg, Offset, TII,
2106 MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
2107 MI.eraseFromParent();
2108 Offset = 0;
2109 return true;
2110 }
2111
2112 int NewOffset;
2113 unsigned UnscaledOp;
2114 bool UseUnscaledOp;
2115 int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
2116 &UnscaledOp, &NewOffset);
2117 if (Status & AArch64FrameOffsetCanUpdate) {
2118 if (Status & AArch64FrameOffsetIsLegal)
2119 // Replace the FrameIndex with FrameReg.
2120 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2121 if (UseUnscaledOp)
2122 MI.setDesc(TII->get(UnscaledOp));
2123
2124 MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
2125 return Offset == 0;
2126 }
2127
2128 return false;
2129 }
2130
getNoopForMachoTarget(MCInst & NopInst) const2131 void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
2132 NopInst.setOpcode(AArch64::HINT);
2133 NopInst.addOperand(MCOperand::CreateImm(0));
2134 }
2135