1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 // std::set::insert operation will give you result in log(N) time.
30 //
31 // When a match is found the functions are folded. If both functions are
32 // overridable, we move the functionality into a new internal function and
33 // leave two overridable thunks to it.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 // Future work:
38 //
39 // * virtual functions.
40 //
41 // Many functions have their address taken by the virtual function table for
42 // the object they belong to. However, as long as it's only used for a lookup
43 // and call, this is irrelevant, and we'd like to fold such functions.
44 //
45 // * be smarter about bitcasts.
46 //
47 // In order to fold functions, we will sometimes add either bitcast instructions
48 // or bitcast constant expressions. Unfortunately, this can confound further
49 // analysis since the two functions differ where one has a bitcast and the
50 // other doesn't. We should learn to look through bitcasts.
51 //
52 // * Compare complex types with pointer types inside.
53 // * Compare cross-reference cases.
54 // * Compare complex expressions.
55 //
56 // All the three issues above could be described as ability to prove that
57 // fA == fB == fC == fE == fF == fG in example below:
58 //
59 // void fA() {
60 // fB();
61 // }
62 // void fB() {
63 // fA();
64 // }
65 //
66 // void fE() {
67 // fF();
68 // }
69 // void fF() {
70 // fG();
71 // }
72 // void fG() {
73 // fE();
74 // }
75 //
76 // Simplest cross-reference case (fA <--> fB) was implemented in previous
77 // versions of MergeFunctions, though it presented only in two function pairs
78 // in test-suite (that counts >50k functions)
79 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
80 // could cover much more cases.
81 //
82 //===----------------------------------------------------------------------===//
83
84 #include "llvm/Transforms/IPO.h"
85 #include "llvm/ADT/DenseSet.h"
86 #include "llvm/ADT/FoldingSet.h"
87 #include "llvm/ADT/STLExtras.h"
88 #include "llvm/ADT/SmallSet.h"
89 #include "llvm/ADT/Statistic.h"
90 #include "llvm/IR/CallSite.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/IRBuilder.h"
94 #include "llvm/IR/InlineAsm.h"
95 #include "llvm/IR/Instructions.h"
96 #include "llvm/IR/LLVMContext.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include <vector>
106 using namespace llvm;
107
108 #define DEBUG_TYPE "mergefunc"
109
110 STATISTIC(NumFunctionsMerged, "Number of functions merged");
111 STATISTIC(NumThunksWritten, "Number of thunks generated");
112 STATISTIC(NumAliasesWritten, "Number of aliases generated");
113 STATISTIC(NumDoubleWeak, "Number of new functions created");
114
115 static cl::opt<unsigned> NumFunctionsForSanityCheck(
116 "mergefunc-sanity",
117 cl::desc("How many functions in module could be used for "
118 "MergeFunctions pass sanity check. "
119 "'0' disables this check. Works only with '-debug' key."),
120 cl::init(0), cl::Hidden);
121
122 namespace {
123
124 /// FunctionComparator - Compares two functions to determine whether or not
125 /// they will generate machine code with the same behaviour. DataLayout is
126 /// used if available. The comparator always fails conservatively (erring on the
127 /// side of claiming that two functions are different).
128 class FunctionComparator {
129 public:
FunctionComparator(const DataLayout * DL,const Function * F1,const Function * F2)130 FunctionComparator(const DataLayout *DL, const Function *F1,
131 const Function *F2)
132 : FnL(F1), FnR(F2), DL(DL) {}
133
134 /// Test whether the two functions have equivalent behaviour.
135 int compare();
136
137 private:
138 /// Test whether two basic blocks have equivalent behaviour.
139 int compare(const BasicBlock *BBL, const BasicBlock *BBR);
140
141 /// Constants comparison.
142 /// Its analog to lexicographical comparison between hypothetical numbers
143 /// of next format:
144 /// <bitcastability-trait><raw-bit-contents>
145 ///
146 /// 1. Bitcastability.
147 /// Check whether L's type could be losslessly bitcasted to R's type.
148 /// On this stage method, in case when lossless bitcast is not possible
149 /// method returns -1 or 1, thus also defining which type is greater in
150 /// context of bitcastability.
151 /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
152 /// to the contents comparison.
153 /// If types differ, remember types comparison result and check
154 /// whether we still can bitcast types.
155 /// Stage 1: Types that satisfies isFirstClassType conditions are always
156 /// greater then others.
157 /// Stage 2: Vector is greater then non-vector.
158 /// If both types are vectors, then vector with greater bitwidth is
159 /// greater.
160 /// If both types are vectors with the same bitwidth, then types
161 /// are bitcastable, and we can skip other stages, and go to contents
162 /// comparison.
163 /// Stage 3: Pointer types are greater than non-pointers. If both types are
164 /// pointers of the same address space - go to contents comparison.
165 /// Different address spaces: pointer with greater address space is
166 /// greater.
167 /// Stage 4: Types are neither vectors, nor pointers. And they differ.
168 /// We don't know how to bitcast them. So, we better don't do it,
169 /// and return types comparison result (so it determines the
170 /// relationship among constants we don't know how to bitcast).
171 ///
172 /// Just for clearance, let's see how the set of constants could look
173 /// on single dimension axis:
174 ///
175 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
176 /// Where: NFCT - Not a FirstClassType
177 /// FCT - FirstClassTyp:
178 ///
179 /// 2. Compare raw contents.
180 /// It ignores types on this stage and only compares bits from L and R.
181 /// Returns 0, if L and R has equivalent contents.
182 /// -1 or 1 if values are different.
183 /// Pretty trivial:
184 /// 2.1. If contents are numbers, compare numbers.
185 /// Ints with greater bitwidth are greater. Ints with same bitwidths
186 /// compared by their contents.
187 /// 2.2. "And so on". Just to avoid discrepancies with comments
188 /// perhaps it would be better to read the implementation itself.
