1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Target/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
25 /// expression. If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
DecomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29 uint64_t &Offset) {
30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31 Offset = CI->getZExtValue();
32 Scale = 0;
33 return ConstantInt::get(Val->getType(), 0);
34 }
35
36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37 // Cannot look past anything that might overflow.
38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40 Scale = 1;
41 Offset = 0;
42 return Val;
43 }
44
45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46 if (I->getOpcode() == Instruction::Shl) {
47 // This is a value scaled by '1 << the shift amt'.
48 Scale = UINT64_C(1) << RHS->getZExtValue();
49 Offset = 0;
50 return I->getOperand(0);
51 }
52
53 if (I->getOpcode() == Instruction::Mul) {
54 // This value is scaled by 'RHS'.
55 Scale = RHS->getZExtValue();
56 Offset = 0;
57 return I->getOperand(0);
58 }
59
60 if (I->getOpcode() == Instruction::Add) {
61 // We have X+C. Check to see if we really have (X*C2)+C1,
62 // where C1 is divisible by C2.
63 unsigned SubScale;
64 Value *SubVal =
65 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66 Offset += RHS->getZExtValue();
67 Scale = SubScale;
68 return SubVal;
69 }
70 }
71 }
72
73 // Otherwise, we can't look past this.
74 Scale = 1;
75 Offset = 0;
76 return Val;
77 }
78
79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
80 /// try to eliminate the cast by moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82 AllocaInst &AI) {
83 // This requires DataLayout to get the alloca alignment and size information.
84 if (!DL) return nullptr;
85
86 PointerType *PTy = cast<PointerType>(CI.getType());
87
88 BuilderTy AllocaBuilder(*Builder);
89 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
90
91 // Get the type really allocated and the type casted to.
92 Type *AllocElTy = AI.getAllocatedType();
93 Type *CastElTy = PTy->getElementType();
94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95
96 unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
97 unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
98 if (CastElTyAlign < AllocElTyAlign) return nullptr;
99
100 // If the allocation has multiple uses, only promote it if we are strictly
101 // increasing the alignment of the resultant allocation. If we keep it the
102 // same, we open the door to infinite loops of various kinds.
103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104
105 uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
106 uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108
109 // If the allocation has multiple uses, only promote it if we're not
110 // shrinking the amount of memory being allocated.
111 uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
112 uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114
115 // See if we can satisfy the modulus by pulling a scale out of the array
116 // size argument.
117 unsigned ArraySizeScale;
118 uint64_t ArrayOffset;
119 Value *NumElements = // See if the array size is a decomposable linear expr.
120 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121
122 // If we can now satisfy the modulus, by using a non-1 scale, we really can
123 // do the xform.
124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
126
127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128 Value *Amt = nullptr;
129 if (Scale == 1) {
130 Amt = NumElements;
131 } else {
132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133 // Insert before the alloca, not before the cast.
134 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135 }
136
137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139 Offset, true);
140 Amt = AllocaBuilder.CreateAdd(Amt, Off);
141 }
142
143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144 New->setAlignment(AI.getAlignment());
145 New->takeName(&AI);
146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147
148 // If the allocation has multiple real uses, insert a cast and change all
149 // things that used it to use the new cast. This will also hack on CI, but it
150 // will die soon.
151 if (!AI.hasOneUse()) {
152 // New is the allocation instruction, pointer typed. AI is the original
153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155 ReplaceInstUsesWith(AI, NewCast);
156 }
157 return ReplaceInstUsesWith(CI, New);
158 }
159
160 /// EvaluateInDifferentType - Given an expression that
161 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
162 /// insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
164 bool isSigned) {
165 if (Constant *C = dyn_cast<Constant>(V)) {
166 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
167 // If we got a constantexpr back, try to simplify it with DL info.
168 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
169 C = ConstantFoldConstantExpression(CE, DL, TLI);
170 return C;
171 }
172
173 // Otherwise, it must be an instruction.
174 Instruction *I = cast<Instruction>(V);
175 Instruction *Res = nullptr;
176 unsigned Opc = I->getOpcode();
177 switch (Opc) {
178 case Instruction::Add:
179 case Instruction::Sub:
180 case Instruction::Mul:
181 case Instruction::And:
182 case Instruction::Or:
183 case Instruction::Xor:
184 case Instruction::AShr:
185 case Instruction::LShr:
186 case Instruction::Shl:
187 case Instruction::UDiv:
188 case Instruction::URem: {
189 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
190 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
191 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
192 break;
193 }
194 case Instruction::Trunc:
195 case Instruction::ZExt:
196 case Instruction::SExt:
197 // If the source type of the cast is the type we're trying for then we can
198 // just return the source. There's no need to insert it because it is not
199 // new.
200 if (I->getOperand(0)->getType() == Ty)
201 return I->getOperand(0);
202
203 // Otherwise, must be the same type of cast, so just reinsert a new one.
204 // This also handles the case of zext(trunc(x)) -> zext(x).
205 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
206 Opc == Instruction::SExt);
207 break;
208 case Instruction::Select: {
209 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
210 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
211 Res = SelectInst::Create(I->getOperand(0), True, False);
212 break;
213 }
214 case Instruction::PHI: {
215 PHINode *OPN = cast<PHINode>(I);
216 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
217 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
218 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219 NPN->addIncoming(V, OPN->getIncomingBlock(i));
220 }
221 Res = NPN;
222 break;
223 }
224 default:
225 // TODO: Can handle more cases here.
226 llvm_unreachable("Unreachable!");
227 }
228
229 Res->takeName(I);
230 return InsertNewInstWith(Res, *I);
231 }
232
233
234 /// This function is a wrapper around CastInst::isEliminableCastPair. It
235 /// simply extracts arguments and returns what that function returns.
236 static Instruction::CastOps
isEliminableCastPair(const CastInst * CI,unsigned opcode,Type * DstTy,const DataLayout * DL)237 isEliminableCastPair(
238 const CastInst *CI, ///< The first cast instruction
239 unsigned opcode, ///< The opcode of the second cast instruction
240 Type *DstTy, ///< The target type for the second cast instruction
241 const DataLayout *DL ///< The target data for pointer size
242 ) {
243
244 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
245 Type *MidTy = CI->getType(); // B from above
246
247 // Get the opcodes of the two Cast instructions
248 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
249 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
250 Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
251 DL->getIntPtrType(SrcTy) : nullptr;
252 Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
253 DL->getIntPtrType(MidTy) : nullptr;
254 Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
255 DL->getIntPtrType(DstTy) : nullptr;
256 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
257 DstTy, SrcIntPtrTy, MidIntPtrTy,
258 DstIntPtrTy);
259
260 // We don't want to form an inttoptr or ptrtoint that converts to an integer
261 // type that differs from the pointer size.
262 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
263 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
264 Res = 0;
265
266 return Instruction::CastOps(Res);
267 }
268
269 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
270 /// results in any code being generated and is interesting to optimize out. If
271 /// the cast can be eliminated by some other simple transformation, we prefer
272 /// to do the simplification first.
ShouldOptimizeCast(Instruction::CastOps opc,const Value * V,Type * Ty)273 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
274 Type *Ty) {
275 // Noop casts and casts of constants should be eliminated trivially.
276 if (V->getType() == Ty || isa<Constant>(V)) return false;
277
278 // If this is another cast that can be eliminated, we prefer to have it
279 // eliminated.
280 if (const CastInst *CI = dyn_cast<CastInst>(V))
281 if (isEliminableCastPair(CI, opc, Ty, DL))
282 return false;
283
284 // If this is a vector sext from a compare, then we don't want to break the
285 // idiom where each element of the extended vector is either zero or all ones.
