• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===---------------------------------------------------------------------===//
2// Random ideas for the X86 backend: SSE-specific stuff.
3//===---------------------------------------------------------------------===//
4
5//===---------------------------------------------------------------------===//
6
7SSE Variable shift can be custom lowered to something like this, which uses a
8small table + unaligned load + shuffle instead of going through memory.
9
10__m128i_shift_right:
11	.byte	  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15
12	.byte	 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
13
14...
15__m128i shift_right(__m128i value, unsigned long offset) {
16  return _mm_shuffle_epi8(value,
17               _mm_loadu_si128((__m128 *) (___m128i_shift_right + offset)));
18}
19
20//===---------------------------------------------------------------------===//
21
22SSE has instructions for doing operations on complex numbers, we should pattern
23match them.   For example, this should turn into a horizontal add:
24
25typedef float __attribute__((vector_size(16))) v4f32;
26float f32(v4f32 A) {
27  return A[0]+A[1]+A[2]+A[3];
28}
29
30Instead we get this:
31
32_f32:                                   ## @f32
33	pshufd	$1, %xmm0, %xmm1        ## xmm1 = xmm0[1,0,0,0]
34	addss	%xmm0, %xmm1
35	pshufd	$3, %xmm0, %xmm2        ## xmm2 = xmm0[3,0,0,0]
36	movhlps	%xmm0, %xmm0            ## xmm0 = xmm0[1,1]
37	movaps	%xmm0, %xmm3
38	addss	%xmm1, %xmm3
39	movdqa	%xmm2, %xmm0
40	addss	%xmm3, %xmm0
41	ret
42
43Also, there are cases where some simple local SLP would improve codegen a bit.
44compiling this:
45
46_Complex float f32(_Complex float A, _Complex float B) {
47  return A+B;
48}
49
50into:
51
52_f32:                                   ## @f32
53	movdqa	%xmm0, %xmm2
54	addss	%xmm1, %xmm2
55	pshufd	$1, %xmm1, %xmm1        ## xmm1 = xmm1[1,0,0,0]
56	pshufd	$1, %xmm0, %xmm3        ## xmm3 = xmm0[1,0,0,0]
57	addss	%xmm1, %xmm3
58	movaps	%xmm2, %xmm0
59	unpcklps	%xmm3, %xmm0    ## xmm0 = xmm0[0],xmm3[0],xmm0[1],xmm3[1]
60	ret
61
62seems silly when it could just be one addps.
63
64
65//===---------------------------------------------------------------------===//
66
67Expand libm rounding functions inline:  Significant speedups possible.
68http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
69
70//===---------------------------------------------------------------------===//
71
72When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
73other fast SSE modes.
74
75//===---------------------------------------------------------------------===//
76
77Think about doing i64 math in SSE regs on x86-32.
78
79//===---------------------------------------------------------------------===//
80
81This testcase should have no SSE instructions in it, and only one load from
82a constant pool:
83
84double %test3(bool %B) {
85        %C = select bool %B, double 123.412, double 523.01123123
86        ret double %C
87}
88
89Currently, the select is being lowered, which prevents the dag combiner from
90turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
91
92The pattern isel got this one right.
93
94//===---------------------------------------------------------------------===//
95
96SSE should implement 'select_cc' using 'emulated conditional moves' that use
97pcmp/pand/pandn/por to do a selection instead of a conditional branch:
98
99double %X(double %Y, double %Z, double %A, double %B) {
100        %C = setlt double %A, %B
101        %z = fadd double %Z, 0.0    ;; select operand is not a load
102        %D = select bool %C, double %Y, double %z
103        ret double %D
104}
105
106We currently emit:
107
108_X:
109        subl $12, %esp
110        xorpd %xmm0, %xmm0
111        addsd 24(%esp), %xmm0
112        movsd 32(%esp), %xmm1
113        movsd 16(%esp), %xmm2
114        ucomisd 40(%esp), %xmm1
115        jb LBB_X_2
116LBB_X_1:
117        movsd %xmm0, %xmm2
118LBB_X_2:
119        movsd %xmm2, (%esp)
120        fldl (%esp)
121        addl $12, %esp
122        ret
123
124//===---------------------------------------------------------------------===//
125
126Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
127feasible.
128
129//===---------------------------------------------------------------------===//
130
131Codegen:
132  if (copysign(1.0, x) == copysign(1.0, y))
133into:
134  if (x^y & mask)
135when using SSE.