189 /// 3. And again about overall picture. Let's look back at how the ordered set
190 /// of constants will look like:
191 /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
192 ///
193 /// Now look, what could be inside [FCT, "others"], for example:
194 /// [FCT, "others"] =
195 /// [
196 /// [double 0.1], [double 1.23],
197 /// [i32 1], [i32 2],
198 /// { double 1.0 }, ; StructTyID, NumElements = 1
199 /// { i32 1 }, ; StructTyID, NumElements = 1
200 /// { double 1, i32 1 }, ; StructTyID, NumElements = 2
201 /// { i32 1, double 1 } ; StructTyID, NumElements = 2
202 /// ]
203 ///
204 /// Let's explain the order. Float numbers will be less than integers, just
205 /// because of cmpType terms: FloatTyID < IntegerTyID.
206 /// Floats (with same fltSemantics) are sorted according to their value.
207 /// Then you can see integers, and they are, like a floats,
208 /// could be easy sorted among each others.
209 /// The structures. Structures are grouped at the tail, again because of their
210 /// TypeID: StructTyID > IntegerTyID > FloatTyID.
211 /// Structures with greater number of elements are greater. Structures with
212 /// greater elements going first are greater.
213 /// The same logic with vectors, arrays and other possible complex types.
214 ///
215 /// Bitcastable constants.
216 /// Let's assume, that some constant, belongs to some group of
217 /// "so-called-equal" values with different types, and at the same time
218 /// belongs to another group of constants with equal types
219 /// and "really" equal values.
220 ///
221 /// Now, prove that this is impossible:
222 ///
223 /// If constant A with type TyA is bitcastable to B with type TyB, then:
224 /// 1. All constants with equal types to TyA, are bitcastable to B. Since
225 /// those should be vectors (if TyA is vector), pointers
226 /// (if TyA is pointer), or else (if TyA equal to TyB), those types should
227 /// be equal to TyB.
228 /// 2. All constants with non-equal, but bitcastable types to TyA, are
229 /// bitcastable to B.
230 /// Once again, just because we allow it to vectors and pointers only.
231 /// This statement could be expanded as below:
232 /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
233 /// vector B, and thus bitcastable to B as well.
234 /// 2.2. All pointers of the same address space, no matter what they point to,
235 /// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
236 /// So any constant equal or bitcastable to A is equal or bitcastable to B.
237 /// QED.
238 ///
239 /// In another words, for pointers and vectors, we ignore top-level type and
240 /// look at their particular properties (bit-width for vectors, and
241 /// address space for pointers).
242 /// If these properties are equal - compare their contents.
243 int cmpConstants(const Constant *L, const Constant *R);
244
245 /// Assign or look up previously assigned numbers for the two values, and
246 /// return whether the numbers are equal. Numbers are assigned in the order
247 /// visited.
248 /// Comparison order:
249 /// Stage 0: Value that is function itself is always greater then others.
250 /// If left and right values are references to their functions, then
251 /// they are equal.
252 /// Stage 1: Constants are greater than non-constants.
253 /// If both left and right are constants, then the result of
254 /// cmpConstants is used as cmpValues result.
255 /// Stage 2: InlineAsm instances are greater than others. If both left and
256 /// right are InlineAsm instances, InlineAsm* pointers casted to
257 /// integers and compared as numbers.
258 /// Stage 3: For all other cases we compare order we meet these values in
259 /// their functions. If right value was met first during scanning,
260 /// then left value is greater.
261 /// In another words, we compare serial numbers, for more details
262 /// see comments for sn_mapL and sn_mapR.
263 int cmpValues(const Value *L, const Value *R);
264
265 /// Compare two Instructions for equivalence, similar to
266 /// Instruction::isSameOperationAs but with modifications to the type
267 /// comparison.
268 /// Stages are listed in "most significant stage first" order:
269 /// On each stage below, we do comparison between some left and right
270 /// operation parts. If parts are non-equal, we assign parts comparison
271 /// result to the operation comparison result and exit from method.
272 /// Otherwise we proceed to the next stage.
273 /// Stages:
274 /// 1. Operations opcodes. Compared as numbers.
275 /// 2. Number of operands.
276 /// 3. Operation types. Compared with cmpType method.
277 /// 4. Compare operation subclass optional data as stream of bytes:
278 /// just convert it to integers and call cmpNumbers.
279 /// 5. Compare in operation operand types with cmpType in
280 /// most significant operand first order.
281 /// 6. Last stage. Check operations for some specific attributes.
282 /// For example, for Load it would be:
283 /// 6.1.Load: volatile (as boolean flag)
284 /// 6.2.Load: alignment (as integer numbers)
285 /// 6.3.Load: synch-scope (as integer numbers)
286 /// 6.4.Load: range metadata (as integer numbers)
287 /// On this stage its better to see the code, since its not more than 10-15
288 /// strings for particular instruction, and could change sometimes.
289 int cmpOperation(const Instruction *L, const Instruction *R) const;
290
291 /// Compare two GEPs for equivalent pointer arithmetic.
292 /// Parts to be compared for each comparison stage,
293 /// most significant stage first:
294 /// 1. Address space. As numbers.
295 /// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
296 /// using GEPOperator::accumulateConstantOffset method).
297 /// 3. Pointer operand type (using cmpType method).
298 /// 4. Number of operands.
299 /// 5. Compare operands, using cmpValues method.
300 int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
cmpGEP(const GetElementPtrInst * GEPL,const GetElementPtrInst * GEPR)301 int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
302 return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
303 }
304
305 /// cmpType - compares two types,
306 /// defines total ordering among the types set.
307 ///
308 /// Return values:
309 /// 0 if types are equal,
310 /// -1 if Left is less than Right,
311 /// +1 if Left is greater than Right.
312 ///
313 /// Description:
314 /// Comparison is broken onto stages. Like in lexicographical comparison
315 /// stage coming first has higher priority.
316 /// On each explanation stage keep in mind total ordering properties.
317 ///
318 /// 0. Before comparison we coerce pointer types of 0 address space to
319 /// integer.
320 /// We also don't bother with same type at left and right, so
321 /// just return 0 in this case.
322 ///
323 /// 1. If types are of different kind (different type IDs).
324 /// Return result of type IDs comparison, treating them as numbers.
