1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments. In
11 // practice, this means looking for internal functions that have pointer
12 // arguments. If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value. This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded. Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently. This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/Transforms/IPO.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CallGraph.h"
38 #include "llvm/Analysis/CallGraphSCCPass.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/CallSite.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <set>
51 using namespace llvm;
52
53 #define DEBUG_TYPE "argpromotion"
54
55 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
56 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
57 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
58 STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated");
59
60 namespace {
61 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
62 ///
63 struct ArgPromotion : public CallGraphSCCPass {
getAnalysisUsage__anon481fc5e80111::ArgPromotion64 void getAnalysisUsage(AnalysisUsage &AU) const override {
65 AU.addRequired<AliasAnalysis>();
66 CallGraphSCCPass::getAnalysisUsage(AU);
67 }
68
69 bool runOnSCC(CallGraphSCC &SCC) override;
70 static char ID; // Pass identification, replacement for typeid
ArgPromotion__anon481fc5e80111::ArgPromotion71 explicit ArgPromotion(unsigned maxElements = 3)
72 : CallGraphSCCPass(ID), DL(nullptr), maxElements(maxElements) {
73 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
74 }
75
76 /// A vector used to hold the indices of a single GEP instruction
77 typedef std::vector<uint64_t> IndicesVector;
78
79 const DataLayout *DL;
80 private:
81 CallGraphNode *PromoteArguments(CallGraphNode *CGN);
82 bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
83 CallGraphNode *DoPromotion(Function *F,
84 SmallPtrSet<Argument*, 8> &ArgsToPromote,
85 SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
86 bool doInitialization(CallGraph &CG) override;
87 /// The maximum number of elements to expand, or 0 for unlimited.
88 unsigned maxElements;
89 DenseMap<const Function *, DISubprogram> FunctionDIs;
90 };
91 }
92
93 char ArgPromotion::ID = 0;
94 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
95 "Promote 'by reference' arguments to scalars", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)96 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
97 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
98 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
99 "Promote 'by reference' arguments to scalars", false, false)
100
101 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
102 return new ArgPromotion(maxElements);
103 }
104
runOnSCC(CallGraphSCC & SCC)105 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
106 bool Changed = false, LocalChange;
107
108 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
109 DL = DLP ? &DLP->getDataLayout() : nullptr;
110
111 do { // Iterate until we stop promoting from this SCC.
112 LocalChange = false;
113 // Attempt to promote arguments from all functions in this SCC.
114 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
115 if (CallGraphNode *CGN = PromoteArguments(*I)) {
116 LocalChange = true;
117 SCC.ReplaceNode(*I, CGN);
118 }
119 }
120 Changed |= LocalChange; // Remember that we changed something.
121 } while (LocalChange);
122
123 return Changed;
124 }
125
126 /// PromoteArguments - This method checks the specified function to see if there
127 /// are any promotable arguments and if it is safe to promote the function (for
128 /// example, all callers are direct). If safe to promote some arguments, it
129 /// calls the DoPromotion method.
130 ///
PromoteArguments(CallGraphNode * CGN)131 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
132 Function *F = CGN->getFunction();
133
134 // Make sure that it is local to this module.
135 if (!F || !F->hasLocalLinkage()) return nullptr;
136
137 // First check: see if there are any pointer arguments! If not, quick exit.
138 SmallVector<Argument*, 16> PointerArgs;
139 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
140 if (I->getType()->isPointerTy())
141 PointerArgs.push_back(I);
142 if (PointerArgs.empty()) return nullptr;
143
144 // Second check: make sure that all callers are direct callers. We can't
145 // transform functions that have indirect callers. Also see if the function
146 // is self-recursive.
147 bool isSelfRecursive = false;
148 for (Use &U : F->uses()) {
149 CallSite CS(U.getUser());
150 // Must be a direct call.
