• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the machine model for Haswell to support instruction
11// scheduling and other instruction cost heuristics.
12//
13//===----------------------------------------------------------------------===//
14
15def HaswellModel : SchedMachineModel {
16  // All x86 instructions are modeled as a single micro-op, and HW can decode 4
17  // instructions per cycle.
18  let IssueWidth = 4;
19  let MicroOpBufferSize = 192; // Based on the reorder buffer.
20  let LoadLatency = 4;
21  let MispredictPenalty = 16;
22
23  // Based on the LSD (loop-stream detector) queue size and benchmarking data.
24  let LoopMicroOpBufferSize = 50;
25
26  // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
27  // the scheduler to assign a default model to unrecognized opcodes.
28  let CompleteModel = 0;
29}
30
31let SchedModel = HaswellModel in {
32
33// Haswell can issue micro-ops to 8 different ports in one cycle.
34
35// Ports 0, 1, 5, and 6 handle all computation.
36// Port 4 gets the data half of stores. Store data can be available later than
37// the store address, but since we don't model the latency of stores, we can
38// ignore that.
39// Ports 2 and 3 are identical. They handle loads and the address half of
40// stores. Port 7 can handle address calculations.
41def HWPort0 : ProcResource<1>;
42def HWPort1 : ProcResource<1>;
43def HWPort2 : ProcResource<1>;
44def HWPort3 : ProcResource<1>;
45def HWPort4 : ProcResource<1>;
46def HWPort5 : ProcResource<1>;
47def HWPort6 : ProcResource<1>;
48def HWPort7 : ProcResource<1>;
49
50// Many micro-ops are capable of issuing on multiple ports.
51def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
52def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
53def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
54def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>;
55def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
56def HWPort16  : ProcResGroup<[HWPort1, HWPort6]>;
57def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
58def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
59
60// 60 Entry Unified Scheduler
61def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
62                              HWPort5, HWPort6, HWPort7]> {
63  let BufferSize=60;
64}
65
66// Integer division issued on port 0.
67def HWDivider : ProcResource<1>;
68
69// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
70// cycles after the memory operand.
71def : ReadAdvance<ReadAfterLd, 4>;
72
73// Many SchedWrites are defined in pairs with and without a folded load.
74// Instructions with folded loads are usually micro-fused, so they only appear
75// as two micro-ops when queued in the reservation station.
76// This multiclass defines the resource usage for variants with and without
77// folded loads.
78multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
79                          ProcResourceKind ExePort,
80                          int Lat> {
81  // Register variant is using a single cycle on ExePort.
82  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
83
84  // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
85  // latency.
86  def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
87     let Latency = !add(Lat, 4);
88  }
89}
90
91// A folded store needs a cycle on port 4 for the store data, but it does not
92// need an extra port 2/3 cycle to recompute the address.
93def : WriteRes<WriteRMW, [HWPort4]>;
94
95// Store_addr on 237.
96// Store_data on 4.
97def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
98def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
99def : WriteRes<WriteMove,  [HWPort0156]>;
100def : WriteRes<WriteZero,  []>;
101
102defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
103defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
104def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
105defm : HWWriteResPair<WriteShift, HWPort06,  1>;
106defm : HWWriteResPair<WriteJump,  HWPort06,   1>;
107
108// This is for simple LEAs with one or two input operands.
109// The complex ones can only execute on port 1, and they require two cycles on
110// the port to read all inputs. We don't model that.
111def : WriteRes<WriteLEA, [HWPort15]>;
112
113// This is quite rough, latency depends on the dividend.
114def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
115  let Latency = 25;
116  let ResourceCycles = [1, 10];
117}
118def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
119  let Latency = 29;
120  let ResourceCycles = [1, 1, 10];
121}
122
123// Scalar and vector floating point.
124defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
125defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
126defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
127defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
128defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
129defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
130defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
131defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
132defm : HWWriteResPair<WriteFShuffle,  HWPort5,  1>;
133defm : HWWriteResPair<WriteFBlend,  HWPort015,  1>;
134defm : HWWriteResPair<WriteFShuffle256,  HWPort5,  3>;
135
136def : WriteRes<WriteFVarBlend, [HWPort5]> {
137  let Latency = 2;
138  let ResourceCycles = [2];
139}
140def : WriteRes<WriteFVarBlendLd, [HWPort5, HWPort23]> {
141  let Latency = 6;
142  let ResourceCycles = [2, 1];
143}
144
145// Vector integer operations.