325 /// 2. If types are vectors or integers, compare Type* values as numbers.
326 /// 3. Types has same ID, so check whether they belongs to the next group:
327 /// * Void
328 /// * Float
329 /// * Double
330 /// * X86_FP80
331 /// * FP128
332 /// * PPC_FP128
333 /// * Label
334 /// * Metadata
335 /// If so - return 0, yes - we can treat these types as equal only because
336 /// their IDs are same.
337 /// 4. If Left and Right are pointers, return result of address space
338 /// comparison (numbers comparison). We can treat pointer types of same
339 /// address space as equal.
340 /// 5. If types are complex.
341 /// Then both Left and Right are to be expanded and their element types will
342 /// be checked with the same way. If we get Res != 0 on some stage, return it.
343 /// Otherwise return 0.
344 /// 6. For all other cases put llvm_unreachable.
345 int cmpType(Type *TyL, Type *TyR) const;
346
347 int cmpNumbers(uint64_t L, uint64_t R) const;
348
349 int cmpAPInt(const APInt &L, const APInt &R) const;
350 int cmpAPFloat(const APFloat &L, const APFloat &R) const;
351 int cmpStrings(StringRef L, StringRef R) const;
352 int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
353
354 // The two functions undergoing comparison.
355 const Function *FnL, *FnR;
356
357 const DataLayout *DL;
358
359 /// Assign serial numbers to values from left function, and values from
360 /// right function.
361 /// Explanation:
362 /// Being comparing functions we need to compare values we meet at left and
363 /// right sides.
364 /// Its easy to sort things out for external values. It just should be
365 /// the same value at left and right.
366 /// But for local values (those were introduced inside function body)
367 /// we have to ensure they were introduced at exactly the same place,
368 /// and plays the same role.
369 /// Let's assign serial number to each value when we meet it first time.
370 /// Values that were met at same place will be with same serial numbers.
371 /// In this case it would be good to explain few points about values assigned
372 /// to BBs and other ways of implementation (see below).
373 ///
374 /// 1. Safety of BB reordering.
375 /// It's safe to change the order of BasicBlocks in function.
376 /// Relationship with other functions and serial numbering will not be
377 /// changed in this case.
378 /// As follows from FunctionComparator::compare(), we do CFG walk: we start
379 /// from the entry, and then take each terminator. So it doesn't matter how in
380 /// fact BBs are ordered in function. And since cmpValues are called during
381 /// this walk, the numbering depends only on how BBs located inside the CFG.
382 /// So the answer is - yes. We will get the same numbering.
383 ///
384 /// 2. Impossibility to use dominance properties of values.
385 /// If we compare two instruction operands: first is usage of local
386 /// variable AL from function FL, and second is usage of local variable AR
387 /// from FR, we could compare their origins and check whether they are
388 /// defined at the same place.
389 /// But, we are still not able to compare operands of PHI nodes, since those
390 /// could be operands from further BBs we didn't scan yet.
391 /// So it's impossible to use dominance properties in general.
392 DenseMap<const Value*, int> sn_mapL, sn_mapR;
393 };
394
395 class FunctionPtr {
396 AssertingVH<Function> F;
397 const DataLayout *DL;
398
399 public:
FunctionPtr(Function * F,const DataLayout * DL)400 FunctionPtr(Function *F, const DataLayout *DL) : F(F), DL(DL) {}
getFunc() const401 Function *getFunc() const { return F; }
release()402 void release() { F = 0; }
operator <(const FunctionPtr & RHS) const403 bool operator<(const FunctionPtr &RHS) const {
404 return (FunctionComparator(DL, F, RHS.getFunc()).compare()) == -1;
405 }
406 };
407 }
408
cmpNumbers(uint64_t L,uint64_t R) const409 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
410 if (L < R) return -1;
411 if (L > R) return 1;
412 return 0;
413 }
414
cmpAPInt(const APInt & L,const APInt & R) const415 int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
416 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
417 return Res;
418 if (L.ugt(R)) return 1;
419 if (R.ugt(L)) return -1;
420 return 0;
421 }
422
cmpAPFloat(const APFloat & L,const APFloat & R) const423 int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
424 if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
425 (uint64_t)&R.getSemantics()))
426 return Res;
427 return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
428 }
429
cmpStrings(StringRef L,StringRef R) const430 int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
431 // Prevent heavy comparison, compare sizes first.
432 if (int Res = cmpNumbers(L.size(), R.size()))
433 return Res;
434
435 // Compare strings lexicographically only when it is necessary: only when
436 // strings are equal in size.
437 return L.compare(R);
438 }
439
cmpAttrs(const AttributeSet L,const AttributeSet R) const440 int FunctionComparator::cmpAttrs(const AttributeSet L,
441 const AttributeSet R) const {
442 if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
443 return Res;
444
445 for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
446 AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
447 RE = R.end(i);
448 for (; LI != LE && RI != RE; ++LI, ++RI) {
449 Attribute LA = *LI;
450 Attribute RA = *RI;
451 if (LA < RA)
452 return -1;
453 if (RA < LA)
454 return 1;
455 }
456 if (LI != LE)
457 return 1;
458 if (RI != RE)
459 return -1;
460 }
461 return 0;
462 }
463
464 /// Constants comparison:
465 /// 1. Check whether type of L constant could be losslessly bitcasted to R
466 /// type.
467 /// 2. Compare constant contents.
468 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R)469 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
470
471 Type *TyL = L->getType();
472 Type *TyR = R->getType();
473
474 // Check whether types are bitcastable. This part is just re-factored
475 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
476 // we also pack into result which type is "less" for us.
477 int TypesRes = cmpType(TyL, TyR);
478 if (TypesRes != 0) {
479 // Types are different, but check whether we can bitcast them.
480 if (!TyL->isFirstClassType()) {
481 if (TyR->isFirstClassType())
482 return -1;
483 // Neither TyL nor TyR are values of first class type. Return the result
484 // of comparing the types
485 return TypesRes;
486 }
487 if (!TyR->isFirstClassType()) {
488 if (TyL->isFirstClassType())
489 return 1;
490 return TypesRes;
491 }
492
493 // Vector -> Vector conversions are always lossless if the two vector types
494 // have the same size, otherwise not.