151 if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) return nullptr;
152
153 if (CS.getInstruction()->getParent()->getParent() == F)
154 isSelfRecursive = true;
155 }
156
157 // Check to see which arguments are promotable. If an argument is promotable,
158 // add it to ArgsToPromote.
159 SmallPtrSet<Argument*, 8> ArgsToPromote;
160 SmallPtrSet<Argument*, 8> ByValArgsToTransform;
161 for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
162 Argument *PtrArg = PointerArgs[i];
163 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
164
165 // If this is a byval argument, and if the aggregate type is small, just
166 // pass the elements, which is always safe. This does not apply to
167 // inalloca.
168 if (PtrArg->hasByValAttr()) {
169 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
170 if (maxElements > 0 && STy->getNumElements() > maxElements) {
171 DEBUG(dbgs() << "argpromotion disable promoting argument '"
172 << PtrArg->getName() << "' because it would require adding more"
173 << " than " << maxElements << " arguments to the function.\n");
174 continue;
175 }
176
177 // If all the elements are single-value types, we can promote it.
178 bool AllSimple = true;
179 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
180 if (!STy->getElementType(i)->isSingleValueType()) {
181 AllSimple = false;
182 break;
183 }
184 }
185
186 // Safe to transform, don't even bother trying to "promote" it.
187 // Passing the elements as a scalar will allow scalarrepl to hack on
188 // the new alloca we introduce.
189 if (AllSimple) {
190 ByValArgsToTransform.insert(PtrArg);
191 continue;
192 }
193 }
194 }
195
196 // If the argument is a recursive type and we're in a recursive
197 // function, we could end up infinitely peeling the function argument.
198 if (isSelfRecursive) {
199 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
200 bool RecursiveType = false;
201 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
202 if (STy->getElementType(i) == PtrArg->getType()) {
203 RecursiveType = true;
204 break;
205 }
206 }
207 if (RecursiveType)
208 continue;
209 }
210 }
211
212 // Otherwise, see if we can promote the pointer to its value.
213 if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr()))
214 ArgsToPromote.insert(PtrArg);
215 }
216
217 // No promotable pointer arguments.
218 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
219 return nullptr;
220
221 return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
222 }
223
224 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
225 /// all callees pass in a valid pointer for the specified function argument.
AllCallersPassInValidPointerForArgument(Argument * Arg,const DataLayout * DL)226 static bool AllCallersPassInValidPointerForArgument(Argument *Arg,
227 const DataLayout *DL) {
228 Function *Callee = Arg->getParent();
229
230 unsigned ArgNo = Arg->getArgNo();
231
232 // Look at all call sites of the function. At this pointer we know we only
233 // have direct callees.
234 for (User *U : Callee->users()) {
235 CallSite CS(U);
236 assert(CS && "Should only have direct calls!");
237
238 if (!CS.getArgument(ArgNo)->isDereferenceablePointer(DL))
239 return false;
240 }
241 return true;
242 }
243
244 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
245 /// that is greater than or equal to the size of prefix, and each of the
246 /// elements in Prefix is the same as the corresponding elements in Longer.
247 ///
248 /// This means it also returns true when Prefix and Longer are equal!
IsPrefix(const ArgPromotion::IndicesVector & Prefix,const ArgPromotion::IndicesVector & Longer)249 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
250 const ArgPromotion::IndicesVector &Longer) {
251 if (Prefix.size() > Longer.size())
252 return false;
253 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
254 }
255
256
257 /// Checks if Indices, or a prefix of Indices, is in Set.
PrefixIn(const ArgPromotion::IndicesVector & Indices,std::set<ArgPromotion::IndicesVector> & Set)258 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
259 std::set<ArgPromotion::IndicesVector> &Set) {
260 std::set<ArgPromotion::IndicesVector>::iterator Low;
261 Low = Set.upper_bound(Indices);
262 if (Low != Set.begin())
263 Low--;
264 // Low is now the last element smaller than or equal to Indices. This means
265 // it points to a prefix of Indices (possibly Indices itself), if such
266 // prefix exists.
