1 //===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief R600 Implementation of TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "R600InstrInfo.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "R600Defines.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "R600RegisterInfo.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25
26 using namespace llvm;
27
28 #define GET_INSTRINFO_CTOR_DTOR
29 #include "AMDGPUGenDFAPacketizer.inc"
30
R600InstrInfo(const AMDGPUSubtarget & st)31 R600InstrInfo::R600InstrInfo(const AMDGPUSubtarget &st)
32 : AMDGPUInstrInfo(st),
33 RI(st)
34 { }
35
getRegisterInfo() const36 const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
37 return RI;
38 }
39
isTrig(const MachineInstr & MI) const40 bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
41 return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
42 }
43
isVector(const MachineInstr & MI) const44 bool R600InstrInfo::isVector(const MachineInstr &MI) const {
45 return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
46 }
47
48 void
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const49 R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
50 MachineBasicBlock::iterator MI, DebugLoc DL,
51 unsigned DestReg, unsigned SrcReg,
52 bool KillSrc) const {
53 unsigned VectorComponents = 0;
54 if ((AMDGPU::R600_Reg128RegClass.contains(DestReg) ||
55 AMDGPU::R600_Reg128VerticalRegClass.contains(DestReg)) &&
56 (AMDGPU::R600_Reg128RegClass.contains(SrcReg) ||
57 AMDGPU::R600_Reg128VerticalRegClass.contains(SrcReg))) {
58 VectorComponents = 4;
59 } else if((AMDGPU::R600_Reg64RegClass.contains(DestReg) ||
60 AMDGPU::R600_Reg64VerticalRegClass.contains(DestReg)) &&
61 (AMDGPU::R600_Reg64RegClass.contains(SrcReg) ||
62 AMDGPU::R600_Reg64VerticalRegClass.contains(SrcReg))) {
63 VectorComponents = 2;
64 }
65
66 if (VectorComponents > 0) {
67 for (unsigned I = 0; I < VectorComponents; I++) {
68 unsigned SubRegIndex = RI.getSubRegFromChannel(I);
69 buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
70 RI.getSubReg(DestReg, SubRegIndex),
71 RI.getSubReg(SrcReg, SubRegIndex))
72 .addReg(DestReg,
73 RegState::Define | RegState::Implicit);
74 }
75 } else {
76 MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
77 DestReg, SrcReg);
78 NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0))
79 .setIsKill(KillSrc);
80 }
81 }
82
83 /// \returns true if \p MBBI can be moved into a new basic.
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const84 bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
85 MachineBasicBlock::iterator MBBI) const {
86 for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
87 E = MBBI->operands_end(); I != E; ++I) {
88 if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
89 I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
90 return false;
91 }
92 return true;
93 }
94
getIEQOpcode() const95 unsigned R600InstrInfo::getIEQOpcode() const {
96 return AMDGPU::SETE_INT;
97 }
98
isMov(unsigned Opcode) const99 bool R600InstrInfo::isMov(unsigned Opcode) const {
100
101
102 switch(Opcode) {
103 default: return false;
104 case AMDGPU::MOV:
105 case AMDGPU::MOV_IMM_F32:
106 case AMDGPU::MOV_IMM_I32:
107 return true;
108 }
109 }
110
111 // Some instructions act as place holders to emulate operations that the GPU
112 // hardware does automatically. This function can be used to check if
113 // an opcode falls into this category.
isPlaceHolderOpcode(unsigned Opcode) const114 bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
115 switch (Opcode) {
116 default: return false;
117 case AMDGPU::RETURN:
118 return true;
119 }
120 }
121
isReductionOp(unsigned Opcode) const122 bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
123 return false;
124 }
125
isCubeOp(unsigned Opcode) const126 bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
127 switch(Opcode) {
128 default: return false;
129 case AMDGPU::CUBE_r600_pseudo:
130 case AMDGPU::CUBE_r600_real:
131 case AMDGPU::CUBE_eg_pseudo:
132 case AMDGPU::CUBE_eg_real:
133 return true;
134 }
135 }
136
isALUInstr(unsigned Opcode) const137 bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
138 unsigned TargetFlags = get(Opcode).TSFlags;
139
140 return (TargetFlags & R600_InstFlag::ALU_INST);
141 }
142
hasInstrModifiers(unsigned Opcode) const143 bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
144 unsigned TargetFlags = get(Opcode).TSFlags;
145
146 return ((TargetFlags & R600_InstFlag::OP1) |
147 (TargetFlags & R600_InstFlag::OP2) |
148 (TargetFlags & R600_InstFlag::OP3));
149 }
150
isLDSInstr(unsigned Opcode) const151 bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
152 unsigned TargetFlags = get(Opcode).TSFlags;
153
154 return ((TargetFlags & R600_InstFlag::LDS_1A) |
155 (TargetFlags & R600_InstFlag::LDS_1A1D) |
156 (TargetFlags & R600_InstFlag::LDS_1A2D));
157 }
158
isLDSNoRetInstr(unsigned Opcode) const159 bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const {
160 return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1;
161 }
162
isLDSRetInstr(unsigned Opcode) const163 bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
164 return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1;
165 }
166
canBeConsideredALU(const MachineInstr * MI) const167 bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const {
168 if (isALUInstr(MI->getOpcode()))
169 return true;
170 if (isVector(*MI) || isCubeOp(MI->getOpcode()))
171 return true;
172 switch (MI->getOpcode()) {
173 case AMDGPU::PRED_X:
174 case AMDGPU::INTERP_PAIR_XY:
175 case AMDGPU::INTERP_PAIR_ZW:
176 case AMDGPU::INTERP_VEC_LOAD:
177 case AMDGPU::COPY:
178 case AMDGPU::DOT_4:
179 return true;
180 default:
181 return false;
182 }
183 }
184
isTransOnly(unsigned Opcode) const185 bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
186 if (ST.hasCaymanISA())
187 return false;
188 return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU);
189 }
190
isTransOnly(const MachineInstr * MI) const191 bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
192 return isTransOnly(MI->getOpcode());
193 }
194
isVectorOnly(unsigned Opcode) const195 bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
196 return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU);
197 }
198