495 unsigned TyLWidth = 0;
496 unsigned TyRWidth = 0;
497
498 if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
499 TyLWidth = VecTyL->getBitWidth();
500 if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
501 TyRWidth = VecTyR->getBitWidth();
502
503 if (TyLWidth != TyRWidth)
504 return cmpNumbers(TyLWidth, TyRWidth);
505
506 // Zero bit-width means neither TyL nor TyR are vectors.
507 if (!TyLWidth) {
508 PointerType *PTyL = dyn_cast<PointerType>(TyL);
509 PointerType *PTyR = dyn_cast<PointerType>(TyR);
510 if (PTyL && PTyR) {
511 unsigned AddrSpaceL = PTyL->getAddressSpace();
512 unsigned AddrSpaceR = PTyR->getAddressSpace();
513 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
514 return Res;
515 }
516 if (PTyL)
517 return 1;
518 if (PTyR)
519 return -1;
520
521 // TyL and TyR aren't vectors, nor pointers. We don't know how to
522 // bitcast them.
523 return TypesRes;
524 }
525 }
526
527 // OK, types are bitcastable, now check constant contents.
528
529 if (L->isNullValue() && R->isNullValue())
530 return TypesRes;
531 if (L->isNullValue() && !R->isNullValue())
532 return 1;
533 if (!L->isNullValue() && R->isNullValue())
534 return -1;
535
536 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
537 return Res;
538
539 switch (L->getValueID()) {
540 case Value::UndefValueVal: return TypesRes;
541 case Value::ConstantIntVal: {
542 const APInt &LInt = cast<ConstantInt>(L)->getValue();
543 const APInt &RInt = cast<ConstantInt>(R)->getValue();
544 return cmpAPInt(LInt, RInt);
545 }
546 case Value::ConstantFPVal: {
547 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
548 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
549 return cmpAPFloat(LAPF, RAPF);
550 }
551 case Value::ConstantArrayVal: {
552 const ConstantArray *LA = cast<ConstantArray>(L);
553 const ConstantArray *RA = cast<ConstantArray>(R);
554 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
555 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
556 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
557 return Res;
558 for (uint64_t i = 0; i < NumElementsL; ++i) {
559 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
560 cast<Constant>(RA->getOperand(i))))
561 return Res;
562 }
563 return 0;
564 }
565 case Value::ConstantStructVal: {
566 const ConstantStruct *LS = cast<ConstantStruct>(L);
567 const ConstantStruct *RS = cast<ConstantStruct>(R);
568 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
569 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
570 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
571 return Res;
572 for (unsigned i = 0; i != NumElementsL; ++i) {
573 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
574 cast<Constant>(RS->getOperand(i))))
575 return Res;
576 }
577 return 0;
578 }
579 case Value::ConstantVectorVal: {
580 const ConstantVector *LV = cast<ConstantVector>(L);
581 const ConstantVector *RV = cast<ConstantVector>(R);
582 unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
583 unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
584 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
585 return Res;
586 for (uint64_t i = 0; i < NumElementsL; ++i) {
587 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
588 cast<Constant>(RV->getOperand(i))))
589 return Res;
590 }
591 return 0;
592 }
593 case Value::ConstantExprVal: {
594 const ConstantExpr *LE = cast<ConstantExpr>(L);
595 const ConstantExpr *RE = cast<ConstantExpr>(R);
596 unsigned NumOperandsL = LE->getNumOperands();
597 unsigned NumOperandsR = RE->getNumOperands();
598 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
599 return Res;
600 for (unsigned i = 0; i < NumOperandsL; ++i) {
601 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
602 cast<Constant>(RE->getOperand(i))))
603 return Res;
604 }
605 return 0;
606 }
607 case Value::FunctionVal:
608 case Value::GlobalVariableVal:
609 case Value::GlobalAliasVal:
610 default: // Unknown constant, cast L and R pointers to numbers and compare.
611 return cmpNumbers((uint64_t)L, (uint64_t)R);
612 }
613 }
614
615 /// cmpType - compares two types,
616 /// defines total ordering among the types set.
617 /// See method declaration comments for more details.
cmpType(Type * TyL,Type * TyR) const618 int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
619
620 PointerType *PTyL = dyn_cast<PointerType>(TyL);
621 PointerType *PTyR = dyn_cast<PointerType>(TyR);
622
623 if (DL) {
624 if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
625 if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
626 }
627
628 if (TyL == TyR)
629 return 0;
630
631 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
632 return Res;
633
634 switch (TyL->getTypeID()) {
635 default:
636 llvm_unreachable("Unknown type!");
637 // Fall through in Release mode.
638 case Type::IntegerTyID:
639 case Type::VectorTyID:
640 // TyL == TyR would have returned true earlier.
641 return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
642
643 case Type::VoidTyID:
644 case Type::FloatTyID:
645 case Type::DoubleTyID:
646 case Type::X86_FP80TyID:
647 case Type::FP128TyID:
648 case Type::PPC_FP128TyID:
649 case Type::LabelTyID:
650 case Type::MetadataTyID:
651 return 0;
652
653 case Type::PointerTyID: {
654 assert(PTyL && PTyR && "Both types must be pointers here.");
655 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
656 }
657
658 case Type::StructTyID: {
659 StructType *STyL = cast<StructType>(TyL);
660 StructType *STyR = cast<StructType>(TyR);
661 if (STyL->getNumElements() != STyR->getNumElements())
662 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
663
664 if (STyL->isPacked() != STyR->isPacked())
665 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
666
667 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
668 if (int Res = cmpType(STyL->getElementType(i),
669 STyR->getElementType(i)))
670 return Res;
671 }
672 return 0;
673 }
674
675 case Type::FunctionTyID: {
676 FunctionType *FTyL = cast<FunctionType>(TyL);
677 FunctionType *FTyR = cast<FunctionType>(TyR);
678 if (FTyL->getNumParams() != FTyR->getNumParams())
679 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
680
681 if (FTyL->isVarArg() != FTyR->isVarArg())
682 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
683
684 if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
685 return Res;
686
687 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
688 if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
689 return Res;
690 }
691 return 0;
692 }
693
694 case Type::ArrayTyID: {
695 ArrayType *ATyL = cast<ArrayType>(TyL);
696 ArrayType *ATyR = cast<ArrayType>(TyR);
697 if (ATyL->getNumElements() != ATyR->getNumElements())
698 return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
699 return cmpType(ATyL->getElementType(), ATyR->getElementType());
700 }
701 }
702 }
703
704 // Determine whether the two operations are the same except that pointer-to-A
705 // and pointer-to-B are equivalent. This should be kept in sync with
706 // Instruction::isSameOperationAs.