136
137//===---------------------------------------------------------------------===//
138
139Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
140of a v4sf value.
141
142//===---------------------------------------------------------------------===//
143
144Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
145Perhaps use pxor / xorp* to clear a XMM register first?
146
147//===---------------------------------------------------------------------===//
148
149External test Nurbs exposed some problems. Look for
150__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
151emits:
152
153        movaps    (%edx), %xmm2                                 #59.21
154        movaps    (%edx), %xmm5                                 #60.21
155        movaps    (%edx), %xmm4                                 #61.21
156        movaps    (%edx), %xmm3                                 #62.21
157        movl      40(%ecx), %ebp                                #69.49
158        shufps    $0, %xmm2, %xmm5                              #60.21
159        movl      100(%esp), %ebx                               #69.20
160        movl      (%ebx), %edi                                  #69.20
161        imull     %ebp, %edi                                    #69.49
162        addl      (%eax), %edi                                  #70.33
163        shufps    $85, %xmm2, %xmm4                             #61.21
164        shufps    $170, %xmm2, %xmm3                            #62.21
165        shufps    $255, %xmm2, %xmm2                            #63.21
166        lea       (%ebp,%ebp,2), %ebx                           #69.49
167        negl      %ebx                                          #69.49
168        lea       -3(%edi,%ebx), %ebx                           #70.33
169        shll      $4, %ebx                                      #68.37
170        addl      32(%ecx), %ebx                                #68.37
171        testb     $15, %bl                                      #91.13
172        jne       L_B1.24       # Prob 5%                       #91.13
173
174This is the llvm code after instruction scheduling:
175
176cond_next140 (0xa910740, LLVM BB @0xa90beb0):
177	%reg1078 = MOV32ri -3
178	%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
179	%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
180	%reg1080 = IMUL32rr %reg1079, %reg1037
181	%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
182	%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
183	%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
184	%reg1082 = SHL32ri %reg1038, 4
185	%reg1039 = ADD32rr %reg1036, %reg1082
186	%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
187	%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
188	%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
189	%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
190	%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
191	%reg1040 = MOV32rr %reg1039
192	%reg1084 = AND32ri8 %reg1039, 15
193	CMP32ri8 %reg1084, 0
194	JE mbb<cond_next204,0xa914d30>
195
196Still ok. After register allocation:
197
198cond_next140 (0xa910740, LLVM BB @0xa90beb0):
199	%EAX = MOV32ri -3
200	%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
201	ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
202	%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
203	%EDX = MOV32rm %EDX, 1, %NOREG, 40
204	IMUL32rr %EAX<def&use>, %EDX
205	%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
206	%ESI = MOV32rm %ESI, 1, %NOREG, 0
207	MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
208	%EAX = LEA32r %ESI, 1, %EAX, -3
209	%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
210	%ESI = MOV32rm %ESI, 1, %NOREG, 32
211	%EDI = MOV32rr %EAX
212	SHL32ri %EDI<def&use>, 4
213	ADD32rr %EDI<def&use>, %ESI
214	%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
215	%XMM1 = MOVAPSrr %XMM0
216	SHUFPSrr %XMM1<def&use>, %XMM1, 170
217	%XMM2 = MOVAPSrr %XMM0
218	SHUFPSrr %XMM2<def&use>, %XMM2, 0
219	%XMM3 = MOVAPSrr %XMM0
220	SHUFPSrr %XMM3<def&use>, %XMM3, 255
221	SHUFPSrr %XMM0<def&use>, %XMM0, 85
222	%EBX = MOV32rr %EDI
223	AND32ri8 %EBX<def&use>, 15
224	CMP32ri8 %EBX, 0
225	JE mbb<cond_next204,0xa914d30>
226
227This looks really bad. The problem is shufps is a destructive opcode. Since it
228appears as operand two in more than one shufps ops. It resulted in a number of
229copies. Note icc also suffers from the same problem. Either the instruction
230selector should select pshufd or The register allocator can made the two-address
231to three-address transformation.
232
233It also exposes some other problems. See MOV32ri -3 and the spills.