isVectorOnly(const MachineInstr * MI) const199 bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const {
200 return isVectorOnly(MI->getOpcode());
201 }
202
isExport(unsigned Opcode) const203 bool R600InstrInfo::isExport(unsigned Opcode) const {
204 return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
205 }
206
usesVertexCache(unsigned Opcode) const207 bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
208 return ST.hasVertexCache() && IS_VTX(get(Opcode));
209 }
210
usesVertexCache(const MachineInstr * MI) const211 bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
212 const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
213 return MFI->ShaderType != ShaderType::COMPUTE && usesVertexCache(MI->getOpcode());
214 }
215
usesTextureCache(unsigned Opcode) const216 bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
217 return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
218 }
219
usesTextureCache(const MachineInstr * MI) const220 bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
221 const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
222 return (MFI->ShaderType == ShaderType::COMPUTE && usesVertexCache(MI->getOpcode())) ||
223 usesTextureCache(MI->getOpcode());
224 }
225
mustBeLastInClause(unsigned Opcode) const226 bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
227 switch (Opcode) {
228 case AMDGPU::KILLGT:
229 case AMDGPU::GROUP_BARRIER:
230 return true;
231 default:
232 return false;
233 }
234 }
235
usesAddressRegister(MachineInstr * MI) const236 bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const {
237 return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1;
238 }
239
definesAddressRegister(MachineInstr * MI) const240 bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const {
241 return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1;
242 }
243
readsLDSSrcReg(const MachineInstr * MI) const244 bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const {
245 if (!isALUInstr(MI->getOpcode())) {
246 return false;
247 }
248 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
249 E = MI->operands_end(); I != E; ++I) {
250 if (!I->isReg() || !I->isUse() ||
251 TargetRegisterInfo::isVirtualRegister(I->getReg()))
252 continue;
253
254 if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
255 return true;
256 }
257 return false;
258 }
259
getSrcIdx(unsigned Opcode,unsigned SrcNum) const260 int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const {
261 static const unsigned OpTable[] = {
262 AMDGPU::OpName::src0,
263 AMDGPU::OpName::src1,
264 AMDGPU::OpName::src2
265 };
266
267 assert (SrcNum < 3);
268 return getOperandIdx(Opcode, OpTable[SrcNum]);
269 }
270
271 #define SRC_SEL_ROWS 11
getSelIdx(unsigned Opcode,unsigned SrcIdx) const272 int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
273 static const unsigned SrcSelTable[SRC_SEL_ROWS][2] = {
274 {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
275 {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
276 {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
277 {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
278 {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
279 {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
280 {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
281 {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
282 {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
283 {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
284 {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}
285 };
286
287 for (unsigned i = 0; i < SRC_SEL_ROWS; ++i) {
288 if (getOperandIdx(Opcode, SrcSelTable[i][0]) == (int)SrcIdx) {
289 return getOperandIdx(Opcode, SrcSelTable[i][1]);
290 }
291 }
292 return -1;
293 }
294 #undef SRC_SEL_ROWS
295
296 SmallVector<std::pair<MachineOperand *, int64_t>, 3>
getSrcs(MachineInstr * MI) const297 R600InstrInfo::getSrcs(MachineInstr *MI) const {
298 SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
299
300 if (MI->getOpcode() == AMDGPU::DOT_4) {
301 static const unsigned OpTable[8][2] = {
302 {AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
303 {AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
304 {AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
305 {AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
306 {AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
307 {AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
308 {AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
309 {AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W},
310 };
311
312 for (unsigned j = 0; j < 8; j++) {
313 MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
314 OpTable[j][0]));
315 unsigned Reg = MO.getReg();
316 if (Reg == AMDGPU::ALU_CONST) {
317 unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(),
318 OpTable[j][1])).getImm();
319 Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
320 continue;
321 }
322
323 }
324 return Result;
325 }
326
327 static const unsigned OpTable[3][2] = {
328 {AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
329 {AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
330 {AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
331 };
332
333 for (unsigned j = 0; j < 3; j++) {
334 int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
335 if (SrcIdx < 0)
336 break;
337 MachineOperand &MO = MI->getOperand(SrcIdx);
338 unsigned Reg = MI->getOperand(SrcIdx).getReg();
339 if (Reg == AMDGPU::ALU_CONST) {
340 unsigned Sel = MI->getOperand(
341 getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
342 Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
343 continue;
344 }
345 if (Reg == AMDGPU::ALU_LITERAL_X) {
346 unsigned Imm = MI->getOperand(
347 getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm();
348 Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
349 continue;
350 }
351 Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
352 }
353 return Result;
354 }
355
356 std::vector<std::pair<int, unsigned> >
ExtractSrcs(MachineInstr * MI,const DenseMap<unsigned,unsigned> & PV,unsigned & ConstCount) const357 R600InstrInfo::ExtractSrcs(MachineInstr *MI,
358 const DenseMap<unsigned, unsigned> &PV,
359 unsigned &ConstCount) const {
360 ConstCount = 0;
361 const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = getSrcs(MI);