286 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
287 return false;
288
289 return true;
290 }
291
292
293 /// @brief Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)294 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
295 Value *Src = CI.getOperand(0);
296
297 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
298 // eliminate it now.
299 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
300 if (Instruction::CastOps opc =
301 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
302 // The first cast (CSrc) is eliminable so we need to fix up or replace
303 // the second cast (CI). CSrc will then have a good chance of being dead.
304 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
305 }
306 }
307
308 // If we are casting a select then fold the cast into the select
309 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
310 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
311 return NV;
312
313 // If we are casting a PHI then fold the cast into the PHI
314 if (isa<PHINode>(Src)) {
315 // We don't do this if this would create a PHI node with an illegal type if
316 // it is currently legal.
317 if (!Src->getType()->isIntegerTy() ||
318 !CI.getType()->isIntegerTy() ||
319 ShouldChangeType(CI.getType(), Src->getType()))
320 if (Instruction *NV = FoldOpIntoPhi(CI))
321 return NV;
322 }
323
324 return nullptr;
325 }
326
327 /// CanEvaluateTruncated - Return true if we can evaluate the specified
328 /// expression tree as type Ty instead of its larger type, and arrive with the
329 /// same value. This is used by code that tries to eliminate truncates.
330 ///
331 /// Ty will always be a type smaller than V. We should return true if trunc(V)
332 /// can be computed by computing V in the smaller type. If V is an instruction,
333 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
334 /// makes sense if x and y can be efficiently truncated.
335 ///
336 /// This function works on both vectors and scalars.
337 ///
CanEvaluateTruncated(Value * V,Type * Ty)338 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
339 // We can always evaluate constants in another type.
340 if (isa<Constant>(V))
341 return true;
342
343 Instruction *I = dyn_cast<Instruction>(V);
344 if (!I) return false;
345
346 Type *OrigTy = V->getType();
347
348 // If this is an extension from the dest type, we can eliminate it, even if it
349 // has multiple uses.
350 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
351 I->getOperand(0)->getType() == Ty)
352 return true;
353
354 // We can't extend or shrink something that has multiple uses: doing so would
355 // require duplicating the instruction in general, which isn't profitable.
356 if (!I->hasOneUse()) return false;
357
358 unsigned Opc = I->getOpcode();
359 switch (Opc) {
360 case Instruction::Add:
361 case Instruction::Sub:
362 case Instruction::Mul:
363 case Instruction::And:
364 case Instruction::Or:
365 case Instruction::Xor:
366 // These operators can all arbitrarily be extended or truncated.
367 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368 CanEvaluateTruncated(I->getOperand(1), Ty);
369
370 case Instruction::UDiv:
371 case Instruction::URem: {
372 // UDiv and URem can be truncated if all the truncated bits are zero.
373 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
374 uint32_t BitWidth = Ty->getScalarSizeInBits();
375 if (BitWidth < OrigBitWidth) {
376 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
377 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
378 MaskedValueIsZero(I->getOperand(1), Mask)) {
379 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
380 CanEvaluateTruncated(I->getOperand(1), Ty);
381 }
382 }
383 break;
384 }
385 case Instruction::Shl:
386 // If we are truncating the result of this SHL, and if it's a shift of a
387 // constant amount, we can always perform a SHL in a smaller type.
388 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
389 uint32_t BitWidth = Ty->getScalarSizeInBits();
390 if (CI->getLimitedValue(BitWidth) < BitWidth)
391 return CanEvaluateTruncated(I->getOperand(0), Ty);
392 }
393 break;
394 case Instruction::LShr:
395 // If this is a truncate of a logical shr, we can truncate it to a smaller
396 // lshr iff we know that the bits we would otherwise be shifting in are
397 // already zeros.
398 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
399 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
400 uint32_t BitWidth = Ty->getScalarSizeInBits();
401 if (MaskedValueIsZero(I->getOperand(0),
402 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
403 CI->getLimitedValue(BitWidth) < BitWidth) {
404 return CanEvaluateTruncated(I->getOperand(0), Ty);
405 }
406 }
407 break;
408 case Instruction::Trunc:
409 // trunc(trunc(x)) -> trunc(x)
410 return true;
411 case Instruction::ZExt:
412 case Instruction::SExt:
413 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
414 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
415 return true;
416 case Instruction::Select: {
417 SelectInst *SI = cast<SelectInst>(I);
418 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
419 CanEvaluateTruncated(SI->getFalseValue(), Ty);
420 }
421 case Instruction::PHI: {
422 // We can change a phi if we can change all operands. Note that we never
423 // get into trouble with cyclic PHIs here because we only consider
424 // instructions with a single use.
425 PHINode *PN = cast<PHINode>(I);
426 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
427 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
428 return false;
429 return true;
430 }
431 default:
432 // TODO: Can handle more cases here.
433 break;
434 }
435
436 return false;
437 }
438
visitTrunc(TruncInst & CI)439 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
440 if (Instruction *Result = commonCastTransforms(CI))
441 return Result;
442
443 // See if we can simplify any instructions used by the input whose sole
444 // purpose is to compute bits we don't care about.
445 if (SimplifyDemandedInstructionBits(CI))
446 return &CI;
447
448 Value *Src = CI.getOperand(0);
449 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
450
451 // Attempt to truncate the entire input expression tree to the destination
452 // type. Only do this if the dest type is a simple type, don't convert the
453 // expression tree to something weird like i93 unless the source is also
454 // strange.
455 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
456 CanEvaluateTruncated(Src, DestTy)) {
457
458 // If this cast is a truncate, evaluting in a different type always
459 // eliminates the cast, so it is always a win.
460 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
461 " to avoid cast: " << CI << '\n');
462 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
463 assert(Res->getType() == DestTy);
464 return ReplaceInstUsesWith(CI, Res);
465 }
466
467 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
468 if (DestTy->getScalarSizeInBits() == 1) {
469 Constant *One = ConstantInt::get(Src->getType(), 1);
470 Src = Builder->CreateAnd(Src, One);
471 Value *Zero = Constant::getNullValue(Src->getType());
472 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
473 }
474
475 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
476 Value *A = nullptr; ConstantInt *Cst = nullptr;
477 if (Src->hasOneUse() &&
478 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
479 // We have three types to worry about here, the type of A, the source of
480 // the truncate (MidSize), and the destination of the truncate. We know that
481 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
482 // between ASize and ResultSize.
483 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
484
485 // If the shift amount is larger than the size of A, then the result is
486 // known to be zero because all the input bits got shifted out.
487 if (Cst->getZExtValue() >= ASize)
488 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
489
490 // Since we're doing an lshr and a zero extend, and know that the shift
491 // amount is smaller than ASize, it is always safe to do the shift in A's
492 // type, then zero extend or truncate to the result.
493 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
494 Shift->takeName(Src);
495 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
496 }
497
498 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
499 // type isn't non-native.
500 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
501 ShouldChangeType(Src->getType(), CI.getType()) &&
502 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
503 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
504 return BinaryOperator::CreateAnd(NewTrunc,
505 ConstantExpr::getTrunc(Cst, CI.getType()));
506 }
507
508 return nullptr;
509 }
510
511 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
512 /// in order to eliminate the icmp.
transformZExtICmp(ICmpInst * ICI,Instruction & CI,bool DoXform)513 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
514 bool DoXform) {
515 // If we are just checking for a icmp eq of a single bit and zext'ing it
516 // to an integer, then shift the bit to the appropriate place and then
517 // cast to integer to avoid the comparison.