267 //
268 // This load is safe if any prefix of its operands is safe to load.
269 return Low != Set.end() && IsPrefix(*Low, Indices);
270 }
271
272 /// Mark the given indices (ToMark) as safe in the given set of indices
273 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
274 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
275 /// already. Furthermore, any indices that Indices is itself a prefix of, are
276 /// removed from Safe (since they are implicitely safe because of Indices now).
MarkIndicesSafe(const ArgPromotion::IndicesVector & ToMark,std::set<ArgPromotion::IndicesVector> & Safe)277 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
278 std::set<ArgPromotion::IndicesVector> &Safe) {
279 std::set<ArgPromotion::IndicesVector>::iterator Low;
280 Low = Safe.upper_bound(ToMark);
281 // Guard against the case where Safe is empty
282 if (Low != Safe.begin())
283 Low--;
284 // Low is now the last element smaller than or equal to Indices. This
285 // means it points to a prefix of Indices (possibly Indices itself), if
286 // such prefix exists.
287 if (Low != Safe.end()) {
288 if (IsPrefix(*Low, ToMark))
289 // If there is already a prefix of these indices (or exactly these
290 // indices) marked a safe, don't bother adding these indices
291 return;
292
293 // Increment Low, so we can use it as a "insert before" hint
294 ++Low;
295 }
296 // Insert
297 Low = Safe.insert(Low, ToMark);
298 ++Low;
299 // If there we're a prefix of longer index list(s), remove those
300 std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
301 while (Low != End && IsPrefix(ToMark, *Low)) {
302 std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
303 ++Low;
304 Safe.erase(Remove);
305 }
306 }
307
308 /// isSafeToPromoteArgument - As you might guess from the name of this method,
309 /// it checks to see if it is both safe and useful to promote the argument.
310 /// This method limits promotion of aggregates to only promote up to three
311 /// elements of the aggregate in order to avoid exploding the number of
312 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,bool isByValOrInAlloca) const313 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
314 bool isByValOrInAlloca) const {
315 typedef std::set<IndicesVector> GEPIndicesSet;
316
317 // Quick exit for unused arguments
318 if (Arg->use_empty())
319 return true;
320
321 // We can only promote this argument if all of the uses are loads, or are GEP
322 // instructions (with constant indices) that are subsequently loaded.
323 //
324 // Promoting the argument causes it to be loaded in the caller
325 // unconditionally. This is only safe if we can prove that either the load
326 // would have happened in the callee anyway (ie, there is a load in the entry
327 // block) or the pointer passed in at every call site is guaranteed to be
328 // valid.
329 // In the former case, invalid loads can happen, but would have happened
330 // anyway, in the latter case, invalid loads won't happen. This prevents us
331 // from introducing an invalid load that wouldn't have happened in the
332 // original code.
333 //
334 // This set will contain all sets of indices that are loaded in the entry
335 // block, and thus are safe to unconditionally load in the caller.
336 //
337 // This optimization is also safe for InAlloca parameters, because it verifies
338 // that the address isn't captured.
339 GEPIndicesSet SafeToUnconditionallyLoad;
340
341 // This set contains all the sets of indices that we are planning to promote.
342 // This makes it possible to limit the number of arguments added.
343 GEPIndicesSet ToPromote;
344
345 // If the pointer is always valid, any load with first index 0 is valid.
346 if (isByValOrInAlloca || AllCallersPassInValidPointerForArgument(Arg, DL))
347 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
348
349 // First, iterate the entry block and mark loads of (geps of) arguments as
350 // safe.
351 BasicBlock *EntryBlock = Arg->getParent()->begin();
352 // Declare this here so we can reuse it
353 IndicesVector Indices;
354 for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
355 I != E; ++I)
356 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
357 Value *V = LI->getPointerOperand();
358 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
359 V = GEP->getPointerOperand();
360 if (V == Arg) {
361 // This load actually loads (part of) Arg? Check the indices then.