362 const std::pair<int, unsigned> DummyPair(-1, 0);
363 std::vector<std::pair<int, unsigned> > Result;
364 unsigned i = 0;
365 for (unsigned n = Srcs.size(); i < n; ++i) {
366 unsigned Reg = Srcs[i].first->getReg();
367 unsigned Index = RI.getEncodingValue(Reg) & 0xff;
368 if (Reg == AMDGPU::OQAP) {
369 Result.push_back(std::pair<int, unsigned>(Index, 0));
370 }
371 if (PV.find(Reg) != PV.end()) {
372 // 255 is used to tells its a PS/PV reg
373 Result.push_back(std::pair<int, unsigned>(255, 0));
374 continue;
375 }
376 if (Index > 127) {
377 ConstCount++;
378 Result.push_back(DummyPair);
379 continue;
380 }
381 unsigned Chan = RI.getHWRegChan(Reg);
382 Result.push_back(std::pair<int, unsigned>(Index, Chan));
383 }
384 for (; i < 3; ++i)
385 Result.push_back(DummyPair);
386 return Result;
387 }
388
389 static std::vector<std::pair<int, unsigned> >
Swizzle(std::vector<std::pair<int,unsigned>> Src,R600InstrInfo::BankSwizzle Swz)390 Swizzle(std::vector<std::pair<int, unsigned> > Src,
391 R600InstrInfo::BankSwizzle Swz) {
392 if (Src[0] == Src[1])
393 Src[1].first = -1;
394 switch (Swz) {
395 case R600InstrInfo::ALU_VEC_012_SCL_210:
396 break;
397 case R600InstrInfo::ALU_VEC_021_SCL_122:
398 std::swap(Src[1], Src[2]);
399 break;
400 case R600InstrInfo::ALU_VEC_102_SCL_221:
401 std::swap(Src[0], Src[1]);
402 break;
403 case R600InstrInfo::ALU_VEC_120_SCL_212:
404 std::swap(Src[0], Src[1]);
405 std::swap(Src[0], Src[2]);
406 break;
407 case R600InstrInfo::ALU_VEC_201:
408 std::swap(Src[0], Src[2]);
409 std::swap(Src[0], Src[1]);
410 break;
411 case R600InstrInfo::ALU_VEC_210:
412 std::swap(Src[0], Src[2]);
413 break;
414 }
415 return Src;
416 }
417
418 static unsigned
getTransSwizzle(R600InstrInfo::BankSwizzle Swz,unsigned Op)419 getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
420 switch (Swz) {
421 case R600InstrInfo::ALU_VEC_012_SCL_210: {
422 unsigned Cycles[3] = { 2, 1, 0};
423 return Cycles[Op];
424 }
425 case R600InstrInfo::ALU_VEC_021_SCL_122: {
426 unsigned Cycles[3] = { 1, 2, 2};
427 return Cycles[Op];
428 }
429 case R600InstrInfo::ALU_VEC_120_SCL_212: {
430 unsigned Cycles[3] = { 2, 1, 2};
431 return Cycles[Op];
432 }
433 case R600InstrInfo::ALU_VEC_102_SCL_221: {
434 unsigned Cycles[3] = { 2, 2, 1};
435 return Cycles[Op];
436 }
437 default:
438 llvm_unreachable("Wrong Swizzle for Trans Slot");
439 return 0;
440 }
441 }
442
443 /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
444 /// in the same Instruction Group while meeting read port limitations given a
445 /// Swz swizzle sequence.
isLegalUpTo(const std::vector<std::vector<std::pair<int,unsigned>>> & IGSrcs,const std::vector<R600InstrInfo::BankSwizzle> & Swz,const std::vector<std::pair<int,unsigned>> & TransSrcs,R600InstrInfo::BankSwizzle TransSwz) const446 unsigned R600InstrInfo::isLegalUpTo(
447 const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
448 const std::vector<R600InstrInfo::BankSwizzle> &Swz,
449 const std::vector<std::pair<int, unsigned> > &TransSrcs,
450 R600InstrInfo::BankSwizzle TransSwz) const {
451 int Vector[4][3];
452 memset(Vector, -1, sizeof(Vector));
453 for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
454 const std::vector<std::pair<int, unsigned> > &Srcs =
455 Swizzle(IGSrcs[i], Swz[i]);
456 for (unsigned j = 0; j < 3; j++) {
457 const std::pair<int, unsigned> &Src = Srcs[j];
458 if (Src.first < 0 || Src.first == 255)
459 continue;
460 if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) {
461 if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
462 Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
463 // The value from output queue A (denoted by register OQAP) can
464 // only be fetched during the first cycle.
465 return false;
466 }
467 // OQAP does not count towards the normal read port restrictions
468 continue;
469 }
470 if (Vector[Src.second][j] < 0)
471 Vector[Src.second][j] = Src.first;
472 if (Vector[Src.second][j] != Src.first)
473 return i;
474 }
475 }
476 // Now check Trans Alu
477 for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
478 const std::pair<int, unsigned> &Src = TransSrcs[i];
479 unsigned Cycle = getTransSwizzle(TransSwz, i);
480 if (Src.first < 0)
481 continue;
482 if (Src.first == 255)
483 continue;
484 if (Vector[Src.second][Cycle] < 0)
485 Vector[Src.second][Cycle] = Src.first;
486 if (Vector[Src.second][Cycle] != Src.first)
487 return IGSrcs.size() - 1;
488 }
489 return IGSrcs.size();
490 }
491
492 /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
493 /// (in lexicographic term) swizzle sequence assuming that all swizzles after
494 /// Idx can be skipped
495 static bool
NextPossibleSolution(std::vector<R600InstrInfo::BankSwizzle> & SwzCandidate,unsigned Idx)496 NextPossibleSolution(
497 std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
498 unsigned Idx) {
499 assert(Idx < SwzCandidate.size());
500 int ResetIdx = Idx;
501 while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
502 ResetIdx --;
503 for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
504 SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
505 }
506 if (ResetIdx == -1)
507 return false;
508 int NextSwizzle = SwzCandidate[ResetIdx] + 1;
509 SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
510 return true;
511 }
512
513 /// Enumerate all possible Swizzle sequence to find one that can meet all
514 /// read port requirements.
FindSwizzleForVectorSlot(const std::vector<std::vector<std::pair<int,unsigned>>> & IGSrcs,std::vector<R600InstrInfo::BankSwizzle> & SwzCandidate,const std::vector<std::pair<int,unsigned>> & TransSrcs,R600InstrInfo::BankSwizzle TransSwz) const515 bool R600InstrInfo::FindSwizzleForVectorSlot(
516 const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
517 std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
518 const std::vector<std::pair<int, unsigned> > &TransSrcs,
519 R600InstrInfo::BankSwizzle TransSwz) const {
520 unsigned ValidUpTo = 0;
521 do {
522 ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
523 if (ValidUpTo == IGSrcs.size())
524 return true;
525 } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
526 return false;
527 }
528
529 /// Instructions in Trans slot can't read gpr at cycle 0 if they also read
530 /// a const, and can't read a gpr at cycle 1 if they read 2 const.