518 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
519 const APInt &Op1CV = Op1C->getValue();
520
521 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
522 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
523 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
524 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
525 if (!DoXform) return ICI;
526
527 Value *In = ICI->getOperand(0);
528 Value *Sh = ConstantInt::get(In->getType(),
529 In->getType()->getScalarSizeInBits()-1);
530 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
531 if (In->getType() != CI.getType())
532 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
533
534 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
535 Constant *One = ConstantInt::get(In->getType(), 1);
536 In = Builder->CreateXor(In, One, In->getName()+".not");
537 }
538
539 return ReplaceInstUsesWith(CI, In);
540 }
541
542 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
543 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
544 // zext (X == 1) to i32 --> X iff X has only the low bit set.
545 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
546 // zext (X != 0) to i32 --> X iff X has only the low bit set.
547 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
548 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
549 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
550 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
551 // This only works for EQ and NE
552 ICI->isEquality()) {
553 // If Op1C some other power of two, convert:
554 uint32_t BitWidth = Op1C->getType()->getBitWidth();
555 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
556 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne);
557
558 APInt KnownZeroMask(~KnownZero);
559 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
560 if (!DoXform) return ICI;
561
562 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
563 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
564 // (X&4) == 2 --> false
565 // (X&4) != 2 --> true
566 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
567 isNE);
568 Res = ConstantExpr::getZExt(Res, CI.getType());
569 return ReplaceInstUsesWith(CI, Res);
570 }
571
572 uint32_t ShiftAmt = KnownZeroMask.logBase2();
573 Value *In = ICI->getOperand(0);
574 if (ShiftAmt) {
575 // Perform a logical shr by shiftamt.
576 // Insert the shift to put the result in the low bit.
577 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
578 In->getName()+".lobit");
579 }
580
581 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
582 Constant *One = ConstantInt::get(In->getType(), 1);
583 In = Builder->CreateXor(In, One);
584 }
585
586 if (CI.getType() == In->getType())
587 return ReplaceInstUsesWith(CI, In);
588 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
589 }
590 }
591 }
592
593 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
594 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
595 // may lead to additional simplifications.
596 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
597 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
598 uint32_t BitWidth = ITy->getBitWidth();
599 Value *LHS = ICI->getOperand(0);
600 Value *RHS = ICI->getOperand(1);
601
602 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
603 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
604 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS);
605 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS);
606
607 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
608 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
609 APInt UnknownBit = ~KnownBits;
610 if (UnknownBit.countPopulation() == 1) {
611 if (!DoXform) return ICI;
612
613 Value *Result = Builder->CreateXor(LHS, RHS);
614
615 // Mask off any bits that are set and won't be shifted away.
616 if (KnownOneLHS.uge(UnknownBit))
617 Result = Builder->CreateAnd(Result,
618 ConstantInt::get(ITy, UnknownBit));
619
620 // Shift the bit we're testing down to the lsb.
621 Result = Builder->CreateLShr(
622 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
623
624 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
625 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
626 Result->takeName(ICI);
627 return ReplaceInstUsesWith(CI, Result);
628 }
629 }
630 }
631 }
632
633 return nullptr;
634 }
635
636 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
637 /// specified wider type and produce the same low bits. If not, return false.
638 ///
639 /// If this function returns true, it can also return a non-zero number of bits
640 /// (in BitsToClear) which indicates that the value it computes is correct for
641 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
642 /// out. For example, to promote something like:
643 ///
644 /// %B = trunc i64 %A to i32
645 /// %C = lshr i32 %B, 8
646 /// %E = zext i32 %C to i64
647 ///
648 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
649 /// set to 8 to indicate that the promoted value needs to have bits 24-31
650 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
651 /// clear the top bits anyway, doing this has no extra cost.
652 ///
653 /// This function works on both vectors and scalars.
CanEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear)654 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
655 BitsToClear = 0;
656 if (isa<Constant>(V))
657 return true;
658
659 Instruction *I = dyn_cast<Instruction>(V);
660 if (!I) return false;
661
662 // If the input is a truncate from the destination type, we can trivially
663 // eliminate it.
664 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
665 return true;
666
667 // We can't extend or shrink something that has multiple uses: doing so would
668 // require duplicating the instruction in general, which isn't profitable.
669 if (!I->hasOneUse()) return false;
670
671 unsigned Opc = I->getOpcode(), Tmp;
672 switch (Opc) {
673 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
674 case Instruction::SExt: // zext(sext(x)) -> sext(x).
675 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
676 return true;
677 case Instruction::And:
678 case Instruction::Or:
679 case Instruction::Xor:
680 case Instruction::Add:
681 case Instruction::Sub:
682 case Instruction::Mul:
683 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
684 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
685 return false;
686 // These can all be promoted if neither operand has 'bits to clear'.
687 if (BitsToClear == 0 && Tmp == 0)
688 return true;
689
690 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
691 // other side, BitsToClear is ok.
692 if (Tmp == 0 &&
693 (Opc == Instruction::And || Opc == Instruction::Or ||
694 Opc == Instruction::Xor)) {
695 // We use MaskedValueIsZero here for generality, but the case we care
696 // about the most is constant RHS.
697 unsigned VSize = V->getType()->getScalarSizeInBits();
698 if (MaskedValueIsZero(I->getOperand(1),
699 APInt::getHighBitsSet(VSize, BitsToClear)))
700 return true;
701 }
702
703 // Otherwise, we don't know how to analyze this BitsToClear case yet.
704 return false;
705
706 case Instruction::Shl:
707 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
708 // upper bits we can reduce BitsToClear by the shift amount.
709 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
710 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
711 return false;
712 uint64_t ShiftAmt = Amt->getZExtValue();
713 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
714 return true;
715 }
716 return false;
717 case Instruction::LShr:
718 // We can promote lshr(x, cst) if we can promote x. This requires the
719 // ultimate 'and' to clear out the high zero bits we're clearing out though.
720 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
721 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
722 return false;
723 BitsToClear += Amt->getZExtValue();
724 if (BitsToClear > V->getType()->getScalarSizeInBits())
725 BitsToClear = V->getType()->getScalarSizeInBits();
726 return true;
727 }
728 // Cannot promote variable LSHR.
729 return false;
730 case Instruction::Select:
731 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
732 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
733 // TODO: If important, we could handle the case when the BitsToClear are
734 // known zero in the disagreeing side.
735 Tmp != BitsToClear)
736 return false;
737 return true;
738
739 case Instruction::PHI: {
740 // We can change a phi if we can change all operands. Note that we never
741 // get into trouble with cyclic PHIs here because we only consider
742 // instructions with a single use.
743 PHINode *PN = cast<PHINode>(I);
744 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
745 return false;
746 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
747 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
748 // TODO: If important, we could handle the case when the BitsToClear
749 // are known zero in the disagreeing input.
750 Tmp != BitsToClear)
751 return false;
752 return true;
753 }
754 default:
755 // TODO: Can handle more cases here.
756 return false;
757 }
758 }
759
visitZExt(ZExtInst & CI)760 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
761 // If this zero extend is only used by a truncate, let the truncate be
762 // eliminated before we try to optimize this zext.
763 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
764 return nullptr;
765
766 // If one of the common conversion will work, do it.
767 if (Instruction *Result = commonCastTransforms(CI))
768 return Result;
769
770 // See if we can simplify any instructions used by the input whose sole
771 // purpose is to compute bits we don't care about.
772 if (SimplifyDemandedInstructionBits(CI))
773 return &CI;
774
775 Value *Src = CI.getOperand(0);
776 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
777
778 // Attempt to extend the entire input expression tree to the destination
779 // type. Only do this if the dest type is a simple type, don't convert the
780 // expression tree to something weird like i93 unless the source is also
781 // strange.
