1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/LoopPass.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SSAUpdater.h"
31 #include "llvm/Transforms/Utils/ValueMapper.h"
32 using namespace llvm;
33
34 #define DEBUG_TYPE "loop-rotate"
35
36 static cl::opt<unsigned>
37 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
38 cl::desc("The default maximum header size for automatic loop rotation"));
39
40 STATISTIC(NumRotated, "Number of loops rotated");
41 namespace {
42
43 class LoopRotate : public LoopPass {
44 public:
45 static char ID; // Pass ID, replacement for typeid
LoopRotate(int SpecifiedMaxHeaderSize=-1)46 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
47 initializeLoopRotatePass(*PassRegistry::getPassRegistry());
48 if (SpecifiedMaxHeaderSize == -1)
49 MaxHeaderSize = DefaultRotationThreshold;
50 else
51 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
52 }
53
54 // LCSSA form makes instruction renaming easier.
getAnalysisUsage(AnalysisUsage & AU) const55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addPreserved<DominatorTreeWrapperPass>();
57 AU.addRequired<LoopInfo>();
58 AU.addPreserved<LoopInfo>();
59 AU.addRequiredID(LoopSimplifyID);
60 AU.addPreservedID(LoopSimplifyID);
61 AU.addRequiredID(LCSSAID);
62 AU.addPreservedID(LCSSAID);
63 AU.addPreserved<ScalarEvolution>();
64 AU.addRequired<TargetTransformInfo>();
65 }
66
67 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
68 bool simplifyLoopLatch(Loop *L);
69 bool rotateLoop(Loop *L, bool SimplifiedLatch);
70
71 private:
72 unsigned MaxHeaderSize;
73 LoopInfo *LI;
74 const TargetTransformInfo *TTI;
75 };
76 }
77
78 char LoopRotate::ID = 0;
79 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)80 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
81 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
82 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
83 INITIALIZE_PASS_DEPENDENCY(LCSSA)
84 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
85
86 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
87 return new LoopRotate(MaxHeaderSize);
88 }
89
90 /// Rotate Loop L as many times as possible. Return true if
91 /// the loop is rotated at least once.
runOnLoop(Loop * L,LPPassManager & LPM)92 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
93 if (skipOptnoneFunction(L))
94 return false;
95
96 // Save the loop metadata.
97 MDNode *LoopMD = L->getLoopID();
98
99 LI = &getAnalysis<LoopInfo>();
100 TTI = &getAnalysis<TargetTransformInfo>();
101
102 // Simplify the loop latch before attempting to rotate the header
103 // upward. Rotation may not be needed if the loop tail can be folded into the
104 // loop exit.
105 bool SimplifiedLatch = simplifyLoopLatch(L);
106
107 // One loop can be rotated multiple times.
108 bool MadeChange = false;
109 while (rotateLoop(L, SimplifiedLatch)) {
110 MadeChange = true;
111 SimplifiedLatch = false;
112 }
113
114 // Restore the loop metadata.
115 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
116 if ((MadeChange || SimplifiedLatch) && LoopMD)
117 L->setLoopID(LoopMD);
118
119 return MadeChange;
120 }
121
122 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
123 /// old header into the preheader. If there were uses of the values produced by
124 /// these instruction that were outside of the loop, we have to insert PHI nodes
125 /// to merge the two values. Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap)126 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
127 BasicBlock *OrigPreheader,
128 ValueToValueMapTy &ValueMap) {
129 // Remove PHI node entries that are no longer live.
130 BasicBlock::iterator I, E = OrigHeader->end();
131 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
132 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
133
134 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
135 // as necessary.
136 SSAUpdater SSA;
137 for (I = OrigHeader->begin(); I != E; ++I) {
138 Value *OrigHeaderVal = I;
139
140 // If there are no uses of the value (e.g. because it returns void), there
141 // is nothing to rewrite.
142 if (OrigHeaderVal->use_empty())
143 continue;
144
145 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
146
147 // The value now exits in two versions: the initial value in the preheader
148 // and the loop "next" value in the original header.
149 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
150 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
151 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
152
153 // Visit each use of the OrigHeader instruction.
154 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
155 UE = OrigHeaderVal->use_end(); UI != UE; ) {
156 // Grab the use before incrementing the iterator.
157 Use &U = *UI;
158
159 // Increment the iterator before removing the use from the list.
160 ++UI;
161
162 // SSAUpdater can't handle a non-PHI use in the same block as an
163 // earlier def. We can easily handle those cases manually.