531 static bool
isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,const std::vector<std::pair<int,unsigned>> & TransOps,unsigned ConstCount)532 isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
533 const std::vector<std::pair<int, unsigned> > &TransOps,
534 unsigned ConstCount) {
535 // TransALU can't read 3 constants
536 if (ConstCount > 2)
537 return false;
538 for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
539 const std::pair<int, unsigned> &Src = TransOps[i];
540 unsigned Cycle = getTransSwizzle(TransSwz, i);
541 if (Src.first < 0)
542 continue;
543 if (ConstCount > 0 && Cycle == 0)
544 return false;
545 if (ConstCount > 1 && Cycle == 1)
546 return false;
547 }
548 return true;
549 }
550
551 bool
fitsReadPortLimitations(const std::vector<MachineInstr * > & IG,const DenseMap<unsigned,unsigned> & PV,std::vector<BankSwizzle> & ValidSwizzle,bool isLastAluTrans) const552 R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
553 const DenseMap<unsigned, unsigned> &PV,
554 std::vector<BankSwizzle> &ValidSwizzle,
555 bool isLastAluTrans)
556 const {
557 //Todo : support shared src0 - src1 operand
558
559 std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
560 ValidSwizzle.clear();
561 unsigned ConstCount;
562 BankSwizzle TransBS = ALU_VEC_012_SCL_210;
563 for (unsigned i = 0, e = IG.size(); i < e; ++i) {
564 IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount));
565 unsigned Op = getOperandIdx(IG[i]->getOpcode(),
566 AMDGPU::OpName::bank_swizzle);
567 ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
568 IG[i]->getOperand(Op).getImm());
569 }
570 std::vector<std::pair<int, unsigned> > TransOps;
571 if (!isLastAluTrans)
572 return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
573
574 TransOps = IGSrcs.back();
575 IGSrcs.pop_back();
576 ValidSwizzle.pop_back();
577
578 static const R600InstrInfo::BankSwizzle TransSwz[] = {
579 ALU_VEC_012_SCL_210,
580 ALU_VEC_021_SCL_122,
581 ALU_VEC_120_SCL_212,
582 ALU_VEC_102_SCL_221
583 };
584 for (unsigned i = 0; i < 4; i++) {
585 TransBS = TransSwz[i];
586 if (!isConstCompatible(TransBS, TransOps, ConstCount))
587 continue;
588 bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
589 TransBS);
590 if (Result) {
591 ValidSwizzle.push_back(TransBS);
592 return true;
593 }
594 }
595
596 return false;
597 }
598
599
600 bool
fitsConstReadLimitations(const std::vector<unsigned> & Consts) const601 R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
602 const {
603 assert (Consts.size() <= 12 && "Too many operands in instructions group");
604 unsigned Pair1 = 0, Pair2 = 0;
605 for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
606 unsigned ReadConstHalf = Consts[i] & 2;
607 unsigned ReadConstIndex = Consts[i] & (~3);
608 unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
609 if (!Pair1) {
610 Pair1 = ReadHalfConst;
611 continue;
612 }
613 if (Pair1 == ReadHalfConst)
614 continue;
615 if (!Pair2) {
616 Pair2 = ReadHalfConst;
617 continue;
618 }
619 if (Pair2 != ReadHalfConst)
620 return false;
621 }
622 return true;
623 }
624
625 bool
fitsConstReadLimitations(const std::vector<MachineInstr * > & MIs) const626 R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
627 const {
628 std::vector<unsigned> Consts;
629 SmallSet<int64_t, 4> Literals;
630 for (unsigned i = 0, n = MIs.size(); i < n; i++) {
631 MachineInstr *MI = MIs[i];
632 if (!isALUInstr(MI->getOpcode()))
633 continue;
634
635 const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Srcs =
636 getSrcs(MI);
637
638 for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
639 std::pair<MachineOperand *, unsigned> Src = Srcs[j];
640 if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X)
641 Literals.insert(Src.second);
642 if (Literals.size() > 4)
643 return false;
644 if (Src.first->getReg() == AMDGPU::ALU_CONST)
645 Consts.push_back(Src.second);
646 if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
647 AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
648 unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
649 unsigned Chan = RI.getHWRegChan(Src.first->getReg());
650 Consts.push_back((Index << 2) | Chan);
651 }
652 }
653 }
654 return fitsConstReadLimitations(Consts);
655 }
656
CreateTargetScheduleState(const TargetMachine * TM,const ScheduleDAG * DAG) const657 DFAPacketizer *R600InstrInfo::CreateTargetScheduleState(const TargetMachine *TM,
658 const ScheduleDAG *DAG) const {
659 const InstrItineraryData *II = TM->getInstrItineraryData();
660 return TM->getSubtarget<AMDGPUSubtarget>().createDFAPacketizer(II);
661 }
662
663 static bool
isPredicateSetter(unsigned Opcode)664 isPredicateSetter(unsigned Opcode) {
665 switch (Opcode) {
666 case AMDGPU::PRED_X:
667 return true;
668 default:
669 return false;
670 }
671 }
672
673 static MachineInstr *
findFirstPredicateSetterFrom(MachineBasicBlock & MBB,MachineBasicBlock::iterator I)674 findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
675 MachineBasicBlock::iterator I) {
676 while (I != MBB.begin()) {
677 --I;
678 MachineInstr *MI = I;
679 if (isPredicateSetter(MI->getOpcode()))
680 return MI;
681 }
682
683 return nullptr;
684 }
685
686 static
isJump(unsigned Opcode)687 bool isJump(unsigned Opcode) {
688 return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
689 }
690
isBranch(unsigned Opcode)691 static bool isBranch(unsigned Opcode) {
692 return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 ||
693 Opcode == AMDGPU::BRANCH_COND_f32;
694 }
695
696 bool
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const697 R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
698 MachineBasicBlock *&TBB,
699 MachineBasicBlock *&FBB,
700 SmallVectorImpl<MachineOperand> &Cond,
701 bool AllowModify) const {
702 // Most of the following comes from the ARM implementation of AnalyzeBranch
703
704 // If the block has no terminators, it just falls into the block after it.
705 MachineBasicBlock::iterator I = MBB.end();
706 if (I == MBB.begin())
707 return false;
708 --I;
709 while (I->isDebugValue()) {
710 if (I == MBB.begin())
711 return false;
712 --I;
713 }
714 // AMDGPU::BRANCH* instructions are only available after isel and are not
715 // handled
716 if (isBranch(I->getOpcode()))
717 return true;
718 if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
719 return false;
720 }
721
722 // Remove successive JUMP
723 while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) {
724 MachineBasicBlock::iterator PriorI = std::prev(I);
725 if (AllowModify)
726 I->removeFromParent();
727 I = PriorI;
728 }
729 MachineInstr *LastInst = I;
730
731 // If there is only one terminator instruction, process it.