782 unsigned BitsToClear;
783 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
784 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
785 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
786 "Unreasonable BitsToClear");
787
788 // Okay, we can transform this! Insert the new expression now.
789 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
790 " to avoid zero extend: " << CI);
791 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
792 assert(Res->getType() == DestTy);
793
794 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
795 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
796
797 // If the high bits are already filled with zeros, just replace this
798 // cast with the result.
799 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
800 DestBitSize-SrcBitsKept)))
801 return ReplaceInstUsesWith(CI, Res);
802
803 // We need to emit an AND to clear the high bits.
804 Constant *C = ConstantInt::get(Res->getType(),
805 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
806 return BinaryOperator::CreateAnd(Res, C);
807 }
808
809 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
810 // types and if the sizes are just right we can convert this into a logical
811 // 'and' which will be much cheaper than the pair of casts.
812 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
813 // TODO: Subsume this into EvaluateInDifferentType.
814
815 // Get the sizes of the types involved. We know that the intermediate type
816 // will be smaller than A or C, but don't know the relation between A and C.
817 Value *A = CSrc->getOperand(0);
818 unsigned SrcSize = A->getType()->getScalarSizeInBits();
819 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
820 unsigned DstSize = CI.getType()->getScalarSizeInBits();
821 // If we're actually extending zero bits, then if
822 // SrcSize < DstSize: zext(a & mask)
823 // SrcSize == DstSize: a & mask
824 // SrcSize > DstSize: trunc(a) & mask
825 if (SrcSize < DstSize) {
826 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
827 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
828 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
829 return new ZExtInst(And, CI.getType());
830 }
831
832 if (SrcSize == DstSize) {
833 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
834 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
835 AndValue));
836 }
837 if (SrcSize > DstSize) {
838 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
839 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
840 return BinaryOperator::CreateAnd(Trunc,
841 ConstantInt::get(Trunc->getType(),
842 AndValue));
843 }
844 }
845
846 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
847 return transformZExtICmp(ICI, CI);
848
849 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
850 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
851 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
852 // of the (zext icmp) will be transformed.
853 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
854 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
855 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
856 (transformZExtICmp(LHS, CI, false) ||
857 transformZExtICmp(RHS, CI, false))) {
858 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
859 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
860 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
861 }
862 }
863
864 // zext(trunc(X) & C) -> (X & zext(C)).
865 Constant *C;
866 Value *X;
867 if (SrcI &&
868 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
869 X->getType() == CI.getType())
870 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
871
872 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
873 Value *And;
874 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
875 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
876 X->getType() == CI.getType()) {
877 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
878 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
879 }
880
881 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
882 if (SrcI && SrcI->hasOneUse() &&
883 SrcI->getType()->getScalarType()->isIntegerTy(1) &&
884 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
885 Value *New = Builder->CreateZExt(X, CI.getType());
886 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
887 }
888
889 return nullptr;
890 }
891
892 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
893 /// in order to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)894 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
895 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
896 ICmpInst::Predicate Pred = ICI->getPredicate();
897
898 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
899 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
900 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
901 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
902 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
903
904 Value *Sh = ConstantInt::get(Op0->getType(),
905 Op0->getType()->getScalarSizeInBits()-1);
906 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
907 if (In->getType() != CI.getType())
908 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
909
910 if (Pred == ICmpInst::ICMP_SGT)
911 In = Builder->CreateNot(In, In->getName()+".not");
912 return ReplaceInstUsesWith(CI, In);
913 }
914 }
915
916 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
917 // If we know that only one bit of the LHS of the icmp can be set and we
918 // have an equality comparison with zero or a power of 2, we can transform
919 // the icmp and sext into bitwise/integer operations.
920 if (ICI->hasOneUse() &&
921 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
922 unsigned BitWidth = Op1C->getType()->getBitWidth();
923 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
924 computeKnownBits(Op0, KnownZero, KnownOne);
925
926 APInt KnownZeroMask(~KnownZero);
927 if (KnownZeroMask.isPowerOf2()) {
928 Value *In = ICI->getOperand(0);
929
930 // If the icmp tests for a known zero bit we can constant fold it.
931 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
932 Value *V = Pred == ICmpInst::ICMP_NE ?
933 ConstantInt::getAllOnesValue(CI.getType()) :
934 ConstantInt::getNullValue(CI.getType());
935 return ReplaceInstUsesWith(CI, V);
936 }
937
938 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
939 // sext ((x & 2^n) == 0) -> (x >> n) - 1
940 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
941 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
942 // Perform a right shift to place the desired bit in the LSB.
943 if (ShiftAmt)
944 In = Builder->CreateLShr(In,
945 ConstantInt::get(In->getType(), ShiftAmt));
946
947 // At this point "In" is either 1 or 0. Subtract 1 to turn
948 // {1, 0} -> {0, -1}.
949 In = Builder->CreateAdd(In,
950 ConstantInt::getAllOnesValue(In->getType()),
951 "sext");
952 } else {
953 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
954 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
955 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
956 // Perform a left shift to place the desired bit in the MSB.
957 if (ShiftAmt)
958 In = Builder->CreateShl(In,
959 ConstantInt::get(In->getType(), ShiftAmt));
960
961 // Distribute the bit over the whole bit width.
962 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
963 BitWidth - 1), "sext");
964 }
965
966 if (CI.getType() == In->getType())
967 return ReplaceInstUsesWith(CI, In);
968 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
969 }
970 }
971 }
972
973 return nullptr;
974 }
975
976 /// CanEvaluateSExtd - Return true if we can take the specified value
977 /// and return it as type Ty without inserting any new casts and without
978 /// changing the value of the common low bits. This is used by code that tries
979 /// to promote integer operations to a wider types will allow us to eliminate
980 /// the extension.
981 ///
982 /// This function works on both vectors and scalars.
983 ///
CanEvaluateSExtd(Value * V,Type * Ty)984 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
985 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
986 "Can't sign extend type to a smaller type");
987 // If this is a constant, it can be trivially promoted.
988 if (isa<Constant>(V))
989 return true;
990
991 Instruction *I = dyn_cast<Instruction>(V);
992 if (!I) return false;
993
994 // If this is a truncate from the dest type, we can trivially eliminate it.
995 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
996 return true;
997
998 // We can't extend or shrink something that has multiple uses: doing so would
999 // require duplicating the instruction in general, which isn't profitable.
1000 if (!I->hasOneUse()) return false;
1001
1002 switch (I->getOpcode()) {
1003 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1004 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1005 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1006 return true;
1007 case Instruction::And:
1008 case Instruction::Or:
1009 case Instruction::Xor:
1010 case Instruction::Add:
1011 case Instruction::Sub:
1012 case Instruction::Mul:
1013 // These operators can all arbitrarily be extended if their inputs can.
1014 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1015 CanEvaluateSExtd(I->getOperand(1), Ty);
1016
1017 //case Instruction::Shl: TODO
1018 //case Instruction::LShr: TODO
1019
1020 case Instruction::Select:
1021 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1022 CanEvaluateSExtd(I->getOperand(2), Ty);
1023
1024 case Instruction::PHI: {
1025 // We can change a phi if we can change all operands. Note that we never
1026 // get into trouble with cyclic PHIs here because we only consider
1027 // instructions with a single use.
1028 PHINode *PN = cast<PHINode>(I);
1029 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1030 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1031 return true;
1032 }
1033 default:
1034 // TODO: Can handle more cases here.