707 // Read method declaration comments for more details.
cmpOperation(const Instruction * L,const Instruction * R) const708 int FunctionComparator::cmpOperation(const Instruction *L,
709 const Instruction *R) const {
710 // Differences from Instruction::isSameOperationAs:
711 // * replace type comparison with calls to isEquivalentType.
712 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
713 // * because of the above, we don't test for the tail bit on calls later on
714 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
715 return Res;
716
717 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
718 return Res;
719
720 if (int Res = cmpType(L->getType(), R->getType()))
721 return Res;
722
723 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
724 R->getRawSubclassOptionalData()))
725 return Res;
726
727 // We have two instructions of identical opcode and #operands. Check to see
728 // if all operands are the same type
729 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
730 if (int Res =
731 cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
732 return Res;
733 }
734
735 // Check special state that is a part of some instructions.
736 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
737 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
738 return Res;
739 if (int Res =
740 cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
741 return Res;
742 if (int Res =
743 cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
744 return Res;
745 if (int Res =
746 cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
747 return Res;
748 return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
749 (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
750 }
751 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
752 if (int Res =
753 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
754 return Res;
755 if (int Res =
756 cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
757 return Res;
758 if (int Res =
759 cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
760 return Res;
761 return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
762 }
763 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
764 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
765 if (const CallInst *CI = dyn_cast<CallInst>(L)) {
766 if (int Res = cmpNumbers(CI->getCallingConv(),
767 cast<CallInst>(R)->getCallingConv()))
768 return Res;
769 return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
770 }
771 if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
772 if (int Res = cmpNumbers(CI->getCallingConv(),
773 cast<InvokeInst>(R)->getCallingConv()))
774 return Res;
775 return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
776 }
777 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
778 ArrayRef<unsigned> LIndices = IVI->getIndices();
779 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
780 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
781 return Res;
782 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
783 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
784 return Res;
785 }
786 }
787 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
788 ArrayRef<unsigned> LIndices = EVI->getIndices();
789 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
790 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
791 return Res;
792 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
793 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
794 return Res;
795 }
796 }
797 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
798 if (int Res =
799 cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
800 return Res;
801 return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
802 }
803
804 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
805 if (int Res = cmpNumbers(CXI->isVolatile(),
806 cast<AtomicCmpXchgInst>(R)->isVolatile()))
807 return Res;
808 if (int Res = cmpNumbers(CXI->isWeak(),
809 cast<AtomicCmpXchgInst>(R)->isWeak()))
810 return Res;
811 if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
812 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
813 return Res;
814 if (int Res = cmpNumbers(CXI->getFailureOrdering(),
815 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
816 return Res;
817 return cmpNumbers(CXI->getSynchScope(),
818 cast<AtomicCmpXchgInst>(R)->getSynchScope());
819 }
820 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
821 if (int Res = cmpNumbers(RMWI->getOperation(),
822 cast<AtomicRMWInst>(R)->getOperation()))
823 return Res;
824 if (int Res = cmpNumbers(RMWI->isVolatile(),
825 cast<AtomicRMWInst>(R)->isVolatile()))
826 return Res;
827 if (int Res = cmpNumbers(RMWI->getOrdering(),
828 cast<AtomicRMWInst>(R)->getOrdering()))
829 return Res;
830 return cmpNumbers(RMWI->getSynchScope(),
831 cast<AtomicRMWInst>(R)->getSynchScope());
832 }
833 return 0;
834 }
835
836 // Determine whether two GEP operations perform the same underlying arithmetic.
837 // Read method declaration comments for more details.
cmpGEP(const GEPOperator * GEPL,const GEPOperator * GEPR)838 int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
839 const GEPOperator *GEPR) {
840
841 unsigned int ASL = GEPL->getPointerAddressSpace();
842 unsigned int ASR = GEPR->getPointerAddressSpace();
843
844 if (int Res = cmpNumbers(ASL, ASR))
845 return Res;
846
847 // When we have target data, we can reduce the GEP down to the value in bytes
848 // added to the address.
849 if (DL) {
850 unsigned BitWidth = DL->getPointerSizeInBits(ASL);
851 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
852 if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
853 GEPR->accumulateConstantOffset(*DL, OffsetR))
854 return cmpAPInt(OffsetL, OffsetR);
855 }
856
857 if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
858 (uint64_t)GEPR->getPointerOperand()->getType()))
859 return Res;
860
861 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
862 return Res;
863
864 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
865 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
866 return Res;
867 }
868
869 return 0;
870 }
871
872 /// Compare two values used by the two functions under pair-wise comparison. If
873 /// this is the first time the values are seen, they're added to the mapping so
874 /// that we will detect mismatches on next use.
875 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R)876 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
877 // Catch self-reference case.