164 Instruction *UserInst = cast<Instruction>(U.getUser());
165 if (!isa<PHINode>(UserInst)) {
166 BasicBlock *UserBB = UserInst->getParent();
167
168 // The original users in the OrigHeader are already using the
169 // original definitions.
170 if (UserBB == OrigHeader)
171 continue;
172
173 // Users in the OrigPreHeader need to use the value to which the
174 // original definitions are mapped.
175 if (UserBB == OrigPreheader) {
176 U = OrigPreHeaderVal;
177 continue;
178 }
179 }
180
181 // Anything else can be handled by SSAUpdater.
182 SSA.RewriteUse(U);
183 }
184 }
185 }
186
187 /// Determine whether the instructions in this range my be safely and cheaply
188 /// speculated. This is not an important enough situation to develop complex
189 /// heuristics. We handle a single arithmetic instruction along with any type
190 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End)191 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
192 BasicBlock::iterator End) {
193 bool seenIncrement = false;
194 for (BasicBlock::iterator I = Begin; I != End; ++I) {
195
196 if (!isSafeToSpeculativelyExecute(I))
197 return false;
198
199 if (isa<DbgInfoIntrinsic>(I))
200 continue;
201
202 switch (I->getOpcode()) {
203 default:
204 return false;
205 case Instruction::GetElementPtr:
206 // GEPs are cheap if all indices are constant.
207 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
208 return false;
209 // fall-thru to increment case
210 case Instruction::Add:
211 case Instruction::Sub:
212 case Instruction::And:
213 case Instruction::Or:
214 case Instruction::Xor:
215 case Instruction::Shl:
216 case Instruction::LShr:
217 case Instruction::AShr:
218 if (seenIncrement)
219 return false;
220 seenIncrement = true;
221 break;
222 case Instruction::Trunc:
223 case Instruction::ZExt:
224 case Instruction::SExt:
225 // ignore type conversions
226 break;
227 }
228 }
229 return true;
230 }
231
232 /// Fold the loop tail into the loop exit by speculating the loop tail
233 /// instructions. Typically, this is a single post-increment. In the case of a
234 /// simple 2-block loop, hoisting the increment can be much better than
235 /// duplicating the entire loop header. In the cast of loops with early exits,
236 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
237 /// canonical form so downstream passes can handle it.
238 ///
239 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L)240 bool LoopRotate::simplifyLoopLatch(Loop *L) {
241 BasicBlock *Latch = L->getLoopLatch();
242 if (!Latch || Latch->hasAddressTaken())
243 return false;
244
245 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
246 if (!Jmp || !Jmp->isUnconditional())
247 return false;
248
249 BasicBlock *LastExit = Latch->getSinglePredecessor();
250 if (!LastExit || !L->isLoopExiting(LastExit))
251 return false;
252
253 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
254 if (!BI)
255 return false;
256
257 if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
258 return false;
259
260 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
261 << LastExit->getName() << "\n");
262
263 // Hoist the instructions from Latch into LastExit.
264 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
265
266 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
267 BasicBlock *Header = Jmp->getSuccessor(0);
268 assert(Header == L->getHeader() && "expected a backward branch");
269
270 // Remove Latch from the CFG so that LastExit becomes the new Latch.
271 BI->setSuccessor(FallThruPath, Header);
272 Latch->replaceSuccessorsPhiUsesWith(LastExit);
273 Jmp->eraseFromParent();
274
275 // Nuke the Latch block.
276 assert(Latch->empty() && "unable to evacuate Latch");
277 LI->removeBlock(Latch);
278 if (DominatorTreeWrapperPass *DTWP =
279 getAnalysisIfAvailable<DominatorTreeWrapperPass>())
280 DTWP->getDomTree().eraseNode(Latch);
281 Latch->eraseFromParent();
282 return true;
283 }
284
285 /// Rotate loop LP. Return true if the loop is rotated.
286 ///
287 /// \param SimplifiedLatch is true if the latch was just folded into the final
288 /// loop exit. In this case we may want to rotate even though the new latch is
289 /// now an exiting branch. This rotation would have happened had the latch not
290 /// been simplified. However, if SimplifiedLatch is false, then we avoid
291 /// rotating loops in which the latch exits to avoid excessive or endless
292 /// rotation. LoopRotate should be repeatable and converge to a canonical
293 /// form. This property is satisfied because simplifying the loop latch can only
294 /// happen once across multiple invocations of the LoopRotate pass.
rotateLoop(Loop * L,bool SimplifiedLatch)295 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
296 // If the loop has only one block then there is not much to rotate.