1035 break;
1036 }
1037
1038 return false;
1039 }
1040
visitSExt(SExtInst & CI)1041 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1042 // If this sign extend is only used by a truncate, let the truncate be
1043 // eliminated before we try to optimize this sext.
1044 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1045 return nullptr;
1046
1047 if (Instruction *I = commonCastTransforms(CI))
1048 return I;
1049
1050 // See if we can simplify any instructions used by the input whose sole
1051 // purpose is to compute bits we don't care about.
1052 if (SimplifyDemandedInstructionBits(CI))
1053 return &CI;
1054
1055 Value *Src = CI.getOperand(0);
1056 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1057
1058 // Attempt to extend the entire input expression tree to the destination
1059 // type. Only do this if the dest type is a simple type, don't convert the
1060 // expression tree to something weird like i93 unless the source is also
1061 // strange.
1062 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1063 CanEvaluateSExtd(Src, DestTy)) {
1064 // Okay, we can transform this! Insert the new expression now.
1065 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1066 " to avoid sign extend: " << CI);
1067 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1068 assert(Res->getType() == DestTy);
1069
1070 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1071 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1072
1073 // If the high bits are already filled with sign bit, just replace this
1074 // cast with the result.
1075 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1076 return ReplaceInstUsesWith(CI, Res);
1077
1078 // We need to emit a shl + ashr to do the sign extend.
1079 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1080 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1081 ShAmt);
1082 }
1083
1084 // If this input is a trunc from our destination, then turn sext(trunc(x))
1085 // into shifts.
1086 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1087 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1088 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1089 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1090
1091 // We need to emit a shl + ashr to do the sign extend.
1092 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1093 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1094 return BinaryOperator::CreateAShr(Res, ShAmt);
1095 }
1096
1097 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1098 return transformSExtICmp(ICI, CI);
1099
1100 // If the input is a shl/ashr pair of a same constant, then this is a sign
1101 // extension from a smaller value. If we could trust arbitrary bitwidth
1102 // integers, we could turn this into a truncate to the smaller bit and then
1103 // use a sext for the whole extension. Since we don't, look deeper and check
1104 // for a truncate. If the source and dest are the same type, eliminate the
1105 // trunc and extend and just do shifts. For example, turn:
1106 // %a = trunc i32 %i to i8
1107 // %b = shl i8 %a, 6
1108 // %c = ashr i8 %b, 6
1109 // %d = sext i8 %c to i32
1110 // into:
1111 // %a = shl i32 %i, 30
1112 // %d = ashr i32 %a, 30
1113 Value *A = nullptr;
1114 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1115 ConstantInt *BA = nullptr, *CA = nullptr;
1116 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1117 m_ConstantInt(CA))) &&
1118 BA == CA && A->getType() == CI.getType()) {
1119 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1120 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1121 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1122 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1123 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1124 return BinaryOperator::CreateAShr(A, ShAmtV);
1125 }
1126
1127 return nullptr;
1128 }
1129
1130
1131 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1132 /// in the specified FP type without changing its value.
FitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1133 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1134 bool losesInfo;
1135 APFloat F = CFP->getValueAPF();
1136 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1137 if (!losesInfo)
1138 return ConstantFP::get(CFP->getContext(), F);
1139 return nullptr;
1140 }
1141
1142 /// LookThroughFPExtensions - If this is an fp extension instruction, look
1143 /// through it until we get the source value.
LookThroughFPExtensions(Value * V)1144 static Value *LookThroughFPExtensions(Value *V) {
1145 if (Instruction *I = dyn_cast<Instruction>(V))
1146 if (I->getOpcode() == Instruction::FPExt)
1147 return LookThroughFPExtensions(I->getOperand(0));
1148
1149 // If this value is a constant, return the constant in the smallest FP type
1150 // that can accurately represent it. This allows us to turn
1151 // (float)((double)X+2.0) into x+2.0f.
1152 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1153 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1154 return V; // No constant folding of this.
1155 // See if the value can be truncated to half and then reextended.
1156 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1157 return V;
1158 // See if the value can be truncated to float and then reextended.
1159 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1160 return V;
1161 if (CFP->getType()->isDoubleTy())
1162 return V; // Won't shrink.
1163 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1164 return V;
1165 // Don't try to shrink to various long double types.
1166 }
1167
1168 return V;
1169 }
1170
visitFPTrunc(FPTruncInst & CI)1171 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1172 if (Instruction *I = commonCastTransforms(CI))
1173 return I;
1174 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1175 // simpilify this expression to avoid one or more of the trunc/extend
1176 // operations if we can do so without changing the numerical results.
1177 //
1178 // The exact manner in which the widths of the operands interact to limit
1179 // what we can and cannot do safely varies from operation to operation, and
1180 // is explained below in the various case statements.
1181 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1182 if (OpI && OpI->hasOneUse()) {
1183 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1184 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1185 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1186 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1187 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1188 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1189 unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1190 switch (OpI->getOpcode()) {
1191 default: break;
1192 case Instruction::FAdd:
1193 case Instruction::FSub:
1194 // For addition and subtraction, the infinitely precise result can
1195 // essentially be arbitrarily wide; proving that double rounding
1196 // will not occur because the result of OpI is exact (as we will for
1197 // FMul, for example) is hopeless. However, we *can* nonetheless
1198 // frequently know that double rounding cannot occur (or that it is
1199 // innocuous) by taking advantage of the specific structure of
1200 // infinitely-precise results that admit double rounding.
1201 //
1202 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1203 // to represent both sources, we can guarantee that the double
1204 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1205 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1206 // for proof of this fact).
1207 //
1208 // Note: Figueroa does not consider the case where DstFormat !=
1209 // SrcFormat. It's possible (likely even!) that this analysis
1210 // could be tightened for those cases, but they are rare (the main
1211 // case of interest here is (float)((double)float + float)).
1212 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1213 if (LHSOrig->getType() != CI.getType())
1214 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1215 if (RHSOrig->getType() != CI.getType())
1216 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1217 Instruction *RI =
1218 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1219 RI->copyFastMathFlags(OpI);
1220 return RI;
1221 }
1222 break;
1223 case Instruction::FMul:
1224 // For multiplication, the infinitely precise result has at most
1225 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1226 // that such a value can be exactly represented, then no double
1227 // rounding can possibly occur; we can safely perform the operation
1228 // in the destination format if it can represent both sources.
1229 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1230 if (LHSOrig->getType() != CI.getType())
1231 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1232 if (RHSOrig->getType() != CI.getType())
1233 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1234 Instruction *RI =
1235 BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1236 RI->copyFastMathFlags(OpI);
1237 return RI;
1238 }
1239 break;
1240 case Instruction::FDiv:
1241 // For division, we use again use the bound from Figueroa's
1242 // dissertation. I am entirely certain that this bound can be
1243 // tightened in the unbalanced operand case by an analysis based on
1244 // the diophantine rational approximation bound, but the well-known
1245 // condition used here is a good conservative first pass.
1246 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1247 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1248 if (LHSOrig->getType() != CI.getType())
1249 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1250 if (RHSOrig->getType() != CI.getType())
1251 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1252 Instruction *RI =
1253 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1254 RI->copyFastMathFlags(OpI);
1255 return RI;
1256 }
1257 break;
1258 case Instruction::FRem:
1259 // Remainder is straightforward. Remainder is always exact, so the
1260 // type of OpI doesn't enter into things at all. We simply evaluate
1261 // in whichever source type is larger, then convert to the
1262 // destination type.