732 unsigned LastOpc = LastInst->getOpcode();
733 if (I == MBB.begin() ||
734 !isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
735 if (LastOpc == AMDGPU::JUMP) {
736 TBB = LastInst->getOperand(0).getMBB();
737 return false;
738 } else if (LastOpc == AMDGPU::JUMP_COND) {
739 MachineInstr *predSet = I;
740 while (!isPredicateSetter(predSet->getOpcode())) {
741 predSet = --I;
742 }
743 TBB = LastInst->getOperand(0).getMBB();
744 Cond.push_back(predSet->getOperand(1));
745 Cond.push_back(predSet->getOperand(2));
746 Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
747 return false;
748 }
749 return true; // Can't handle indirect branch.
750 }
751
752 // Get the instruction before it if it is a terminator.
753 MachineInstr *SecondLastInst = I;
754 unsigned SecondLastOpc = SecondLastInst->getOpcode();
755
756 // If the block ends with a B and a Bcc, handle it.
757 if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
758 MachineInstr *predSet = --I;
759 while (!isPredicateSetter(predSet->getOpcode())) {
760 predSet = --I;
761 }
762 TBB = SecondLastInst->getOperand(0).getMBB();
763 FBB = LastInst->getOperand(0).getMBB();
764 Cond.push_back(predSet->getOperand(1));
765 Cond.push_back(predSet->getOperand(2));
766 Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
767 return false;
768 }
769
770 // Otherwise, can't handle this.
771 return true;
772 }
773
774 static
FindLastAluClause(MachineBasicBlock & MBB)775 MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
776 for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
777 It != E; ++It) {
778 if (It->getOpcode() == AMDGPU::CF_ALU ||
779 It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
780 return std::prev(It.base());
781 }
782 return MBB.end();
783 }
784
785 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const786 R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
787 MachineBasicBlock *TBB,
788 MachineBasicBlock *FBB,
789 const SmallVectorImpl<MachineOperand> &Cond,
790 DebugLoc DL) const {
791 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
792
793 if (!FBB) {
794 if (Cond.empty()) {
795 BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
796 return 1;
797 } else {
798 MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
799 assert(PredSet && "No previous predicate !");
800 addFlag(PredSet, 0, MO_FLAG_PUSH);
801 PredSet->getOperand(2).setImm(Cond[1].getImm());
802
803 BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
804 .addMBB(TBB)
805 .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
806 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
807 if (CfAlu == MBB.end())
808 return 1;
809 assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
810 CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
811 return 1;
812 }
813 } else {
814 MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
815 assert(PredSet && "No previous predicate !");
816 addFlag(PredSet, 0, MO_FLAG_PUSH);
817 PredSet->getOperand(2).setImm(Cond[1].getImm());
818 BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
819 .addMBB(TBB)
820 .addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
821 BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
822 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
823 if (CfAlu == MBB.end())
824 return 2;
825 assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
826 CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
827 return 2;
828 }
829 }
830
831 unsigned
RemoveBranch(MachineBasicBlock & MBB) const832 R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
833
834 // Note : we leave PRED* instructions there.
835 // They may be needed when predicating instructions.
836
837 MachineBasicBlock::iterator I = MBB.end();
838
839 if (I == MBB.begin()) {
840 return 0;
841 }
842 --I;
843 switch (I->getOpcode()) {
844 default:
845 return 0;
846 case AMDGPU::JUMP_COND: {
847 MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
848 clearFlag(predSet, 0, MO_FLAG_PUSH);
849 I->eraseFromParent();
850 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
851 if (CfAlu == MBB.end())
852 break;
853 assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
854 CfAlu->setDesc(get(AMDGPU::CF_ALU));
855 break;
856 }
857 case AMDGPU::JUMP:
858 I->eraseFromParent();
859 break;
860 }
861 I = MBB.end();
862
863 if (I == MBB.begin()) {
864 return 1;
865 }
866 --I;
867 switch (I->getOpcode()) {
868 // FIXME: only one case??
869 default:
870 return 1;
871 case AMDGPU::JUMP_COND: {
872 MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
873 clearFlag(predSet, 0, MO_FLAG_PUSH);
874 I->eraseFromParent();
875 MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
876 if (CfAlu == MBB.end())
877 break;
878 assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
879 CfAlu->setDesc(get(AMDGPU::CF_ALU));
880 break;
881 }
882 case AMDGPU::JUMP:
883 I->eraseFromParent();
884 break;
885 }
886 return 2;
887 }
888
889 bool
isPredicated(const MachineInstr * MI) const890 R600InstrInfo::isPredicated(const MachineInstr *MI) const {
891 int idx = MI->findFirstPredOperandIdx();
892 if (idx < 0)
893 return false;
894
895 unsigned Reg = MI->getOperand(idx).getReg();
896 switch (Reg) {
897 default: return false;
898 case AMDGPU::PRED_SEL_ONE:
899 case AMDGPU::PRED_SEL_ZERO:
900 case AMDGPU::PREDICATE_BIT:
901 return true;
902 }
903 }
904
905 bool
isPredicable(MachineInstr * MI) const906 R600InstrInfo::isPredicable(MachineInstr *MI) const {
907 // XXX: KILL* instructions can be predicated, but they must be the last
908 // instruction in a clause, so this means any instructions after them cannot
909 // be predicated. Until we have proper support for instruction clauses in the
910 // backend, we will mark KILL* instructions as unpredicable.
911
912 if (MI->getOpcode() == AMDGPU::KILLGT) {
913 return false;
914 } else if (MI->getOpcode() == AMDGPU::CF_ALU) {
915 // If the clause start in the middle of MBB then the MBB has more
916 // than a single clause, unable to predicate several clauses.