362 Indices.reserve(GEP->getNumIndices());
363 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
364 II != IE; ++II)
365 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
366 Indices.push_back(CI->getSExtValue());
367 else
368 // We found a non-constant GEP index for this argument? Bail out
369 // right away, can't promote this argument at all.
370 return false;
371
372 // Indices checked out, mark them as safe
373 MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
374 Indices.clear();
375 }
376 } else if (V == Arg) {
377 // Direct loads are equivalent to a GEP with a single 0 index.
378 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
379 }
380 }
381
382 // Now, iterate all uses of the argument to see if there are any uses that are
383 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
384 SmallVector<LoadInst*, 16> Loads;
385 IndicesVector Operands;
386 for (Use &U : Arg->uses()) {
387 User *UR = U.getUser();
388 Operands.clear();
389 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
390 // Don't hack volatile/atomic loads
391 if (!LI->isSimple()) return false;
392 Loads.push_back(LI);
393 // Direct loads are equivalent to a GEP with a zero index and then a load.
394 Operands.push_back(0);
395 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
396 if (GEP->use_empty()) {
397 // Dead GEP's cause trouble later. Just remove them if we run into
398 // them.
399 getAnalysis<AliasAnalysis>().deleteValue(GEP);
400 GEP->eraseFromParent();
401 // TODO: This runs the above loop over and over again for dead GEPs
402 // Couldn't we just do increment the UI iterator earlier and erase the
403 // use?
404 return isSafeToPromoteArgument(Arg, isByValOrInAlloca);
405 }
406
407 // Ensure that all of the indices are constants.
408 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
409 i != e; ++i)
410 if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
411 Operands.push_back(C->getSExtValue());
412 else
413 return false; // Not a constant operand GEP!
414
415 // Ensure that the only users of the GEP are load instructions.
416 for (User *GEPU : GEP->users())
417 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
418 // Don't hack volatile/atomic loads
419 if (!LI->isSimple()) return false;
420 Loads.push_back(LI);
421 } else {
422 // Other uses than load?
423 return false;
424 }
425 } else {
426 return false; // Not a load or a GEP.
427 }
428
429 // Now, see if it is safe to promote this load / loads of this GEP. Loading
430 // is safe if Operands, or a prefix of Operands, is marked as safe.
431 if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
432 return false;
433
434 // See if we are already promoting a load with these indices. If not, check
435 // to make sure that we aren't promoting too many elements. If so, nothing
436 // to do.
437 if (ToPromote.find(Operands) == ToPromote.end()) {
438 if (maxElements > 0 && ToPromote.size() == maxElements) {
439 DEBUG(dbgs() << "argpromotion not promoting argument '"
440 << Arg->getName() << "' because it would require adding more "
441 << "than " << maxElements << " arguments to the function.\n");
442 // We limit aggregate promotion to only promoting up to a fixed number
443 // of elements of the aggregate.
444 return false;
445 }
446 ToPromote.insert(Operands);
447 }
448 }
449
450 if (Loads.empty()) return true; // No users, this is a dead argument.
451
452 // Okay, now we know that the argument is only used by load instructions and
453 // it is safe to unconditionally perform all of them. Use alias analysis to
454 // check to see if the pointer is guaranteed to not be modified from entry of
455 // the function to each of the load instructions.
456
457 // Because there could be several/many load instructions, remember which
458 // blocks we know to be transparent to the load.
459 SmallPtrSet<BasicBlock*, 16> TranspBlocks;
460
461 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
462
463 for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
464 // Check to see if the load is invalidated from the start of the block to
465 // the load itself.
466 LoadInst *Load = Loads[i];
467 BasicBlock *BB = Load->getParent();
468
469 AliasAnalysis::Location Loc = AA.getLocation(Load);
470 if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
471 return false; // Pointer is invalidated!
472
473 // Now check every path from the entry block to the load for transparency.
474 // To do this, we perform a depth first search on the inverse CFG from the
475 // loading block.