234
235//===---------------------------------------------------------------------===//
236
237Consider:
238
239__m128 test(float a) {
240  return _mm_set_ps(0.0, 0.0, 0.0, a*a);
241}
242
243This compiles into:
244
245movss 4(%esp), %xmm1
246mulss %xmm1, %xmm1
247xorps %xmm0, %xmm0
248movss %xmm1, %xmm0
249ret
250
251Because mulss doesn't modify the top 3 elements, the top elements of
252xmm1 are already zero'd.  We could compile this to:
253
254movss 4(%esp), %xmm0
255mulss %xmm0, %xmm0
256ret
257
258//===---------------------------------------------------------------------===//
259
260Here's a sick and twisted idea.  Consider code like this:
261
262__m128 test(__m128 a) {
263  float b = *(float*)&A;
264  ...
265  return _mm_set_ps(0.0, 0.0, 0.0, b);
266}
267
268This might compile to this code:
269
270movaps c(%esp), %xmm1
271xorps %xmm0, %xmm0
272movss %xmm1, %xmm0
273ret
274
275Now consider if the ... code caused xmm1 to get spilled.  This might produce
276this code:
277
278movaps c(%esp), %xmm1
279movaps %xmm1, c2(%esp)
280...
281
282xorps %xmm0, %xmm0
283movaps c2(%esp), %xmm1
284movss %xmm1, %xmm0
285ret
286
287However, since the reload is only used by these instructions, we could
288"fold" it into the uses, producing something like this:
289
290movaps c(%esp), %xmm1
291movaps %xmm1, c2(%esp)
292...
293
294movss c2(%esp), %xmm0
295ret
296
297... saving two instructions.
298
299The basic idea is that a reload from a spill slot, can, if only one 4-byte
300chunk is used, bring in 3 zeros the one element instead of 4 elements.
301This can be used to simplify a variety of shuffle operations, where the
302elements are fixed zeros.
303
304//===---------------------------------------------------------------------===//
305
306This code generates ugly code, probably due to costs being off or something:
307
308define void @test(float* %P, <4 x float>* %P2 ) {
309        %xFloat0.688 = load float* %P
310        %tmp = load <4 x float>* %P2
311        %inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
312        store <4 x float> %inFloat3.713, <4 x float>* %P2
313        ret void
314}
315
316Generates:
317
318_test:
319	movl	8(%esp), %eax
320	movaps	(%eax), %xmm0
321	pxor	%xmm1, %xmm1
322	movaps	%xmm0, %xmm2
323	shufps	$50, %xmm1, %xmm2
324	shufps	$132, %xmm2, %xmm0
325	movaps	%xmm0, (%eax)
326	ret
327
328Would it be better to generate:
329
330_test:
331        movl 8(%esp), %ecx
332        movaps (%ecx), %xmm0
333	xor %eax, %eax
334        pinsrw $6, %eax, %xmm0
335        pinsrw $7, %eax, %xmm0
336        movaps %xmm0, (%ecx)
337        ret
338
339?
340
341//===---------------------------------------------------------------------===//
342
343Some useful information in the Apple Altivec / SSE Migration Guide:
344
345http://developer.apple.com/documentation/Performance/Conceptual/
346Accelerate_sse_migration/index.html
347
348e.g. SSE select using and, andnot, or. Various SSE compare translations.
349
350//===---------------------------------------------------------------------===//
351
352Add hooks to commute some CMPP operations.
353
354//===---------------------------------------------------------------------===//
355
356Apply the same transformation that merged four float into a single 128-bit load
357to loads from constant pool.
358
359//===---------------------------------------------------------------------===//
360
361Floating point max / min are commutable when -enable-unsafe-fp-path is
362specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
363nodes which are selected to max / min instructions that are marked commutable.
364
365//===---------------------------------------------------------------------===//
366
367We should materialize vector constants like "all ones" and "signbit" with
368code like:
369
370     cmpeqps xmm1, xmm1   ; xmm1 = all-ones
371
372and:
373     cmpeqps xmm1, xmm1   ; xmm1 = all-ones
374     psrlq   xmm1, 31     ; xmm1 = all 100000000000...
375
376instead of using a load from the constant pool.  The later is important for
377ABS/NEG/copysign etc.