878 if (L == FnL) {
879 if (R == FnR)
880 return 0;
881 return -1;
882 }
883 if (R == FnR) {
884 if (L == FnL)
885 return 0;
886 return 1;
887 }
888
889 const Constant *ConstL = dyn_cast<Constant>(L);
890 const Constant *ConstR = dyn_cast<Constant>(R);
891 if (ConstL && ConstR) {
892 if (L == R)
893 return 0;
894 return cmpConstants(ConstL, ConstR);
895 }
896
897 if (ConstL)
898 return 1;
899 if (ConstR)
900 return -1;
901
902 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
903 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
904
905 if (InlineAsmL && InlineAsmR)
906 return cmpNumbers((uint64_t)L, (uint64_t)R);
907 if (InlineAsmL)
908 return 1;
909 if (InlineAsmR)
910 return -1;
911
912 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
913 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
914
915 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
916 }
917 // Test whether two basic blocks have equivalent behaviour.
compare(const BasicBlock * BBL,const BasicBlock * BBR)918 int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
919 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
920 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
921
922 do {
923 if (int Res = cmpValues(InstL, InstR))
924 return Res;
925
926 const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
927 const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
928
929 if (GEPL && !GEPR)
930 return 1;
931 if (GEPR && !GEPL)
932 return -1;
933
934 if (GEPL && GEPR) {
935 if (int Res =
936 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
937 return Res;
938 if (int Res = cmpGEP(GEPL, GEPR))
939 return Res;
940 } else {
941 if (int Res = cmpOperation(InstL, InstR))
942 return Res;
943 assert(InstL->getNumOperands() == InstR->getNumOperands());
944
945 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
946 Value *OpL = InstL->getOperand(i);
947 Value *OpR = InstR->getOperand(i);
948 if (int Res = cmpValues(OpL, OpR))
949 return Res;
950 if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
951 return Res;
952 // TODO: Already checked in cmpOperation
953 if (int Res = cmpType(OpL->getType(), OpR->getType()))
954 return Res;
955 }
956 }
957
958 ++InstL, ++InstR;
959 } while (InstL != InstLE && InstR != InstRE);
960
961 if (InstL != InstLE && InstR == InstRE)
962 return 1;
963 if (InstL == InstLE && InstR != InstRE)
964 return -1;
965 return 0;
966 }
967
968 // Test whether the two functions have equivalent behaviour.
compare()969 int FunctionComparator::compare() {
970
971 sn_mapL.clear();
972 sn_mapR.clear();
973
974 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
975 return Res;
976
977 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
978 return Res;
979
980 if (FnL->hasGC()) {
981 if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
982 return Res;
983 }
984
985 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
986 return Res;
987
988 if (FnL->hasSection()) {
989 if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
990 return Res;
991 }
992
993 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
994 return Res;
995
996 // TODO: if it's internal and only used in direct calls, we could handle this
997 // case too.
998 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
999 return Res;
1000
1001 if (int Res = cmpType(FnL->getFunctionType(), FnR->getFunctionType()))
1002 return Res;
1003
1004 assert(FnL->arg_size() == FnR->arg_size() &&
1005 "Identically typed functions have different numbers of args!");
1006
1007 // Visit the arguments so that they get enumerated in the order they're
1008 // passed in.
1009 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1010 ArgRI = FnR->arg_begin(),
1011 ArgLE = FnL->arg_end();
1012 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1013 if (cmpValues(ArgLI, ArgRI) != 0)
1014 llvm_unreachable("Arguments repeat!");
1015 }
1016
1017 // We do a CFG-ordered walk since the actual ordering of the blocks in the
1018 // linked list is immaterial. Our walk starts at the entry block for both
1019 // functions, then takes each block from each terminator in order. As an
1020 // artifact, this also means that unreachable blocks are ignored.
1021 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1022 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1023
1024 FnLBBs.push_back(&FnL->getEntryBlock());
1025 FnRBBs.push_back(&FnR->getEntryBlock());
1026
1027 VisitedBBs.insert(FnLBBs[0]);
1028 while (!FnLBBs.empty()) {
1029 const BasicBlock *BBL = FnLBBs.pop_back_val();
1030 const BasicBlock *BBR = FnRBBs.pop_back_val();
1031
1032 if (int Res = cmpValues(BBL, BBR))
1033 return Res;
1034
1035 if (int Res = compare(BBL, BBR))
1036 return Res;
1037
1038 const TerminatorInst *TermL = BBL->getTerminator();
1039 const TerminatorInst *TermR = BBR->getTerminator();
1040
1041 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1042 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1043 if (!VisitedBBs.insert(TermL->getSuccessor(i)))
1044 continue;
1045
1046 FnLBBs.push_back(TermL->getSuccessor(i));
1047 FnRBBs.push_back(TermR->getSuccessor(i));
1048 }
1049 }
1050 return 0;
1051 }
1052
1053 namespace {
1054
1055 /// MergeFunctions finds functions which will generate identical machine code,
1056 /// by considering all pointer types to be equivalent. Once identified,
1057 /// MergeFunctions will fold them by replacing a call to one to a call to a
1058 /// bitcast of the other.
1059 ///
1060 class MergeFunctions : public ModulePass {
1061 public:
1062 static char ID;
MergeFunctions()1063 MergeFunctions()
1064 : ModulePass(ID), HasGlobalAliases(false) {
1065 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1066 }
1067
1068 bool runOnModule(Module &M) override;
1069
1070 private:
1071 typedef std::set<FunctionPtr> FnTreeType;
1072
1073 /// A work queue of functions that may have been modified and should be
1074 /// analyzed again.
1075 std::vector<WeakVH> Deferred;
1076
1077 /// Checks the rules of order relation introduced among functions set.
1078 /// Returns true, if sanity check has been passed, and false if failed.
1079 bool doSanityCheck(std::vector<WeakVH> &Worklist);
1080
1081 /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1082 /// equal to one that's already present.
1083 bool insert(Function *NewFunction);
1084
1085 /// Remove a Function from the FnTree and queue it up for a second sweep of
1086 /// analysis.
1087 void remove(Function *F);
1088
1089 /// Find the functions that use this Value and remove them from FnTree and
1090 /// queue the functions.
1091 void removeUsers(Value *V);
1092
1093 /// Replace all direct calls of Old with calls of New. Will bitcast New if
1094 /// necessary to make types match.
1095 void replaceDirectCallers(Function *Old, Function *New);
1096
1097 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1098 /// be converted into a thunk. In either case, it should never be visited
1099 /// again.
1100 void mergeTwoFunctions(Function *F, Function *G);
1101
1102 /// Replace G with a thunk or an alias to F. Deletes G.