1263 if (LHSWidth < SrcWidth)
1264 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1265 else if (RHSWidth <= SrcWidth)
1266 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1267 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1268 if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1269 RI->copyFastMathFlags(OpI);
1270 return CastInst::CreateFPCast(ExactResult, CI.getType());
1271 }
1272
1273 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1274 if (BinaryOperator::isFNeg(OpI)) {
1275 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1276 CI.getType());
1277 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1278 RI->copyFastMathFlags(OpI);
1279 return RI;
1280 }
1281 }
1282
1283 // (fptrunc (select cond, R1, Cst)) -->
1284 // (select cond, (fptrunc R1), (fptrunc Cst))
1285 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1286 if (SI &&
1287 (isa<ConstantFP>(SI->getOperand(1)) ||
1288 isa<ConstantFP>(SI->getOperand(2)))) {
1289 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1290 CI.getType());
1291 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1292 CI.getType());
1293 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1294 }
1295
1296 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1297 if (II) {
1298 switch (II->getIntrinsicID()) {
1299 default: break;
1300 case Intrinsic::fabs: {
1301 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1302 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1303 CI.getType());
1304 Type *IntrinsicType[] = { CI.getType() };
1305 Function *Overload =
1306 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1307 II->getIntrinsicID(), IntrinsicType);
1308
1309 Value *Args[] = { InnerTrunc };
1310 return CallInst::Create(Overload, Args, II->getName());
1311 }
1312 }
1313 }
1314
1315 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1316 // Note that we restrict this transformation based on
1317 // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
1318 // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
1319 // single-precision intrinsic can be expanded in the backend.
1320 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1321 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1322 (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
1323 Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
1324 Call->getNumArgOperands() == 1 &&
1325 Call->hasOneUse()) {
1326 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1327 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1328 CI.getType()->isFloatTy() &&
1329 Call->getType()->isDoubleTy() &&
1330 Arg->getType()->isDoubleTy() &&
1331 Arg->getOperand(0)->getType()->isFloatTy()) {
1332 Function *Callee = Call->getCalledFunction();
1333 Module *M = CI.getParent()->getParent()->getParent();
1334 Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
1335 Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
1336 M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
1337 Builder->getFloatTy(), Builder->getFloatTy(),
1338 NULL);
1339 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1340 "sqrtfcall");
1341 ret->setAttributes(Callee->getAttributes());
1342
1343
1344 // Remove the old Call. With -fmath-errno, it won't get marked readnone.
1345 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1346 EraseInstFromFunction(*Call);
1347 return ret;
1348 }
1349 }
1350
1351 return nullptr;
1352 }
1353
visitFPExt(CastInst & CI)1354 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1355 return commonCastTransforms(CI);
1356 }
1357
visitFPToUI(FPToUIInst & FI)1358 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1359 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1360 if (!OpI)
1361 return commonCastTransforms(FI);
1362
1363 // fptoui(uitofp(X)) --> X
1364 // fptoui(sitofp(X)) --> X
1365 // This is safe if the intermediate type has enough bits in its mantissa to
1366 // accurately represent all values of X. For example, do not do this with
1367 // i64->float->i64. This is also safe for sitofp case, because any negative
1368 // 'X' value would cause an undefined result for the fptoui.
1369 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1370 OpI->getOperand(0)->getType() == FI.getType() &&
1371 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1372 OpI->getType()->getFPMantissaWidth())
1373 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1374
1375 return commonCastTransforms(FI);
1376 }
1377
visitFPToSI(FPToSIInst & FI)1378 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1379 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1380 if (!OpI)
1381 return commonCastTransforms(FI);
1382
1383 // fptosi(sitofp(X)) --> X
1384 // fptosi(uitofp(X)) --> X
1385 // This is safe if the intermediate type has enough bits in its mantissa to
1386 // accurately represent all values of X. For example, do not do this with
1387 // i64->float->i64. This is also safe for sitofp case, because any negative
1388 // 'X' value would cause an undefined result for the fptoui.
1389 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1390 OpI->getOperand(0)->getType() == FI.getType() &&
1391 (int)FI.getType()->getScalarSizeInBits() <=
1392 OpI->getType()->getFPMantissaWidth())
1393 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1394
1395 return commonCastTransforms(FI);
1396 }
1397
visitUIToFP(CastInst & CI)1398 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1399 return commonCastTransforms(CI);
1400 }
1401
visitSIToFP(CastInst & CI)1402 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1403 return commonCastTransforms(CI);
1404 }
1405
visitIntToPtr(IntToPtrInst & CI)1406 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1407 // If the source integer type is not the intptr_t type for this target, do a
1408 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1409 // cast to be exposed to other transforms.
1410
1411 if (DL) {
1412 unsigned AS = CI.getAddressSpace();
1413 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1414 DL->getPointerSizeInBits(AS)) {
1415 Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
1416 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1417 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1418
1419 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1420 return new IntToPtrInst(P, CI.getType());
1421 }
1422 }
1423
1424 if (Instruction *I = commonCastTransforms(CI))
1425 return I;
1426
1427 return nullptr;
1428 }
1429
1430 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1431 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1432 Value *Src = CI.getOperand(0);
1433
1434 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1435 // If casting the result of a getelementptr instruction with no offset, turn
1436 // this into a cast of the original pointer!
1437 if (GEP->hasAllZeroIndices() &&
1438 // If CI is an addrspacecast and GEP changes the poiner type, merging
1439 // GEP into CI would undo canonicalizing addrspacecast with different
1440 // pointer types, causing infinite loops.
1441 (!isa<AddrSpaceCastInst>(CI) ||
1442 GEP->getType() == GEP->getPointerOperand()->getType())) {
1443 // Changing the cast operand is usually not a good idea but it is safe
1444 // here because the pointer operand is being replaced with another
1445 // pointer operand so the opcode doesn't need to change.
1446 Worklist.Add(GEP);
1447 CI.setOperand(0, GEP->getOperand(0));
1448 return &CI;
1449 }
1450
1451 if (!DL)
1452 return commonCastTransforms(CI);
1453
1454 // If the GEP has a single use, and the base pointer is a bitcast, and the
1455 // GEP computes a constant offset, see if we can convert these three
1456 // instructions into fewer. This typically happens with unions and other
1457 // non-type-safe code.
1458 unsigned AS = GEP->getPointerAddressSpace();
1459 unsigned OffsetBits = DL->getPointerSizeInBits(AS);
1460 APInt Offset(OffsetBits, 0);
1461 BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
1462 if (GEP->hasOneUse() &&
1463 BCI &&
1464 GEP->accumulateConstantOffset(*DL, Offset)) {
1465 // Get the base pointer input of the bitcast, and the type it points to.
1466 Value *OrigBase = BCI->getOperand(0);
1467 SmallVector<Value*, 8> NewIndices;
1468 if (FindElementAtOffset(OrigBase->getType(),
1469 Offset.getSExtValue(),
1470 NewIndices)) {
1471 // If we were able to index down into an element, create the GEP
1472 // and bitcast the result. This eliminates one bitcast, potentially
1473 // two.
1474 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1475 Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1476 Builder->CreateGEP(OrigBase, NewIndices);
1477 NGEP->takeName(GEP);
1478
1479 if (isa<BitCastInst>(CI))
1480 return new BitCastInst(NGEP, CI.getType());
1481 assert(isa<PtrToIntInst>(CI));
1482 return new PtrToIntInst(NGEP, CI.getType());
1483 }
1484 }
1485 }
1486
1487 return commonCastTransforms(CI);
1488 }
1489
visitPtrToInt(PtrToIntInst & CI)1490 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1491 // If the destination integer type is not the intptr_t type for this target,
1492 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1493 // to be exposed to other transforms.