297 if (L->getBlocks().size() == 1)
298 return false;
299
300 BasicBlock *OrigHeader = L->getHeader();
301 BasicBlock *OrigLatch = L->getLoopLatch();
302
303 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
304 if (!BI || BI->isUnconditional())
305 return false;
306
307 // If the loop header is not one of the loop exiting blocks then
308 // either this loop is already rotated or it is not
309 // suitable for loop rotation transformations.
310 if (!L->isLoopExiting(OrigHeader))
311 return false;
312
313 // If the loop latch already contains a branch that leaves the loop then the
314 // loop is already rotated.
315 if (!OrigLatch)
316 return false;
317
318 // Rotate if either the loop latch does *not* exit the loop, or if the loop
319 // latch was just simplified.
320 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
321 return false;
322
323 // Check size of original header and reject loop if it is very big or we can't
324 // duplicate blocks inside it.
325 {
326 CodeMetrics Metrics;
327 Metrics.analyzeBasicBlock(OrigHeader, *TTI);
328 if (Metrics.notDuplicatable) {
329 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
330 << " instructions: "; L->dump());
331 return false;
332 }
333 if (Metrics.NumInsts > MaxHeaderSize)
334 return false;
335 }
336
337 // Now, this loop is suitable for rotation.
338 BasicBlock *OrigPreheader = L->getLoopPreheader();
339
340 // If the loop could not be converted to canonical form, it must have an
341 // indirectbr in it, just give up.
342 if (!OrigPreheader)
343 return false;
344
345 // Anything ScalarEvolution may know about this loop or the PHI nodes
346 // in its header will soon be invalidated.
347 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
348 SE->forgetLoop(L);
349
350 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
351
352 // Find new Loop header. NewHeader is a Header's one and only successor
353 // that is inside loop. Header's other successor is outside the
354 // loop. Otherwise loop is not suitable for rotation.
355 BasicBlock *Exit = BI->getSuccessor(0);
356 BasicBlock *NewHeader = BI->getSuccessor(1);
357 if (L->contains(Exit))
358 std::swap(Exit, NewHeader);
359 assert(NewHeader && "Unable to determine new loop header");
360 assert(L->contains(NewHeader) && !L->contains(Exit) &&
361 "Unable to determine loop header and exit blocks");
362
363 // This code assumes that the new header has exactly one predecessor.
364 // Remove any single-entry PHI nodes in it.
365 assert(NewHeader->getSinglePredecessor() &&
366 "New header doesn't have one pred!");
367 FoldSingleEntryPHINodes(NewHeader);
368
369 // Begin by walking OrigHeader and populating ValueMap with an entry for
370 // each Instruction.
371 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
372 ValueToValueMapTy ValueMap;
373
374 // For PHI nodes, the value available in OldPreHeader is just the
375 // incoming value from OldPreHeader.
376 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
377 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
378
379 // For the rest of the instructions, either hoist to the OrigPreheader if
380 // possible or create a clone in the OldPreHeader if not.
381 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
382 while (I != E) {
383 Instruction *Inst = I++;
384
385 // If the instruction's operands are invariant and it doesn't read or write
386 // memory, then it is safe to hoist. Doing this doesn't change the order of
387 // execution in the preheader, but does prevent the instruction from
388 // executing in each iteration of the loop. This means it is safe to hoist
389 // something that might trap, but isn't safe to hoist something that reads
390 // memory (without proving that the loop doesn't write).
391 if (L->hasLoopInvariantOperands(Inst) &&
392 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
393 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
394 !isa<AllocaInst>(Inst)) {
395 Inst->moveBefore(LoopEntryBranch);
396 continue;
397 }
398
399 // Otherwise, create a duplicate of the instruction.
400 Instruction *C = Inst->clone();
401
402 // Eagerly remap the operands of the instruction.
403 RemapInstruction(C, ValueMap,
404 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
405
406 // With the operands remapped, see if the instruction constant folds or is
407 // otherwise simplifyable. This commonly occurs because the entry from PHI
408 // nodes allows icmps and other instructions to fold.
409 Value *V = SimplifyInstruction(C);
410 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
411 // If so, then delete the temporary instruction and stick the folded value
412 // in the map.