476 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
477 BasicBlock *P = *PI;
478 for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
479 I = idf_ext_begin(P, TranspBlocks),
480 E = idf_ext_end(P, TranspBlocks); I != E; ++I)
481 if (AA.canBasicBlockModify(**I, Loc))
482 return false;
483 }
484 }
485
486 // If the path from the entry of the function to each load is free of
487 // instructions that potentially invalidate the load, we can make the
488 // transformation!
489 return true;
490 }
491
492 /// DoPromotion - This method actually performs the promotion of the specified
493 /// arguments, and returns the new function. At this point, we know that it's
494 /// safe to do so.
DoPromotion(Function * F,SmallPtrSet<Argument *,8> & ArgsToPromote,SmallPtrSet<Argument *,8> & ByValArgsToTransform)495 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
496 SmallPtrSet<Argument*, 8> &ArgsToPromote,
497 SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
498
499 // Start by computing a new prototype for the function, which is the same as
500 // the old function, but has modified arguments.
501 FunctionType *FTy = F->getFunctionType();
502 std::vector<Type*> Params;
503
504 typedef std::set<IndicesVector> ScalarizeTable;
505
506 // ScalarizedElements - If we are promoting a pointer that has elements
507 // accessed out of it, keep track of which elements are accessed so that we
508 // can add one argument for each.
509 //
510 // Arguments that are directly loaded will have a zero element value here, to
511 // handle cases where there are both a direct load and GEP accesses.
512 //
513 std::map<Argument*, ScalarizeTable> ScalarizedElements;
514
515 // OriginalLoads - Keep track of a representative load instruction from the
516 // original function so that we can tell the alias analysis implementation
517 // what the new GEP/Load instructions we are inserting look like.
518 // We need to keep the original loads for each argument and the elements
519 // of the argument that are accessed.
520 std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
521
522 // Attribute - Keep track of the parameter attributes for the arguments
523 // that we are *not* promoting. For the ones that we do promote, the parameter
524 // attributes are lost
525 SmallVector<AttributeSet, 8> AttributesVec;
526 const AttributeSet &PAL = F->getAttributes();
527
528 // Add any return attributes.
529 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
530 AttributesVec.push_back(AttributeSet::get(F->getContext(),
531 PAL.getRetAttributes()));
532
533 // First, determine the new argument list
534 unsigned ArgIndex = 1;
535 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
536 ++I, ++ArgIndex) {
537 if (ByValArgsToTransform.count(I)) {
538 // Simple byval argument? Just add all the struct element types.
539 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
540 StructType *STy = cast<StructType>(AgTy);
541 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
542 Params.push_back(STy->getElementType(i));
543 ++NumByValArgsPromoted;
544 } else if (!ArgsToPromote.count(I)) {
545 // Unchanged argument
546 Params.push_back(I->getType());
547 AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
548 if (attrs.hasAttributes(ArgIndex)) {
549 AttrBuilder B(attrs, ArgIndex);
550 AttributesVec.
551 push_back(AttributeSet::get(F->getContext(), Params.size(), B));
552 }
553 } else if (I->use_empty()) {
554 // Dead argument (which are always marked as promotable)
555 ++NumArgumentsDead;
556 } else {
557 // Okay, this is being promoted. This means that the only uses are loads
558 // or GEPs which are only used by loads
559
560 // In this table, we will track which indices are loaded from the argument
561 // (where direct loads are tracked as no indices).
562 ScalarizeTable &ArgIndices = ScalarizedElements[I];
563 for (User *U : I->users()) {
564 Instruction *UI = cast<Instruction>(U);
565 assert(isa<LoadInst>(UI) || isa<GetElementPtrInst>(UI));
566 IndicesVector Indices;
567 Indices.reserve(UI->getNumOperands() - 1);
568 // Since loads will only have a single operand, and GEPs only a single
569 // non-index operand, this will record direct loads without any indices,
570 // and gep+loads with the GEP indices.