1103 void writeThunkOrAlias(Function *F, Function *G);
1104
1105 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1106 /// of G with bitcast(F). Deletes G.
1107 void writeThunk(Function *F, Function *G);
1108
1109 /// Replace G with an alias to F. Deletes G.
1110 void writeAlias(Function *F, Function *G);
1111
1112 /// The set of all distinct functions. Use the insert() and remove() methods
1113 /// to modify it.
1114 FnTreeType FnTree;
1115
1116 /// DataLayout for more accurate GEP comparisons. May be NULL.
1117 const DataLayout *DL;
1118
1119 /// Whether or not the target supports global aliases.
1120 bool HasGlobalAliases;
1121 };
1122
1123 } // end anonymous namespace
1124
1125 char MergeFunctions::ID = 0;
1126 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1127
createMergeFunctionsPass()1128 ModulePass *llvm::createMergeFunctionsPass() {
1129 return new MergeFunctions();
1130 }
1131
doSanityCheck(std::vector<WeakVH> & Worklist)1132 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1133 if (const unsigned Max = NumFunctionsForSanityCheck) {
1134 unsigned TripleNumber = 0;
1135 bool Valid = true;
1136
1137 dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1138
1139 unsigned i = 0;
1140 for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1141 I != E && i < Max; ++I, ++i) {
1142 unsigned j = i;
1143 for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1144 Function *F1 = cast<Function>(*I);
1145 Function *F2 = cast<Function>(*J);
1146 int Res1 = FunctionComparator(DL, F1, F2).compare();
1147 int Res2 = FunctionComparator(DL, F2, F1).compare();
1148
1149 // If F1 <= F2, then F2 >= F1, otherwise report failure.
1150 if (Res1 != -Res2) {
1151 dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1152 << "\n";
1153 F1->dump();
1154 F2->dump();
1155 Valid = false;
1156 }
1157
1158 if (Res1 == 0)
1159 continue;
1160
1161 unsigned k = j;
1162 for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1163 ++k, ++K, ++TripleNumber) {
1164 if (K == J)
1165 continue;
1166
1167 Function *F3 = cast<Function>(*K);
1168 int Res3 = FunctionComparator(DL, F1, F3).compare();
1169 int Res4 = FunctionComparator(DL, F2, F3).compare();
1170
1171 bool Transitive = true;
1172
1173 if (Res1 != 0 && Res1 == Res4) {
1174 // F1 > F2, F2 > F3 => F1 > F3
1175 Transitive = Res3 == Res1;
1176 } else if (Res3 != 0 && Res3 == -Res4) {
1177 // F1 > F3, F3 > F2 => F1 > F2
1178 Transitive = Res3 == Res1;
1179 } else if (Res4 != 0 && -Res3 == Res4) {
1180 // F2 > F3, F3 > F1 => F2 > F1
1181 Transitive = Res4 == -Res1;
1182 }
1183
1184 if (!Transitive) {
1185 dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1186 << TripleNumber << "\n";
1187 dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1188 << Res4 << "\n";
1189 F1->dump();
1190 F2->dump();
1191 F3->dump();
1192 Valid = false;
1193 }
1194 }
1195 }
1196 }
1197
1198 dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1199 return Valid;
1200 }
1201 return true;
1202 }
1203
runOnModule(Module & M)1204 bool MergeFunctions::runOnModule(Module &M) {
1205 bool Changed = false;
1206 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1207 DL = DLP ? &DLP->getDataLayout() : nullptr;
1208
1209 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1210 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
1211 Deferred.push_back(WeakVH(I));
1212 }
1213
1214 do {
1215 std::vector<WeakVH> Worklist;
1216 Deferred.swap(Worklist);
1217
1218 DEBUG(doSanityCheck(Worklist));
1219
1220 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1221 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1222
1223 // Insert only strong functions and merge them. Strong function merging
1224 // always deletes one of them.
1225 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1226 E = Worklist.end(); I != E; ++I) {
1227 if (!*I) continue;
1228 Function *F = cast<Function>(*I);
1229 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1230 !F->mayBeOverridden()) {
1231 Changed |= insert(F);
1232 }
1233 }
1234
1235 // Insert only weak functions and merge them. By doing these second we
1236 // create thunks to the strong function when possible. When two weak
1237 // functions are identical, we create a new strong function with two weak
1238 // weak thunks to it which are identical but not mergable.
1239 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1240 E = Worklist.end(); I != E; ++I) {
1241 if (!*I) continue;
1242 Function *F = cast<Function>(*I);
1243 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1244 F->mayBeOverridden()) {
1245 Changed |= insert(F);
1246 }
1247 }
1248 DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1249 } while (!Deferred.empty());
1250
1251 FnTree.clear();
1252
1253 return Changed;
1254 }
1255
1256 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)1257 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1258 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1259 for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1260 Use *U = &*UI;
1261 ++UI;
1262 CallSite CS(U->getUser());
1263 if (CS && CS.isCallee(U)) {
1264 remove(CS.getInstruction()->getParent()->getParent());
1265 U->set(BitcastNew);
1266 }
1267 }
1268 }
1269
1270 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)1271 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1272 if (HasGlobalAliases && G->hasUnnamedAddr()) {
1273 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1274 G->hasWeakLinkage()) {
1275 writeAlias(F, G);
1276 return;
1277 }
1278 }
1279
1280 writeThunk(F, G);
1281 }
1282
1283 // Helper for writeThunk,
1284 // Selects proper bitcast operation,
1285 // but a bit simpler then CastInst::getCastOpcode.
createCast(IRBuilder<false> & Builder,Value * V,Type * DestTy)1286 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1287 Type *SrcTy = V->getType();
1288 if (SrcTy->isStructTy()) {
1289 assert(DestTy->isStructTy());
1290 assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1291 Value *Result = UndefValue::get(DestTy);
1292 for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1293 Value *Element = createCast(
1294 Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
1295 DestTy->getStructElementType(I));
1296
1297 Result =
1298 Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
1299 }
1300 return Result;
1301 }
1302 assert(!DestTy->isStructTy());
1303 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1304 return Builder.CreateIntToPtr(V, DestTy);
1305 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1306 return Builder.CreatePtrToInt(V, DestTy);
1307 else
1308 return Builder.CreateBitCast(V, DestTy);
1309 }
1310
1311 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1312 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)1313 void MergeFunctions::writeThunk(Function *F, Function *G) {
1314 if (!G->mayBeOverridden()) {
1315 // Redirect direct callers of G to F.