917 if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI))
918 return false;
919 // TODO: We don't support KC merging atm
920 if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0)
921 return false;
922 return true;
923 } else if (isVector(*MI)) {
924 return false;
925 } else {
926 return AMDGPUInstrInfo::isPredicable(MI);
927 }
928 }
929
930
931 bool
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCyles,unsigned ExtraPredCycles,const BranchProbability & Probability) const932 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
933 unsigned NumCyles,
934 unsigned ExtraPredCycles,
935 const BranchProbability &Probability) const{
936 return true;
937 }
938
939 bool
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,const BranchProbability & Probability) const940 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
941 unsigned NumTCycles,
942 unsigned ExtraTCycles,
943 MachineBasicBlock &FMBB,
944 unsigned NumFCycles,
945 unsigned ExtraFCycles,
946 const BranchProbability &Probability) const {
947 return true;
948 }
949
950 bool
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCyles,const BranchProbability & Probability) const951 R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
952 unsigned NumCyles,
953 const BranchProbability &Probability)
954 const {
955 return true;
956 }
957
958 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const959 R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
960 MachineBasicBlock &FMBB) const {
961 return false;
962 }
963
964
965 bool
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const966 R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
967 MachineOperand &MO = Cond[1];
968 switch (MO.getImm()) {
969 case OPCODE_IS_ZERO_INT:
970 MO.setImm(OPCODE_IS_NOT_ZERO_INT);
971 break;
972 case OPCODE_IS_NOT_ZERO_INT:
973 MO.setImm(OPCODE_IS_ZERO_INT);
974 break;
975 case OPCODE_IS_ZERO:
976 MO.setImm(OPCODE_IS_NOT_ZERO);
977 break;
978 case OPCODE_IS_NOT_ZERO:
979 MO.setImm(OPCODE_IS_ZERO);
980 break;
981 default:
982 return true;
983 }
984
985 MachineOperand &MO2 = Cond[2];
986 switch (MO2.getReg()) {
987 case AMDGPU::PRED_SEL_ZERO:
988 MO2.setReg(AMDGPU::PRED_SEL_ONE);
989 break;
990 case AMDGPU::PRED_SEL_ONE:
991 MO2.setReg(AMDGPU::PRED_SEL_ZERO);
992 break;
993 default:
994 return true;
995 }
996 return false;
997 }
998
999 bool
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred) const1000 R600InstrInfo::DefinesPredicate(MachineInstr *MI,
1001 std::vector<MachineOperand> &Pred) const {
1002 return isPredicateSetter(MI->getOpcode());
1003 }
1004
1005
1006 bool
SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2) const1007 R600InstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1008 const SmallVectorImpl<MachineOperand> &Pred2) const {
1009 return false;
1010 }
1011
1012
1013 bool
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const1014 R600InstrInfo::PredicateInstruction(MachineInstr *MI,
1015 const SmallVectorImpl<MachineOperand> &Pred) const {
1016 int PIdx = MI->findFirstPredOperandIdx();
1017
1018 if (MI->getOpcode() == AMDGPU::CF_ALU) {
1019 MI->getOperand(8).setImm(0);
1020 return true;
1021 }
1022
1023 if (MI->getOpcode() == AMDGPU::DOT_4) {
1024 MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X))
1025 .setReg(Pred[2].getReg());
1026 MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y))
1027 .setReg(Pred[2].getReg());
1028 MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z))
1029 .setReg(Pred[2].getReg());
1030 MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W))
1031 .setReg(Pred[2].getReg());
1032 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1033 MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
1034 return true;
1035 }
1036
1037 if (PIdx != -1) {
1038 MachineOperand &PMO = MI->getOperand(PIdx);
1039 PMO.setReg(Pred[2].getReg());
1040 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1041 MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
1042 return true;
1043 }
1044
1045 return false;
1046 }
1047
getPredicationCost(const MachineInstr *) const1048 unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const {
1049 return 2;
1050 }
1051
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const1052 unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1053 const MachineInstr *MI,
1054 unsigned *PredCost) const {
1055 if (PredCost)
1056 *PredCost = 2;
1057 return 2;
1058 }
1059
expandPostRAPseudo(MachineBasicBlock::iterator MI) const1060 bool R600InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
1061
1062 switch(MI->getOpcode()) {
1063 default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
1064 case AMDGPU::R600_EXTRACT_ELT_V2:
1065 case AMDGPU::R600_EXTRACT_ELT_V4:
1066 buildIndirectRead(MI->getParent(), MI, MI->getOperand(0).getReg(),
1067 RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
1068 MI->getOperand(2).getReg(),
1069 RI.getHWRegChan(MI->getOperand(1).getReg()));
1070 break;
1071 case AMDGPU::R600_INSERT_ELT_V2:
1072 case AMDGPU::R600_INSERT_ELT_V4:
1073 buildIndirectWrite(MI->getParent(), MI, MI->getOperand(2).getReg(), // Value
1074 RI.getHWRegIndex(MI->getOperand(1).getReg()), // Address
1075 MI->getOperand(3).getReg(), // Offset
1076 RI.getHWRegChan(MI->getOperand(1).getReg())); // Channel
1077 break;
1078 }
1079 MI->eraseFromParent();
1080 return true;
1081 }
1082
reserveIndirectRegisters(BitVector & Reserved,const MachineFunction & MF) const1083 void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
1084 const MachineFunction &MF) const {
1085 const AMDGPUFrameLowering *TFL =
1086 static_cast<const AMDGPUFrameLowering*>(
1087 MF.getTarget().getFrameLowering());
1088
1089 unsigned StackWidth = TFL->getStackWidth(MF);
1090 int End = getIndirectIndexEnd(MF);
1091
1092 if (End == -1)
1093 return;
1094
1095 for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
1096 unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
1097 Reserved.set(SuperReg);
1098 for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
1099 unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
1100 Reserved.set(Reg);
1101 }
1102 }
1103 }
1104
calculateIndirectAddress(unsigned RegIndex,unsigned Channel) const1105 unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
1106 unsigned Channel) const {
1107 // XXX: Remove when we support a stack width > 2
1108 assert(Channel == 0);