571 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
572 II != IE; ++II)
573 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
574 // GEPs with a single 0 index can be merged with direct loads
575 if (Indices.size() == 1 && Indices.front() == 0)
576 Indices.clear();
577 ArgIndices.insert(Indices);
578 LoadInst *OrigLoad;
579 if (LoadInst *L = dyn_cast<LoadInst>(UI))
580 OrigLoad = L;
581 else
582 // Take any load, we will use it only to update Alias Analysis
583 OrigLoad = cast<LoadInst>(UI->user_back());
584 OriginalLoads[std::make_pair(I, Indices)] = OrigLoad;
585 }
586
587 // Add a parameter to the function for each element passed in.
588 for (ScalarizeTable::iterator SI = ArgIndices.begin(),
589 E = ArgIndices.end(); SI != E; ++SI) {
590 // not allowed to dereference ->begin() if size() is 0
591 Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
592 assert(Params.back());
593 }
594
595 if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
596 ++NumArgumentsPromoted;
597 else
598 ++NumAggregatesPromoted;
599 }
600 }
601
602 // Add any function attributes.
603 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
604 AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
605 PAL.getFnAttributes()));
606
607 Type *RetTy = FTy->getReturnType();
608
609 // Construct the new function type using the new arguments.
610 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
611
612 // Create the new function body and insert it into the module.
613 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
614 NF->copyAttributesFrom(F);
615
616 // Patch the pointer to LLVM function in debug info descriptor.
617 auto DI = FunctionDIs.find(F);
618 if (DI != FunctionDIs.end())
619 DI->second.replaceFunction(NF);
620
621 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
622 << "From: " << *F);
623
624 // Recompute the parameter attributes list based on the new arguments for
625 // the function.
626 NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
627 AttributesVec.clear();
628
629 F->getParent()->getFunctionList().insert(F, NF);
630 NF->takeName(F);
631
632 // Get the alias analysis information that we need to update to reflect our
633 // changes.
634 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
635
636 // Get the callgraph information that we need to update to reflect our
637 // changes.
638 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
639
640 // Get a new callgraph node for NF.
641 CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
642
643 // Loop over all of the callers of the function, transforming the call sites
644 // to pass in the loaded pointers.
645 //
646 SmallVector<Value*, 16> Args;
647 while (!F->use_empty()) {
648 CallSite CS(F->user_back());
649 assert(CS.getCalledFunction() == F);
650 Instruction *Call = CS.getInstruction();
651 const AttributeSet &CallPAL = CS.getAttributes();
652
653 // Add any return attributes.
654 if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
655 AttributesVec.push_back(AttributeSet::get(F->getContext(),
656 CallPAL.getRetAttributes()));
657
658 // Loop over the operands, inserting GEP and loads in the caller as
659 // appropriate.
660 CallSite::arg_iterator AI = CS.arg_begin();
661 ArgIndex = 1;
662 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
663 I != E; ++I, ++AI, ++ArgIndex)
664 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
665 Args.push_back(*AI); // Unmodified argument
666
667 if (CallPAL.hasAttributes(ArgIndex)) {
668 AttrBuilder B(CallPAL, ArgIndex);
669 AttributesVec.
670 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
671 }
672 } else if (ByValArgsToTransform.count(I)) {
673 // Emit a GEP and load for each element of the struct.
674 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
675 StructType *STy = cast<StructType>(AgTy);
676 Value *Idxs[2] = {
677 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
678 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
679 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
680 Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
681 (*AI)->getName()+"."+utostr(i),
682 Call);
683 // TODO: Tell AA about the new values?
684 Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
685 }
686 } else if (!I->use_empty()) {
687 // Non-dead argument: insert GEPs and loads as appropriate.
688 ScalarizeTable &ArgIndices = ScalarizedElements[I];
689 // Store the Value* version of the indices in here, but declare it now
690 // for reuse.