1316 replaceDirectCallers(G, F);
1317 }
1318
1319 // If G was internal then we may have replaced all uses of G with F. If so,
1320 // stop here and delete G. There's no need for a thunk.
1321 if (G->hasLocalLinkage() && G->use_empty()) {
1322 G->eraseFromParent();
1323 return;
1324 }
1325
1326 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1327 G->getParent());
1328 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1329 IRBuilder<false> Builder(BB);
1330
1331 SmallVector<Value *, 16> Args;
1332 unsigned i = 0;
1333 FunctionType *FFTy = F->getFunctionType();
1334 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
1335 AI != AE; ++AI) {
1336 Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
1337 ++i;
1338 }
1339
1340 CallInst *CI = Builder.CreateCall(F, Args);
1341 CI->setTailCall();
1342 CI->setCallingConv(F->getCallingConv());
1343 if (NewG->getReturnType()->isVoidTy()) {
1344 Builder.CreateRetVoid();
1345 } else {
1346 Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1347 }
1348
1349 NewG->copyAttributesFrom(G);
1350 NewG->takeName(G);
1351 removeUsers(G);
1352 G->replaceAllUsesWith(NewG);
1353 G->eraseFromParent();
1354
1355 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1356 ++NumThunksWritten;
1357 }
1358
1359 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)1360 void MergeFunctions::writeAlias(Function *F, Function *G) {
1361 PointerType *PTy = G->getType();
1362 auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1363 G->getLinkage(), "", F);
1364 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1365 GA->takeName(G);
1366 GA->setVisibility(G->getVisibility());
1367 removeUsers(G);
1368 G->replaceAllUsesWith(GA);
1369 G->eraseFromParent();
1370
1371 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1372 ++NumAliasesWritten;
1373 }
1374
1375 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)1376 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1377 if (F->mayBeOverridden()) {
1378 assert(G->mayBeOverridden());
1379
1380 if (HasGlobalAliases) {
1381 // Make them both thunks to the same internal function.
1382 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1383 F->getParent());
1384 H->copyAttributesFrom(F);
1385 H->takeName(F);
1386 removeUsers(F);
1387 F->replaceAllUsesWith(H);
1388
1389 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1390
1391 writeAlias(F, G);
1392 writeAlias(F, H);
1393
1394 F->setAlignment(MaxAlignment);
1395 F->setLinkage(GlobalValue::PrivateLinkage);
1396 } else {
1397 // We can't merge them. Instead, pick one and update all direct callers
1398 // to call it and hope that we improve the instruction cache hit rate.
1399 replaceDirectCallers(G, F);
1400 }
1401
1402 ++NumDoubleWeak;
1403 } else {
1404 writeThunkOrAlias(F, G);
1405 }
1406
1407 ++NumFunctionsMerged;
1408 }
1409
1410 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1411 // that was already inserted.
insert(Function * NewFunction)1412 bool MergeFunctions::insert(Function *NewFunction) {
1413 std::pair<FnTreeType::iterator, bool> Result =
1414 FnTree.insert(FunctionPtr(NewFunction, DL));
1415
1416 if (Result.second) {
1417 DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1418 return false;
1419 }
1420
1421 const FunctionPtr &OldF = *Result.first;
1422
1423 // Don't merge tiny functions, since it can just end up making the function
1424 // larger.
1425 // FIXME: Should still merge them if they are unnamed_addr and produce an
1426 // alias.
1427 if (NewFunction->size() == 1) {
1428 if (NewFunction->front().size() <= 2) {
1429 DEBUG(dbgs() << NewFunction->getName()
1430 << " is to small to bother merging\n");
1431 return false;
1432 }
1433 }
1434
1435 // Never thunk a strong function to a weak function.
1436 assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1437
1438 DEBUG(dbgs() << " " << OldF.getFunc()->getName()
1439 << " == " << NewFunction->getName() << '\n');
1440
1441 Function *DeleteF = NewFunction;
1442 mergeTwoFunctions(OldF.getFunc(), DeleteF);
1443 return true;
1444 }
1445
1446 // Remove a function from FnTree. If it was already in FnTree, add
1447 // it to Deferred so that we'll look at it in the next round.
remove(Function * F)1448 void MergeFunctions::remove(Function *F) {
1449 // We need to make sure we remove F, not a function "equal" to F per the
1450 // function equality comparator.
1451 FnTreeType::iterator found = FnTree.find(FunctionPtr(F, DL));
1452 size_t Erased = 0;
1453 if (found != FnTree.end() && found->getFunc() == F) {
1454 Erased = 1;
1455 FnTree.erase(found);
1456 }
1457
1458 if (Erased) {
1459 DEBUG(dbgs() << "Removed " << F->getName()
1460 << " from set and deferred it.\n");
1461 Deferred.push_back(F);
1462 }
1463 }
1464
1465 // For each instruction used by the value, remove() the function that contains
1466 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)1467 void MergeFunctions::removeUsers(Value *V) {
1468 std::vector<Value *> Worklist;
1469 Worklist.push_back(V);
1470 while (!Worklist.empty()) {
1471 Value *V = Worklist.back();
1472 Worklist.pop_back();
1473
1474 for (User *U : V->users()) {
1475 if (Instruction *I = dyn_cast<Instruction>(U)) {
1476 remove(I->getParent()->getParent());
1477 } else if (isa<GlobalValue>(U)) {
1478 // do nothing
1479 } else if (Constant *C = dyn_cast<Constant>(U)) {
1480 for (User *UU : C->users())
1481 Worklist.push_back(UU);
1482 }
1483 }
1484 }
1485 }
1486