1494
1495 if (!DL)
1496 return commonPointerCastTransforms(CI);
1497
1498 Type *Ty = CI.getType();
1499 unsigned AS = CI.getPointerAddressSpace();
1500
1501 if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
1502 return commonPointerCastTransforms(CI);
1503
1504 Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
1505 if (Ty->isVectorTy()) // Handle vectors of pointers.
1506 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1507
1508 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1509 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1510 }
1511
1512 /// OptimizeVectorResize - This input value (which is known to have vector type)
1513 /// is being zero extended or truncated to the specified vector type. Try to
1514 /// replace it with a shuffle (and vector/vector bitcast) if possible.
1515 ///
1516 /// The source and destination vector types may have different element types.
OptimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1517 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1518 InstCombiner &IC) {
1519 // We can only do this optimization if the output is a multiple of the input
1520 // element size, or the input is a multiple of the output element size.
1521 // Convert the input type to have the same element type as the output.
1522 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1523
1524 if (SrcTy->getElementType() != DestTy->getElementType()) {
1525 // The input types don't need to be identical, but for now they must be the
1526 // same size. There is no specific reason we couldn't handle things like
1527 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1528 // there yet.
1529 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1530 DestTy->getElementType()->getPrimitiveSizeInBits())
1531 return nullptr;
1532
1533 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1534 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1535 }
1536
1537 // Now that the element types match, get the shuffle mask and RHS of the
1538 // shuffle to use, which depends on whether we're increasing or decreasing the
1539 // size of the input.
1540 SmallVector<uint32_t, 16> ShuffleMask;
1541 Value *V2;
1542
1543 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1544 // If we're shrinking the number of elements, just shuffle in the low
1545 // elements from the input and use undef as the second shuffle input.
1546 V2 = UndefValue::get(SrcTy);
1547 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1548 ShuffleMask.push_back(i);
1549
1550 } else {
1551 // If we're increasing the number of elements, shuffle in all of the
1552 // elements from InVal and fill the rest of the result elements with zeros
1553 // from a constant zero.
1554 V2 = Constant::getNullValue(SrcTy);
1555 unsigned SrcElts = SrcTy->getNumElements();
1556 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1557 ShuffleMask.push_back(i);
1558
1559 // The excess elements reference the first element of the zero input.
1560 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1561 ShuffleMask.push_back(SrcElts);
1562 }
1563
1564 return new ShuffleVectorInst(InVal, V2,
1565 ConstantDataVector::get(V2->getContext(),
1566 ShuffleMask));
1567 }
1568
isMultipleOfTypeSize(unsigned Value,Type * Ty)1569 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1570 return Value % Ty->getPrimitiveSizeInBits() == 0;
1571 }
1572
getTypeSizeIndex(unsigned Value,Type * Ty)1573 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1574 return Value / Ty->getPrimitiveSizeInBits();
1575 }
1576
1577 /// CollectInsertionElements - V is a value which is inserted into a vector of
1578 /// VecEltTy. Look through the value to see if we can decompose it into
1579 /// insertions into the vector. See the example in the comment for
1580 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1581 /// The type of V is always a non-zero multiple of VecEltTy's size.
1582 /// Shift is the number of bits between the lsb of V and the lsb of
1583 /// the vector.
1584 ///
1585 /// This returns false if the pattern can't be matched or true if it can,
1586 /// filling in Elements with the elements found here.
CollectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,InstCombiner & IC)1587 static bool CollectInsertionElements(Value *V, unsigned Shift,
1588 SmallVectorImpl<Value*> &Elements,
1589 Type *VecEltTy, InstCombiner &IC) {
1590 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1591 "Shift should be a multiple of the element type size");
1592
1593 // Undef values never contribute useful bits to the result.
1594 if (isa<UndefValue>(V)) return true;
1595
1596 // If we got down to a value of the right type, we win, try inserting into the
1597 // right element.
1598 if (V->getType() == VecEltTy) {
1599 // Inserting null doesn't actually insert any elements.
1600 if (Constant *C = dyn_cast<Constant>(V))
1601 if (C->isNullValue())
1602 return true;
1603
1604 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1605 if (IC.getDataLayout()->isBigEndian())
1606 ElementIndex = Elements.size() - ElementIndex - 1;
1607
1608 // Fail if multiple elements are inserted into this slot.
1609 if (Elements[ElementIndex])
1610 return false;
1611
1612 Elements[ElementIndex] = V;
1613 return true;
1614 }
1615
1616 if (Constant *C = dyn_cast<Constant>(V)) {
1617 // Figure out the # elements this provides, and bitcast it or slice it up
1618 // as required.
1619 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1620 VecEltTy);
1621 // If the constant is the size of a vector element, we just need to bitcast
1622 // it to the right type so it gets properly inserted.
1623 if (NumElts == 1)
1624 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1625 Shift, Elements, VecEltTy, IC);
1626
1627 // Okay, this is a constant that covers multiple elements. Slice it up into
1628 // pieces and insert each element-sized piece into the vector.
1629 if (!isa<IntegerType>(C->getType()))
1630 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1631 C->getType()->getPrimitiveSizeInBits()));
1632 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1633 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1634
1635 for (unsigned i = 0; i != NumElts; ++i) {
1636 unsigned ShiftI = Shift+i*ElementSize;
1637 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1638 ShiftI));
1639 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1640 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
1641 return false;
1642 }
1643 return true;
1644 }
1645
1646 if (!V->hasOneUse()) return false;
1647
1648 Instruction *I = dyn_cast<Instruction>(V);
1649 if (!I) return false;
1650 switch (I->getOpcode()) {
1651 default: return false; // Unhandled case.
1652 case Instruction::BitCast:
1653 return CollectInsertionElements(I->getOperand(0), Shift,
1654 Elements, VecEltTy, IC);
1655 case Instruction::ZExt:
1656 if (!isMultipleOfTypeSize(
1657 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1658 VecEltTy))
1659 return false;
1660 return CollectInsertionElements(I->getOperand(0), Shift,
1661 Elements, VecEltTy, IC);
1662 case Instruction::Or:
1663 return CollectInsertionElements(I->getOperand(0), Shift,
1664 Elements, VecEltTy, IC) &&
1665 CollectInsertionElements(I->getOperand(1), Shift,
1666 Elements, VecEltTy, IC);
1667 case Instruction::Shl: {
1668 // Must be shifting by a constant that is a multiple of the element size.
1669 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1670 if (!CI) return false;
1671 Shift += CI->getZExtValue();
1672 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1673 return CollectInsertionElements(I->getOperand(0), Shift,
1674 Elements, VecEltTy, IC);
1675 }
1676
1677 }
1678 }
1679
1680
1681 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1682 /// may be doing shifts and ors to assemble the elements of the vector manually.
1683 /// Try to rip the code out and replace it with insertelements. This is to
1684 /// optimize code like this:
1685 ///
1686 /// %tmp37 = bitcast float %inc to i32
1687 /// %tmp38 = zext i32 %tmp37 to i64
1688 /// %tmp31 = bitcast float %inc5 to i32
1689 /// %tmp32 = zext i32 %tmp31 to i64
1690 /// %tmp33 = shl i64 %tmp32, 32
1691 /// %ins35 = or i64 %tmp33, %tmp38
1692 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
1693 ///
1694 /// Into two insertelements that do "buildvector{%inc, %inc5}".
OptimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1695 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1696 InstCombiner &IC) {
1697 // We need to know the target byte order to perform this optimization.