1109 return RegIndex;
1110 }
1111
getIndirectAddrRegClass() const1112 const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
1113 return &AMDGPU::R600_TReg32_XRegClass;
1114 }
1115
buildIndirectWrite(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,unsigned ValueReg,unsigned Address,unsigned OffsetReg) const1116 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1117 MachineBasicBlock::iterator I,
1118 unsigned ValueReg, unsigned Address,
1119 unsigned OffsetReg) const {
1120 return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
1121 }
1122
buildIndirectWrite(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,unsigned ValueReg,unsigned Address,unsigned OffsetReg,unsigned AddrChan) const1123 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1124 MachineBasicBlock::iterator I,
1125 unsigned ValueReg, unsigned Address,
1126 unsigned OffsetReg,
1127 unsigned AddrChan) const {
1128 unsigned AddrReg;
1129 switch (AddrChan) {
1130 default: llvm_unreachable("Invalid Channel");
1131 case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
1132 case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
1133 case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
1134 case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
1135 }
1136 MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
1137 AMDGPU::AR_X, OffsetReg);
1138 setImmOperand(MOVA, AMDGPU::OpName::write, 0);
1139
1140 MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
1141 AddrReg, ValueReg)
1142 .addReg(AMDGPU::AR_X,
1143 RegState::Implicit | RegState::Kill);
1144 setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1);
1145 return Mov;
1146 }
1147
buildIndirectRead(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,unsigned ValueReg,unsigned Address,unsigned OffsetReg) const1148 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1149 MachineBasicBlock::iterator I,
1150 unsigned ValueReg, unsigned Address,
1151 unsigned OffsetReg) const {
1152 return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
1153 }
1154
buildIndirectRead(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,unsigned ValueReg,unsigned Address,unsigned OffsetReg,unsigned AddrChan) const1155 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1156 MachineBasicBlock::iterator I,
1157 unsigned ValueReg, unsigned Address,
1158 unsigned OffsetReg,
1159 unsigned AddrChan) const {
1160 unsigned AddrReg;
1161 switch (AddrChan) {
1162 default: llvm_unreachable("Invalid Channel");
1163 case 0: AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address); break;
1164 case 1: AddrReg = AMDGPU::R600_Addr_YRegClass.getRegister(Address); break;
1165 case 2: AddrReg = AMDGPU::R600_Addr_ZRegClass.getRegister(Address); break;
1166 case 3: AddrReg = AMDGPU::R600_Addr_WRegClass.getRegister(Address); break;
1167 }
1168 MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
1169 AMDGPU::AR_X,
1170 OffsetReg);
1171 setImmOperand(MOVA, AMDGPU::OpName::write, 0);
1172 MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
1173 ValueReg,
1174 AddrReg)
1175 .addReg(AMDGPU::AR_X,
1176 RegState::Implicit | RegState::Kill);
1177 setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1);
1178
1179 return Mov;
1180 }
1181
getMaxAlusPerClause() const1182 unsigned R600InstrInfo::getMaxAlusPerClause() const {
1183 return 115;
1184 }
1185
buildDefaultInstruction(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned Opcode,unsigned DstReg,unsigned Src0Reg,unsigned Src1Reg) const1186 MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
1187 MachineBasicBlock::iterator I,
1188 unsigned Opcode,
1189 unsigned DstReg,
1190 unsigned Src0Reg,
1191 unsigned Src1Reg) const {
1192 MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
1193 DstReg); // $dst
1194
1195 if (Src1Reg) {
1196 MIB.addImm(0) // $update_exec_mask
1197 .addImm(0); // $update_predicate
1198 }
1199 MIB.addImm(1) // $write
1200 .addImm(0) // $omod
1201 .addImm(0) // $dst_rel
1202 .addImm(0) // $dst_clamp
1203 .addReg(Src0Reg) // $src0
1204 .addImm(0) // $src0_neg
1205 .addImm(0) // $src0_rel
1206 .addImm(0) // $src0_abs
1207 .addImm(-1); // $src0_sel
1208
1209 if (Src1Reg) {
1210 MIB.addReg(Src1Reg) // $src1
1211 .addImm(0) // $src1_neg
1212 .addImm(0) // $src1_rel
1213 .addImm(0) // $src1_abs
1214 .addImm(-1); // $src1_sel
1215 }
1216
1217 //XXX: The r600g finalizer expects this to be 1, once we've moved the
1218 //scheduling to the backend, we can change the default to 0.
1219 MIB.addImm(1) // $last
1220 .addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
1221 .addImm(0) // $literal
1222 .addImm(0); // $bank_swizzle
1223
1224 return MIB;
1225 }
1226
1227 #define OPERAND_CASE(Label) \
1228 case Label: { \
1229 static const unsigned Ops[] = \
1230 { \
1231 Label##_X, \
1232 Label##_Y, \
1233 Label##_Z, \
1234 Label##_W \
1235 }; \
1236 return Ops[Slot]; \
1237 }
1238
getSlotedOps(unsigned Op,unsigned Slot)1239 static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
1240 switch (Op) {
1241 OPERAND_CASE(AMDGPU::OpName::update_exec_mask)
1242 OPERAND_CASE(AMDGPU::OpName::update_pred)
1243 OPERAND_CASE(AMDGPU::OpName::write)
1244 OPERAND_CASE(AMDGPU::OpName::omod)
1245 OPERAND_CASE(AMDGPU::OpName::dst_rel)
1246 OPERAND_CASE(AMDGPU::OpName::clamp)
1247 OPERAND_CASE(AMDGPU::OpName::src0)
1248 OPERAND_CASE(AMDGPU::OpName::src0_neg)
1249 OPERAND_CASE(AMDGPU::OpName::src0_rel)
1250 OPERAND_CASE(AMDGPU::OpName::src0_abs)
1251 OPERAND_CASE(AMDGPU::OpName::src0_sel)
1252 OPERAND_CASE(AMDGPU::OpName::src1)
1253 OPERAND_CASE(AMDGPU::OpName::src1_neg)
1254 OPERAND_CASE(AMDGPU::OpName::src1_rel)
1255 OPERAND_CASE(AMDGPU::OpName::src1_abs)
1256 OPERAND_CASE(AMDGPU::OpName::src1_sel)
1257 OPERAND_CASE(AMDGPU::OpName::pred_sel)
1258 default:
1259 llvm_unreachable("Wrong Operand");
1260 }
1261 }
1262
1263 #undef OPERAND_CASE
1264
buildSlotOfVectorInstruction(MachineBasicBlock & MBB,MachineInstr * MI,unsigned Slot,unsigned DstReg) const1265 MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
1266 MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
1267 const {
1268 assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
1269 unsigned Opcode;
1270 if (ST.getGeneration() <= AMDGPUSubtarget::R700)
1271 Opcode = AMDGPU::DOT4_r600;
1272 else
1273 Opcode = AMDGPU::DOT4_eg;
1274 MachineBasicBlock::iterator I = MI;
1275 MachineOperand &Src0 = MI->getOperand(