378
379//===---------------------------------------------------------------------===//
380
381These functions:
382
383#include <xmmintrin.h>
384__m128i a;
385void x(unsigned short n) {
386  a = _mm_slli_epi32 (a, n);
387}
388void y(unsigned n) {
389  a = _mm_slli_epi32 (a, n);
390}
391
392compile to ( -O3 -static -fomit-frame-pointer):
393_x:
394        movzwl  4(%esp), %eax
395        movd    %eax, %xmm0
396        movaps  _a, %xmm1
397        pslld   %xmm0, %xmm1
398        movaps  %xmm1, _a
399        ret
400_y:
401        movd    4(%esp), %xmm0
402        movaps  _a, %xmm1
403        pslld   %xmm0, %xmm1
404        movaps  %xmm1, _a
405        ret
406
407"y" looks good, but "x" does silly movzwl stuff around into a GPR.  It seems
408like movd would be sufficient in both cases as the value is already zero
409extended in the 32-bit stack slot IIRC.  For signed short, it should also be
410save, as a really-signed value would be undefined for pslld.
411
412
413//===---------------------------------------------------------------------===//
414
415#include <math.h>
416int t1(double d) { return signbit(d); }
417
418This currently compiles to:
419	subl	$12, %esp
420	movsd	16(%esp), %xmm0
421	movsd	%xmm0, (%esp)
422	movl	4(%esp), %eax
423	shrl	$31, %eax
424	addl	$12, %esp
425	ret
426
427We should use movmskp{s|d} instead.
428
429//===---------------------------------------------------------------------===//
430
431CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
432(aligned) vector load.  This functionality has a couple of problems.
433
4341. The code to infer alignment from loads of globals is in the X86 backend,
435   not the dag combiner.  This is because dagcombine2 needs to be able to see
436   through the X86ISD::Wrapper node, which DAGCombine can't really do.
4372. The code for turning 4 x load into a single vector load is target
438   independent and should be moved to the dag combiner.
4393. The code for turning 4 x load into a vector load can only handle a direct
440   load from a global or a direct load from the stack.  It should be generalized
441   to handle any load from P, P+4, P+8, P+12, where P can be anything.
4424. The alignment inference code cannot handle loads from globals in non-static
443   mode because it doesn't look through the extra dyld stub load.  If you try
444   vec_align.ll without -relocation-model=static, you'll see what I mean.
445
446//===---------------------------------------------------------------------===//
447
448We should lower store(fneg(load p), q) into an integer load+xor+store, which
449eliminates a constant pool load.  For example, consider:
450
451define i64 @ccosf(float %z.0, float %z.1) nounwind readonly  {
452entry:
453 %tmp6 = fsub float -0.000000e+00, %z.1		; <float> [#uses=1]
454 %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
455 ret i64 %tmp20
456}
457declare i64 @ccoshf(float %z.0, float %z.1) nounwind readonly
458
459This currently compiles to:
460
461LCPI1_0:					#  <4 x float>
462	.long	2147483648	# float -0
463	.long	2147483648	# float -0
464	.long	2147483648	# float -0
465	.long	2147483648	# float -0
466_ccosf:
467	subl	$12, %esp
468	movss	16(%esp), %xmm0
469	movss	%xmm0, 4(%esp)
470	movss	20(%esp), %xmm0
471	xorps	LCPI1_0, %xmm0
472	movss	%xmm0, (%esp)
473	call	L_ccoshf$stub
474	addl	$12, %esp
475	ret
476
477Note the load into xmm0, then xor (to negate), then store.  In PIC mode,
478this code computes the pic base and does two loads to do the constant pool
479load, so the improvement is much bigger.
480
481The tricky part about this xform is that the argument load/store isn't exposed
482until post-legalize, and at that point, the fneg has been custom expanded into
483an X86 fxor.  This means that we need to handle this case in the x86 backend
484instead of in target independent code.
485
486//===---------------------------------------------------------------------===//
487
488Non-SSE4 insert into 16 x i8 is atrociously bad.
489
490//===---------------------------------------------------------------------===//
491
492<2 x i64> extract is substantially worse than <2 x f64>, even if the destination
493is memory.
494
495//===---------------------------------------------------------------------===//
496
497INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
498any number of 0.0 simultaneously.  Currently we only use it for simple
499insertions.
500
501See comments in LowerINSERT_VECTOR_ELT_SSE4.
502
503//===---------------------------------------------------------------------===//
504
505On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
506Custom.  All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
507legal, it'll just take a few extra patterns written in the .td file.
508
509Note: this is not a code quality issue; the custom lowered code happens to be
510right, but we shouldn't have to custom lower anything.  This is probably related
511to <2 x i64> ops being so bad.
512
513//===---------------------------------------------------------------------===//
514
515LLVM currently generates stack realignment code, when it is not necessary
516needed. The problem is that we need to know about stack alignment too early,
517before RA runs.