691 std::vector<Value*> Ops;
692 for (ScalarizeTable::iterator SI = ArgIndices.begin(),
693 E = ArgIndices.end(); SI != E; ++SI) {
694 Value *V = *AI;
695 LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, *SI)];
696 if (!SI->empty()) {
697 Ops.reserve(SI->size());
698 Type *ElTy = V->getType();
699 for (IndicesVector::const_iterator II = SI->begin(),
700 IE = SI->end(); II != IE; ++II) {
701 // Use i32 to index structs, and i64 for others (pointers/arrays).
702 // This satisfies GEP constraints.
703 Type *IdxTy = (ElTy->isStructTy() ?
704 Type::getInt32Ty(F->getContext()) :
705 Type::getInt64Ty(F->getContext()));
706 Ops.push_back(ConstantInt::get(IdxTy, *II));
707 // Keep track of the type we're currently indexing.
708 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
709 }
710 // And create a GEP to extract those indices.
711 V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
712 Ops.clear();
713 AA.copyValue(OrigLoad->getOperand(0), V);
714 }
715 // Since we're replacing a load make sure we take the alignment
716 // of the previous load.
717 LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
718 newLoad->setAlignment(OrigLoad->getAlignment());
719 // Transfer the TBAA info too.
720 newLoad->setMetadata(LLVMContext::MD_tbaa,
721 OrigLoad->getMetadata(LLVMContext::MD_tbaa));
722 Args.push_back(newLoad);
723 AA.copyValue(OrigLoad, Args.back());
724 }
725 }
726
727 // Push any varargs arguments on the list.
728 for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
729 Args.push_back(*AI);
730 if (CallPAL.hasAttributes(ArgIndex)) {
731 AttrBuilder B(CallPAL, ArgIndex);
732 AttributesVec.
733 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
734 }
735 }
736
737 // Add any function attributes.
738 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
739 AttributesVec.push_back(AttributeSet::get(Call->getContext(),
740 CallPAL.getFnAttributes()));
741
742 Instruction *New;
743 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
744 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
745 Args, "", Call);
746 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
747 cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
748 AttributesVec));
749 } else {
750 New = CallInst::Create(NF, Args, "", Call);
751 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
752 cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
753 AttributesVec));
754 if (cast<CallInst>(Call)->isTailCall())
755 cast<CallInst>(New)->setTailCall();
756 }
757 New->setDebugLoc(Call->getDebugLoc());
758 Args.clear();
759 AttributesVec.clear();
760
761 // Update the alias analysis implementation to know that we are replacing
762 // the old call with a new one.
763 AA.replaceWithNewValue(Call, New);
764
765 // Update the callgraph to know that the callsite has been transformed.
766 CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
767 CalleeNode->replaceCallEdge(Call, New, NF_CGN);
768
769 if (!Call->use_empty()) {
770 Call->replaceAllUsesWith(New);
771 New->takeName(Call);
772 }
773
774 // Finally, remove the old call from the program, reducing the use-count of
775 // F.
776 Call->eraseFromParent();
777 }
778
779 // Since we have now created the new function, splice the body of the old
780 // function right into the new function, leaving the old rotting hulk of the
781 // function empty.
782 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
783
784 // Loop over the argument list, transferring uses of the old arguments over to
785 // the new arguments, also transferring over the names as well.
786 //
787 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
788 I2 = NF->arg_begin(); I != E; ++I) {
789 if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
790 // If this is an unmodified argument, move the name and users over to the
791 // new version.
792 I->replaceAllUsesWith(I2);
793 I2->takeName(I);
794 AA.replaceWithNewValue(I, I2);
795 ++I2;
796 continue;
797 }
798
799 if (ByValArgsToTransform.count(I)) {
800 // In the callee, we create an alloca, and store each of the new incoming
801 // arguments into the alloca.
802 Instruction *InsertPt = NF->begin()->begin();
803
804 // Just add all the struct element types.