146defm : HWWriteResPair<WriteVecShift, HWPort0,  1>;
147defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
148defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
149defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
150defm : HWWriteResPair<WriteShuffle,  HWPort5,  1>;
151defm : HWWriteResPair<WriteBlend,  HWPort15,  1>;
152defm : HWWriteResPair<WriteShuffle256,  HWPort5,  3>;
153
154def : WriteRes<WriteVarBlend, [HWPort5]> {
155  let Latency = 2;
156  let ResourceCycles = [2];
157}
158def : WriteRes<WriteVarBlendLd, [HWPort5, HWPort23]> {
159  let Latency = 6;
160  let ResourceCycles = [2, 1];
161}
162
163def : WriteRes<WriteVarVecShift, [HWPort0, HWPort5]> {
164  let Latency = 2;
165  let ResourceCycles = [2, 1];
166}
167def : WriteRes<WriteVarVecShiftLd, [HWPort0, HWPort5, HWPort23]> {
168  let Latency = 6;
169  let ResourceCycles = [2, 1, 1];
170}
171
172def : WriteRes<WriteMPSAD, [HWPort0, HWPort5]> {
173  let Latency = 6;
174  let ResourceCycles = [1, 2];
175}
176def : WriteRes<WriteMPSADLd, [HWPort23, HWPort0, HWPort5]> {
177  let Latency = 6;
178  let ResourceCycles = [1, 1, 2];
179}
180
181// String instructions.
182// Packed Compare Implicit Length Strings, Return Mask
183def : WriteRes<WritePCmpIStrM, [HWPort0]> {
184  let Latency = 10;
185  let ResourceCycles = [3];
186}
187def : WriteRes<WritePCmpIStrMLd, [HWPort0, HWPort23]> {
188  let Latency = 10;
189  let ResourceCycles = [3, 1];
190}
191
192// Packed Compare Explicit Length Strings, Return Mask
193def : WriteRes<WritePCmpEStrM, [HWPort0, HWPort16, HWPort5]> {
194  let Latency = 10;
195  let ResourceCycles = [3, 2, 4];
196}
197def : WriteRes<WritePCmpEStrMLd, [HWPort05, HWPort16, HWPort23]> {
198  let Latency = 10;
199  let ResourceCycles = [6, 2, 1];
200}
201
202// Packed Compare Implicit Length Strings, Return Index
203def : WriteRes<WritePCmpIStrI, [HWPort0]> {
204  let Latency = 11;
205  let ResourceCycles = [3];
206}
207def : WriteRes<WritePCmpIStrILd, [HWPort0, HWPort23]> {
208  let Latency = 11;
209  let ResourceCycles = [3, 1];
210}
211
212// Packed Compare Explicit Length Strings, Return Index
213def : WriteRes<WritePCmpEStrI, [HWPort05, HWPort16]> {
214  let Latency = 11;
215  let ResourceCycles = [6, 2];
216}
217def : WriteRes<WritePCmpEStrILd, [HWPort0, HWPort16, HWPort5, HWPort23]> {
218  let Latency = 11;
219  let ResourceCycles = [3, 2, 2, 1];
220}
221
222// AES Instructions.
223def : WriteRes<WriteAESDecEnc, [HWPort5]> {
224  let Latency = 7;
225  let ResourceCycles = [1];
226}
227def : WriteRes<WriteAESDecEncLd, [HWPort5, HWPort23]> {
228  let Latency = 7;
229  let ResourceCycles = [1, 1];
230}
231
232def : WriteRes<WriteAESIMC, [HWPort5]> {
233  let Latency = 14;
234  let ResourceCycles = [2];
235}
236def : WriteRes<WriteAESIMCLd, [HWPort5, HWPort23]> {
237  let Latency = 14;
238  let ResourceCycles = [2, 1];
239}
240
241def : WriteRes<WriteAESKeyGen, [HWPort0, HWPort5]> {
242  let Latency = 10;
243  let ResourceCycles = [2, 8];
244}
245def : WriteRes<WriteAESKeyGenLd, [HWPort0, HWPort5, HWPort23]> {
246  let Latency = 10;
247  let ResourceCycles = [2, 7, 1];
248}
249
250// Carry-less multiplication instructions.
251def : WriteRes<WriteCLMul, [HWPort0, HWPort5]> {
252  let Latency = 7;
253  let ResourceCycles = [2, 1];
254}
255def : WriteRes<WriteCLMulLd, [HWPort0, HWPort5, HWPort23]> {
256  let Latency = 7;
257  let ResourceCycles = [2, 1, 1];
258}
259
260def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
261def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
262def : WriteRes<WriteFence,  [HWPort23, HWPort4]>;
263def : WriteRes<WriteNop, []>;
264} // SchedModel
265