518
519At that point we don't know, whether there will be vector spill, or not.
520Stack realignment logic is overly conservative here, but otherwise we can
521produce unaligned loads/stores.
522
523Fixing this will require some huge RA changes.
524
525Testcase:
526#include <emmintrin.h>
527
528typedef short vSInt16 __attribute__ ((__vector_size__ (16)));
529
530static const vSInt16 a = {- 22725, - 12873, - 22725, - 12873, - 22725, - 12873,
531- 22725, - 12873};;
532
533vSInt16 madd(vSInt16 b)
534{
535    return _mm_madd_epi16(a, b);
536}
537
538Generated code (x86-32, linux):
539madd:
540        pushl   %ebp
541        movl    %esp, %ebp
542        andl    $-16, %esp
543        movaps  .LCPI1_0, %xmm1
544        pmaddwd %xmm1, %xmm0
545        movl    %ebp, %esp
546        popl    %ebp
547        ret
548
549//===---------------------------------------------------------------------===//
550
551Consider:
552#include <emmintrin.h>
553__m128 foo2 (float x) {
554 return _mm_set_ps (0, 0, x, 0);
555}
556
557In x86-32 mode, we generate this spiffy code:
558
559_foo2:
560	movss	4(%esp), %xmm0
561	pshufd	$81, %xmm0, %xmm0
562	ret
563
564in x86-64 mode, we generate this code, which could be better:
565
566_foo2:
567	xorps	%xmm1, %xmm1
568	movss	%xmm0, %xmm1
569	pshufd	$81, %xmm1, %xmm0
570	ret
571
572In sse4 mode, we could use insertps to make both better.
573
574Here's another testcase that could use insertps [mem]:
575
576#include <xmmintrin.h>
577extern float x2, x3;
578__m128 foo1 (float x1, float x4) {
579 return _mm_set_ps (x2, x1, x3, x4);
580}
581
582gcc mainline compiles it to:
583
584foo1:
585       insertps        $0x10, x2(%rip), %xmm0
586       insertps        $0x10, x3(%rip), %xmm1
587       movaps  %xmm1, %xmm2
588       movlhps %xmm0, %xmm2
589       movaps  %xmm2, %xmm0
590       ret
591
592//===---------------------------------------------------------------------===//
593
594We compile vector multiply-by-constant into poor code:
595
596define <4 x i32> @f(<4 x i32> %i) nounwind  {
597	%A = mul <4 x i32> %i, < i32 10, i32 10, i32 10, i32 10 >
598	ret <4 x i32> %A
599}
600
601On targets without SSE4.1, this compiles into:
602
603LCPI1_0:					##  <4 x i32>
604	.long	10
605	.long	10
606	.long	10
607	.long	10
608	.text
609	.align	4,0x90
610	.globl	_f
611_f:
612	pshufd	$3, %xmm0, %xmm1
613	movd	%xmm1, %eax
614	imull	LCPI1_0+12, %eax
615	movd	%eax, %xmm1
616	pshufd	$1, %xmm0, %xmm2
617	movd	%xmm2, %eax
618	imull	LCPI1_0+4, %eax
619	movd	%eax, %xmm2
620	punpckldq	%xmm1, %xmm2
621	movd	%xmm0, %eax
622	imull	LCPI1_0, %eax
623	movd	%eax, %xmm1
624	movhlps	%xmm0, %xmm0
625	movd	%xmm0, %eax
626	imull	LCPI1_0+8, %eax
627	movd	%eax, %xmm0
628	punpckldq	%xmm0, %xmm1
629	movaps	%xmm1, %xmm0
630	punpckldq	%xmm2, %xmm0
631	ret
632
633It would be better to synthesize integer vector multiplication by constants
634using shifts and adds, pslld and paddd here. And even on targets with SSE4.1,
635simple cases such as multiplication by powers of two would be better as
636vector shifts than as multiplications.