1276 getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot)));
1277 MachineOperand &Src1 = MI->getOperand(
1278 getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot)));
1279 MachineInstr *MIB = buildDefaultInstruction(
1280 MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
1281 static const unsigned Operands[14] = {
1282 AMDGPU::OpName::update_exec_mask,
1283 AMDGPU::OpName::update_pred,
1284 AMDGPU::OpName::write,
1285 AMDGPU::OpName::omod,
1286 AMDGPU::OpName::dst_rel,
1287 AMDGPU::OpName::clamp,
1288 AMDGPU::OpName::src0_neg,
1289 AMDGPU::OpName::src0_rel,
1290 AMDGPU::OpName::src0_abs,
1291 AMDGPU::OpName::src0_sel,
1292 AMDGPU::OpName::src1_neg,
1293 AMDGPU::OpName::src1_rel,
1294 AMDGPU::OpName::src1_abs,
1295 AMDGPU::OpName::src1_sel,
1296 };
1297
1298 MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
1299 getSlotedOps(AMDGPU::OpName::pred_sel, Slot)));
1300 MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel))
1301 .setReg(MO.getReg());
1302
1303 for (unsigned i = 0; i < 14; i++) {
1304 MachineOperand &MO = MI->getOperand(
1305 getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
1306 assert (MO.isImm());
1307 setImmOperand(MIB, Operands[i], MO.getImm());
1308 }
1309 MIB->getOperand(20).setImm(0);
1310 return MIB;
1311 }
1312
buildMovImm(MachineBasicBlock & BB,MachineBasicBlock::iterator I,unsigned DstReg,uint64_t Imm) const1313 MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
1314 MachineBasicBlock::iterator I,
1315 unsigned DstReg,
1316 uint64_t Imm) const {
1317 MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
1318 AMDGPU::ALU_LITERAL_X);
1319 setImmOperand(MovImm, AMDGPU::OpName::literal, Imm);
1320 return MovImm;
1321 }
1322
buildMovInstr(MachineBasicBlock * MBB,MachineBasicBlock::iterator I,unsigned DstReg,unsigned SrcReg) const1323 MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
1324 MachineBasicBlock::iterator I,
1325 unsigned DstReg, unsigned SrcReg) const {
1326 return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg);
1327 }
1328
getOperandIdx(const MachineInstr & MI,unsigned Op) const1329 int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
1330 return getOperandIdx(MI.getOpcode(), Op);
1331 }
1332
getOperandIdx(unsigned Opcode,unsigned Op) const1333 int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
1334 return AMDGPU::getNamedOperandIdx(Opcode, Op);
1335 }
1336
setImmOperand(MachineInstr * MI,unsigned Op,int64_t Imm) const1337 void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op,
1338 int64_t Imm) const {
1339 int Idx = getOperandIdx(*MI, Op);
1340 assert(Idx != -1 && "Operand not supported for this instruction.");
1341 assert(MI->getOperand(Idx).isImm());
1342 MI->getOperand(Idx).setImm(Imm);
1343 }
1344
1345 //===----------------------------------------------------------------------===//
1346 // Instruction flag getters/setters
1347 //===----------------------------------------------------------------------===//
1348
hasFlagOperand(const MachineInstr & MI) const1349 bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
1350 return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
1351 }
1352
getFlagOp(MachineInstr * MI,unsigned SrcIdx,unsigned Flag) const1353 MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
1354 unsigned Flag) const {
1355 unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
1356 int FlagIndex = 0;
1357 if (Flag != 0) {
1358 // If we pass something other than the default value of Flag to this
1359 // function, it means we are want to set a flag on an instruction
1360 // that uses native encoding.
1361 assert(HAS_NATIVE_OPERANDS(TargetFlags));
1362 bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
1363 switch (Flag) {
1364 case MO_FLAG_CLAMP:
1365 FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp);
1366 break;
1367 case MO_FLAG_MASK:
1368 FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write);
1369 break;
1370 case MO_FLAG_NOT_LAST:
1371 case MO_FLAG_LAST:
1372 FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last);
1373 break;
1374 case MO_FLAG_NEG:
1375 switch (SrcIdx) {
1376 case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break;
1377 case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break;
1378 case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break;
1379 }
1380 break;
1381
1382 case MO_FLAG_ABS:
1383 assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
1384 "instructions.");
1385 (void)IsOP3;
1386 switch (SrcIdx) {
1387 case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break;
1388 case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break;
1389 }
1390 break;
1391
1392 default:
1393 FlagIndex = -1;
1394 break;
1395 }
1396 assert(FlagIndex != -1 && "Flag not supported for this instruction");
1397 } else {
1398 FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
1399 assert(FlagIndex != 0 &&
1400 "Instruction flags not supported for this instruction");
1401 }
1402
1403 MachineOperand &FlagOp = MI->getOperand(FlagIndex);
1404 assert(FlagOp.isImm());
1405 return FlagOp;
1406 }
1407
addFlag(MachineInstr * MI,unsigned Operand,unsigned Flag) const1408 void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
1409 unsigned Flag) const {
1410 unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
1411 if (Flag == 0) {
1412 return;
1413 }
1414 if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1415 MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1416 if (Flag == MO_FLAG_NOT_LAST) {
1417 clearFlag(MI, Operand, MO_FLAG_LAST);
1418 } else if (Flag == MO_FLAG_MASK) {
1419 clearFlag(MI, Operand, Flag);
1420 } else {
1421 FlagOp.setImm(1);
1422 }
1423 } else {
1424 MachineOperand &FlagOp = getFlagOp(MI, Operand);
1425 FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
1426 }
1427 }
1428
clearFlag(MachineInstr * MI,unsigned Operand,unsigned Flag) const1429 void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
1430 unsigned Flag) const {
1431 unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
1432 if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1433 MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1434 FlagOp.setImm(0);
1435 } else {
1436 MachineOperand &FlagOp = getFlagOp(MI);
1437 unsigned InstFlags = FlagOp.getImm();
1438 InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
1439 FlagOp.setImm(InstFlags);
1440 }
1441 }
1442