805 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
806 Value *TheAlloca = new AllocaInst(AgTy, nullptr, "", InsertPt);
807 StructType *STy = cast<StructType>(AgTy);
808 Value *Idxs[2] = {
809 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr };
810
811 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
812 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
813 Value *Idx =
814 GetElementPtrInst::Create(TheAlloca, Idxs,
815 TheAlloca->getName()+"."+Twine(i),
816 InsertPt);
817 I2->setName(I->getName()+"."+Twine(i));
818 new StoreInst(I2++, Idx, InsertPt);
819 }
820
821 // Anything that used the arg should now use the alloca.
822 I->replaceAllUsesWith(TheAlloca);
823 TheAlloca->takeName(I);
824 AA.replaceWithNewValue(I, TheAlloca);
825
826 // If the alloca is used in a call, we must clear the tail flag since
827 // the callee now uses an alloca from the caller.
828 for (User *U : TheAlloca->users()) {
829 CallInst *Call = dyn_cast<CallInst>(U);
830 if (!Call)
831 continue;
832 Call->setTailCall(false);
833 }
834 continue;
835 }
836
837 if (I->use_empty()) {
838 AA.deleteValue(I);
839 continue;
840 }
841
842 // Otherwise, if we promoted this argument, then all users are load
843 // instructions (or GEPs with only load users), and all loads should be
844 // using the new argument that we added.
845 ScalarizeTable &ArgIndices = ScalarizedElements[I];
846
847 while (!I->use_empty()) {
848 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
849 assert(ArgIndices.begin()->empty() &&
850 "Load element should sort to front!");
851 I2->setName(I->getName()+".val");
852 LI->replaceAllUsesWith(I2);
853 AA.replaceWithNewValue(LI, I2);
854 LI->eraseFromParent();
855 DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
856 << "' in function '" << F->getName() << "'\n");
857 } else {
858 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
859 IndicesVector Operands;
860 Operands.reserve(GEP->getNumIndices());
861 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
862 II != IE; ++II)
863 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
864
865 // GEPs with a single 0 index can be merged with direct loads
866 if (Operands.size() == 1 && Operands.front() == 0)
867 Operands.clear();
868
869 Function::arg_iterator TheArg = I2;
870 for (ScalarizeTable::iterator It = ArgIndices.begin();
871 *It != Operands; ++It, ++TheArg) {
872 assert(It != ArgIndices.end() && "GEP not handled??");
873 }
874
875 std::string NewName = I->getName();
876 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
877 NewName += "." + utostr(Operands[i]);
878 }
879 NewName += ".val";
880 TheArg->setName(NewName);
881
882 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
883 << "' of function '" << NF->getName() << "'\n");
884
885 // All of the uses must be load instructions. Replace them all with
886 // the argument specified by ArgNo.
887 while (!GEP->use_empty()) {
888 LoadInst *L = cast<LoadInst>(GEP->user_back());
889 L->replaceAllUsesWith(TheArg);
890 AA.replaceWithNewValue(L, TheArg);
891 L->eraseFromParent();
892 }
893 AA.deleteValue(GEP);
894 GEP->eraseFromParent();
895 }
896 }
897
898 // Increment I2 past all of the arguments added for this promoted pointer.
899 std::advance(I2, ArgIndices.size());
900 }
901
902 // Tell the alias analysis that the old function is about to disappear.
903 AA.replaceWithNewValue(F, NF);
904
905
906 NF_CGN->stealCalledFunctionsFrom(CG[F]);
907
908 // Now that the old function is dead, delete it. If there is a dangling
909 // reference to the CallgraphNode, just leave the dead function around for
910 // someone else to nuke.
911 CallGraphNode *CGN = CG[F];
912 if (CGN->getNumReferences() == 0)
913 delete CG.removeFunctionFromModule(CGN);
914 else
915 F->setLinkage(Function::ExternalLinkage);
916
917 return NF_CGN;
918 }
919
doInitialization(CallGraph & CG)920 bool ArgPromotion::doInitialization(CallGraph &CG) {
921 FunctionDIs = makeSubprogramMap(CG.getModule());
922 return CallGraphSCCPass::doInitialization(CG);
923 }
924