637
638//===---------------------------------------------------------------------===//
639
640We compile this:
641
642__m128i
643foo2 (char x)
644{
645  return _mm_set_epi8 (1, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 1, 0, 0, 0, 0);
646}
647
648into:
649	movl	$1, %eax
650	xorps	%xmm0, %xmm0
651	pinsrw	$2, %eax, %xmm0
652	movzbl	4(%esp), %eax
653	pinsrw	$3, %eax, %xmm0
654	movl	$256, %eax
655	pinsrw	$7, %eax, %xmm0
656	ret
657
658
659gcc-4.2:
660	subl	$12, %esp
661	movzbl	16(%esp), %eax
662	movdqa	LC0, %xmm0
663	pinsrw	$3, %eax, %xmm0
664	addl	$12, %esp
665	ret
666	.const
667	.align 4
668LC0:
669	.word	0
670	.word	0
671	.word	1
672	.word	0
673	.word	0
674	.word	0
675	.word	0
676	.word	256
677
678With SSE4, it should be
679      movdqa  .LC0(%rip), %xmm0
680      pinsrb  $6, %edi, %xmm0
681
682//===---------------------------------------------------------------------===//
683
684We should transform a shuffle of two vectors of constants into a single vector
685of constants. Also, insertelement of a constant into a vector of constants
686should also result in a vector of constants. e.g. 2008-06-25-VecISelBug.ll.
687
688We compiled it to something horrible:
689
690	.align	4
691LCPI1_1:					##  float
692	.long	1065353216	## float 1
693	.const
694
695	.align	4
696LCPI1_0:					##  <4 x float>
697	.space	4
698	.long	1065353216	## float 1
699	.space	4
700	.long	1065353216	## float 1
701	.text
702	.align	4,0x90
703	.globl	_t
704_t:
705	xorps	%xmm0, %xmm0
706	movhps	LCPI1_0, %xmm0
707	movss	LCPI1_1, %xmm1
708	movaps	%xmm0, %xmm2
709	shufps	$2, %xmm1, %xmm2
710	shufps	$132, %xmm2, %xmm0
711	movaps	%xmm0, 0
712
713//===---------------------------------------------------------------------===//
714rdar://5907648
715
716This function:
717
718float foo(unsigned char x) {
719  return x;
720}
721
722compiles to (x86-32):
723
724define float @foo(i8 zeroext  %x) nounwind  {
725	%tmp12 = uitofp i8 %x to float		; <float> [#uses=1]
726	ret float %tmp12
727}
728
729compiles to:
730
731_foo:
732	subl	$4, %esp
733	movzbl	8(%esp), %eax
734	cvtsi2ss	%eax, %xmm0
735	movss	%xmm0, (%esp)
736	flds	(%esp)
737	addl	$4, %esp
738	ret
739
740We should be able to use:
741  cvtsi2ss 8($esp), %xmm0
742since we know the stack slot is already zext'd.
743
744//===---------------------------------------------------------------------===//
745
746Consider using movlps instead of movsd to implement (scalar_to_vector (loadf64))
747when code size is critical. movlps is slower than movsd on core2 but it's one
748byte shorter.
749
750//===---------------------------------------------------------------------===//
751
752We should use a dynamic programming based approach to tell when using FPStack
753operations is cheaper than SSE.  SciMark montecarlo contains code like this
754for example:
755
756double MonteCarlo_num_flops(int Num_samples) {
757    return ((double) Num_samples)* 4.0;
758}
759
760In fpstack mode, this compiles into:
761
762LCPI1_0:
763	.long	1082130432	## float 4.000000e+00
764_MonteCarlo_num_flops:
765	subl	$4, %esp
766	movl	8(%esp), %eax
767	movl	%eax, (%esp)
768	fildl	(%esp)
769	fmuls	LCPI1_0
770	addl	$4, %esp
771	ret
772
773in SSE mode, it compiles into significantly slower code:
774
775_MonteCarlo_num_flops:
776	subl	$12, %esp
777	cvtsi2sd	16(%esp), %xmm0
778	mulsd	LCPI1_0, %xmm0
779	movsd	%xmm0, (%esp)
780	fldl	(%esp)
781	addl	$12, %esp
782	ret
783
784There are also other cases in scimark where using fpstack is better, it is
785cheaper to do fld1 than load from a constant pool for example, so
786"load, add 1.0, store" is better done in the fp stack, etc.
787
788//===---------------------------------------------------------------------===//
789
790The X86 backend should be able to if-convert SSE comparisons like "ucomisd" to
791"cmpsd".  For example, this code:
792
793double d1(double x) { return x == x ? x : x + x; }
794
795Compiles into:
796
797_d1:
798	ucomisd	%xmm0, %xmm0
799	jnp	LBB1_2
800	addsd	%xmm0, %xmm0
801	ret
802LBB1_2:
803	ret
804
805Also, the 'ret's should be shared.  This is PR6032.