1698 if (!IC.getDataLayout()) return nullptr;
1699
1700 VectorType *DestVecTy = cast<VectorType>(CI.getType());
1701 Value *IntInput = CI.getOperand(0);
1702
1703 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1704 if (!CollectInsertionElements(IntInput, 0, Elements,
1705 DestVecTy->getElementType(), IC))
1706 return nullptr;
1707
1708 // If we succeeded, we know that all of the element are specified by Elements
1709 // or are zero if Elements has a null entry. Recast this as a set of
1710 // insertions.
1711 Value *Result = Constant::getNullValue(CI.getType());
1712 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1713 if (!Elements[i]) continue; // Unset element.
1714
1715 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1716 IC.Builder->getInt32(i));
1717 }
1718
1719 return Result;
1720 }
1721
1722
1723 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1724 /// bitcast. The various long double bitcasts can't get in here.
OptimizeIntToFloatBitCast(BitCastInst & CI,InstCombiner & IC)1725 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1726 // We need to know the target byte order to perform this optimization.
1727 if (!IC.getDataLayout()) return nullptr;
1728
1729 Value *Src = CI.getOperand(0);
1730 Type *DestTy = CI.getType();
1731
1732 // If this is a bitcast from int to float, check to see if the int is an
1733 // extraction from a vector.
1734 Value *VecInput = nullptr;
1735 // bitcast(trunc(bitcast(somevector)))
1736 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1737 isa<VectorType>(VecInput->getType())) {
1738 VectorType *VecTy = cast<VectorType>(VecInput->getType());
1739 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1740
1741 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1742 // If the element type of the vector doesn't match the result type,
1743 // bitcast it to be a vector type we can extract from.
1744 if (VecTy->getElementType() != DestTy) {
1745 VecTy = VectorType::get(DestTy,
1746 VecTy->getPrimitiveSizeInBits() / DestWidth);
1747 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1748 }
1749
1750 unsigned Elt = 0;
1751 if (IC.getDataLayout()->isBigEndian())
1752 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1753 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1754 }
1755 }
1756
1757 // bitcast(trunc(lshr(bitcast(somevector), cst))
1758 ConstantInt *ShAmt = nullptr;
1759 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1760 m_ConstantInt(ShAmt)))) &&
1761 isa<VectorType>(VecInput->getType())) {
1762 VectorType *VecTy = cast<VectorType>(VecInput->getType());
1763 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1764 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1765 ShAmt->getZExtValue() % DestWidth == 0) {
1766 // If the element type of the vector doesn't match the result type,
1767 // bitcast it to be a vector type we can extract from.
1768 if (VecTy->getElementType() != DestTy) {
1769 VecTy = VectorType::get(DestTy,
1770 VecTy->getPrimitiveSizeInBits() / DestWidth);
1771 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1772 }
1773
1774 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1775 if (IC.getDataLayout()->isBigEndian())
1776 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1777 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1778 }
1779 }
1780 return nullptr;
1781 }
1782
visitBitCast(BitCastInst & CI)1783 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1784 // If the operands are integer typed then apply the integer transforms,
1785 // otherwise just apply the common ones.
1786 Value *Src = CI.getOperand(0);
1787 Type *SrcTy = Src->getType();
1788 Type *DestTy = CI.getType();
1789
1790 // Get rid of casts from one type to the same type. These are useless and can
1791 // be replaced by the operand.
1792 if (DestTy == Src->getType())
1793 return ReplaceInstUsesWith(CI, Src);
1794
1795 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1796 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1797 Type *DstElTy = DstPTy->getElementType();
1798 Type *SrcElTy = SrcPTy->getElementType();
1799
1800 // If we are casting a alloca to a pointer to a type of the same
1801 // size, rewrite the allocation instruction to allocate the "right" type.
1802 // There is no need to modify malloc calls because it is their bitcast that
1803 // needs to be cleaned up.
1804 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1805 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1806 return V;
1807
1808 // If the source and destination are pointers, and this cast is equivalent
1809 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1810 // This can enhance SROA and other transforms that want type-safe pointers.
1811 Constant *ZeroUInt =
1812 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1813 unsigned NumZeros = 0;
1814 while (SrcElTy != DstElTy &&
1815 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1816 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1817 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1818 ++NumZeros;
1819 }
1820
1821 // If we found a path from the src to dest, create the getelementptr now.
1822 if (SrcElTy == DstElTy) {
1823 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1824 return GetElementPtrInst::CreateInBounds(Src, Idxs);
1825 }
1826 }
1827
1828 // Try to optimize int -> float bitcasts.
1829 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1830 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1831 return I;
1832
1833 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1834 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1835 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1836 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1837 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1838 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1839 }
1840
1841 if (isa<IntegerType>(SrcTy)) {
1842 // If this is a cast from an integer to vector, check to see if the input
1843 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1844 // the casts with a shuffle and (potentially) a bitcast.
1845 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1846 CastInst *SrcCast = cast<CastInst>(Src);
1847 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1848 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1849 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1850 cast<VectorType>(DestTy), *this))
1851 return I;
1852 }
1853
1854 // If the input is an 'or' instruction, we may be doing shifts and ors to
1855 // assemble the elements of the vector manually. Try to rip the code out
1856 // and replace it with insertelements.
1857 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1858 return ReplaceInstUsesWith(CI, V);
1859 }
1860 }
1861
1862 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1863 if (SrcVTy->getNumElements() == 1) {
1864 // If our destination is not a vector, then make this a straight
1865 // scalar-scalar cast.
1866 if (!DestTy->isVectorTy()) {
1867 Value *Elem =
1868 Builder->CreateExtractElement(Src,
1869 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1870 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1871 }
1872
1873 // Otherwise, see if our source is an insert. If so, then use the scalar
1874 // component directly.
1875 if (InsertElementInst *IEI =
1876 dyn_cast<InsertElementInst>(CI.getOperand(0)))
1877 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1878 DestTy);
1879 }
1880 }
1881
1882 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1883 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
1884 // a bitcast to a vector with the same # elts.
1885 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1886 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1887 SVI->getType()->getNumElements() ==
1888 SVI->getOperand(0)->getType()->getVectorNumElements()) {
1889 BitCastInst *Tmp;
1890 // If either of the operands is a cast from CI.getType(), then
1891 // evaluating the shuffle in the casted destination's type will allow
1892 // us to eliminate at least one cast.
1893 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1894 Tmp->getOperand(0)->getType() == DestTy) ||
1895 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1896 Tmp->getOperand(0)->getType() == DestTy)) {
1897 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1898 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1899 // Return a new shuffle vector. Use the same element ID's, as we
1900 // know the vector types match #elts.
1901 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1902 }
1903 }
1904 }
1905
1906 if (SrcTy->isPointerTy())
1907 return commonPointerCastTransforms(CI);
1908 return commonCastTransforms(CI);
1909 }
1910
visitAddrSpaceCast(AddrSpaceCastInst & CI)1911 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1912 // If the destination pointer element type is not the the same as the source's
1913 // do the addrspacecast to the same type, and then the bitcast in the new
1914 // address space. This allows the cast to be exposed to other transforms.
1915 Value *Src = CI.getOperand(0);
1916 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1917 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1918
1919 Type *DestElemTy = DestTy->getElementType();
1920 if (SrcTy->getElementType() != DestElemTy) {
1921 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1922 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1923 // Handle vectors of pointers.
1924 MidTy = VectorType::get(MidTy, VT->getNumElements());
1925 }
1926
1927 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1928 return new AddrSpaceCastInst(NewBitCast, CI.getType());
1929 }
1930
1931 return commonPointerCastTransforms(CI);
1932 }
1933