806
807//===---------------------------------------------------------------------===//
808
809These should compile into the same code (PR6214): Perhaps instcombine should
810canonicalize the former into the later?
811
812define float @foo(float %x) nounwind {
813  %t = bitcast float %x to i32
814  %s = and i32 %t, 2147483647
815  %d = bitcast i32 %s to float
816  ret float %d
817}
818
819declare float @fabsf(float %n)
820define float @bar(float %x) nounwind {
821  %d = call float @fabsf(float %x)
822  ret float %d
823}
824
825//===---------------------------------------------------------------------===//
826
827This IR (from PR6194):
828
829target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
830target triple = "x86_64-apple-darwin10.0.0"
831
832%0 = type { double, double }
833%struct.float3 = type { float, float, float }
834
835define void @test(%0, %struct.float3* nocapture %res) nounwind noinline ssp {
836entry:
837  %tmp18 = extractvalue %0 %0, 0                  ; <double> [#uses=1]
838  %tmp19 = bitcast double %tmp18 to i64           ; <i64> [#uses=1]
839  %tmp20 = zext i64 %tmp19 to i128                ; <i128> [#uses=1]
840  %tmp10 = lshr i128 %tmp20, 32                   ; <i128> [#uses=1]
841  %tmp11 = trunc i128 %tmp10 to i32               ; <i32> [#uses=1]
842  %tmp12 = bitcast i32 %tmp11 to float            ; <float> [#uses=1]
843  %tmp5 = getelementptr inbounds %struct.float3* %res, i64 0, i32 1 ; <float*> [#uses=1]
844  store float %tmp12, float* %tmp5
845  ret void
846}
847
848Compiles to:
849
850_test:                                  ## @test
851	movd	%xmm0, %rax
852	shrq	$32, %rax
853	movl	%eax, 4(%rdi)
854	ret
855
856This would be better kept in the SSE unit by treating XMM0 as a 4xfloat and
857doing a shuffle from v[1] to v[0] then a float store.
858
859//===---------------------------------------------------------------------===//
860
861On SSE4 machines, we compile this code:
862
863define <2 x float> @test2(<2 x float> %Q, <2 x float> %R,
864       <2 x float> *%P) nounwind {
865  %Z = fadd <2 x float> %Q, %R
866
867  store <2 x float> %Z, <2 x float> *%P
868  ret <2 x float> %Z
869}
870
871into:
872
873_test2:                                 ## @test2
874## BB#0:
875	insertps	$0, %xmm2, %xmm2
876	insertps	$16, %xmm3, %xmm2
877	insertps	$0, %xmm0, %xmm3
878	insertps	$16, %xmm1, %xmm3
879	addps	%xmm2, %xmm3
880	movq	%xmm3, (%rdi)
881	movaps	%xmm3, %xmm0
882	pshufd	$1, %xmm3, %xmm1
883                                        ## kill: XMM1<def> XMM1<kill>
884	ret
885
886The insertps's of $0 are pointless complex copies.
887
888//===---------------------------------------------------------------------===//
889
890[UNSAFE FP]
891
892void foo(double, double, double);
893void norm(double x, double y, double z) {
894  double scale = __builtin_sqrt(x*x + y*y + z*z);
895  foo(x/scale, y/scale, z/scale);
896}
897
898We currently generate an sqrtsd and 3 divsd instructions. This is bad, fp div is
899slow and not pipelined. In -ffast-math mode we could compute "1.0/scale" first
900and emit 3 mulsd in place of the divs. This can be done as a target-independent
901transform.
902
903If we're dealing with floats instead of doubles we could even replace the sqrtss
904and inversion with an rsqrtss instruction, which computes 1/sqrt faster at the
905cost of reduced accuracy.
906
907//===---------------------------------------------------------------------===//
908
909This function should be matched to haddpd when the appropriate CPU is enabled:
910
911#include <x86intrin.h>
912double f (__m128d p) {
913  return p[0] + p[1];
914}
915
916similarly, v[0]-v[1] should match to hsubpd, and {v[0]-v[1], w[0]-w[1]} should
917turn into hsubpd also.
918
919//===---------------------------------------------------------------------===//
920
921define <2 x i32> @foo(<2 x double> %in) {
922  %x = fptosi <2 x double> %in to <2 x i32>
923  ret <2 x i32> %x
924}
925
926Should compile into cvttpd2dq instead of being scalarized into 2 cvttsd2si.
927
928//===---------------------------------------------------------------------===//
929