413 delete C;
414 ValueMap[Inst] = V;
415 } else {
416 // Otherwise, stick the new instruction into the new block!
417 C->setName(Inst->getName());
418 C->insertBefore(LoopEntryBranch);
419 ValueMap[Inst] = C;
420 }
421 }
422
423 // Along with all the other instructions, we just cloned OrigHeader's
424 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
425 // successors by duplicating their incoming values for OrigHeader.
426 TerminatorInst *TI = OrigHeader->getTerminator();
427 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
428 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
429 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
430 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
431
432 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
433 // OrigPreHeader's old terminator (the original branch into the loop), and
434 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
435 LoopEntryBranch->eraseFromParent();
436
437 // If there were any uses of instructions in the duplicated block outside the
438 // loop, update them, inserting PHI nodes as required
439 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
440
441 // NewHeader is now the header of the loop.
442 L->moveToHeader(NewHeader);
443 assert(L->getHeader() == NewHeader && "Latch block is our new header");
444
445
446 // At this point, we've finished our major CFG changes. As part of cloning
447 // the loop into the preheader we've simplified instructions and the
448 // duplicated conditional branch may now be branching on a constant. If it is
449 // branching on a constant and if that constant means that we enter the loop,
450 // then we fold away the cond branch to an uncond branch. This simplifies the
451 // loop in cases important for nested loops, and it also means we don't have
452 // to split as many edges.
453 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
454 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
455 if (!isa<ConstantInt>(PHBI->getCondition()) ||
456 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
457 != NewHeader) {
458 // The conditional branch can't be folded, handle the general case.
459 // Update DominatorTree to reflect the CFG change we just made. Then split
460 // edges as necessary to preserve LoopSimplify form.
461 if (DominatorTreeWrapperPass *DTWP =
462 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
463 DominatorTree &DT = DTWP->getDomTree();
464 // Everything that was dominated by the old loop header is now dominated
465 // by the original loop preheader. Conceptually the header was merged
466 // into the preheader, even though we reuse the actual block as a new
467 // loop latch.
468 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
469 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
470 OrigHeaderNode->end());
471 DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader);
472 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
473 DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
474
475 assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode);
476 assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode);
477
478 // Update OrigHeader to be dominated by the new header block.
479 DT.changeImmediateDominator(OrigHeader, OrigLatch);
480 }
481
482 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
483 // thus is not a preheader anymore.
484 // Split the edge to form a real preheader.
485 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
486 NewPH->setName(NewHeader->getName() + ".lr.ph");
487
488 // Preserve canonical loop form, which means that 'Exit' should have only
489 // one predecessor. Note that Exit could be an exit block for multiple
490 // nested loops, causing both of the edges to now be critical and need to
491 // be split.
492 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
493 bool SplitLatchEdge = false;
494 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
495 PE = ExitPreds.end();
496 PI != PE; ++PI) {
497 // We only need to split loop exit edges.
498 Loop *PredLoop = LI->getLoopFor(*PI);
499 if (!PredLoop || PredLoop->contains(Exit))
500 continue;
501 SplitLatchEdge |= L->getLoopLatch() == *PI;
502 BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this);
503 ExitSplit->moveBefore(Exit);
504 }
505 assert(SplitLatchEdge &&
506 "Despite splitting all preds, failed to split latch exit?");
507 } else {
508 // We can fold the conditional branch in the preheader, this makes things
509 // simpler. The first step is to remove the extra edge to the Exit block.
510 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
511 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
512 NewBI->setDebugLoc(PHBI->getDebugLoc());
513 PHBI->eraseFromParent();
514
515 // With our CFG finalized, update DomTree if it is available.
516 if (DominatorTreeWrapperPass *DTWP =
517 getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
518 DominatorTree &DT = DTWP->getDomTree();
519 // Update OrigHeader to be dominated by the new header block.
520 DT.changeImmediateDominator(NewHeader, OrigPreheader);
521 DT.changeImmediateDominator(OrigHeader, OrigLatch);
522
523 // Brute force incremental dominator tree update. Call
524 // findNearestCommonDominator on all CFG predecessors of each child of the
525 // original header.
526 DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
527 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
528 OrigHeaderNode->end());
529 bool Changed;
530 do {
531 Changed = false;
532 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
533 DomTreeNode *Node = HeaderChildren[I];
534 BasicBlock *BB = Node->getBlock();
535
536 pred_iterator PI = pred_begin(BB);
537 BasicBlock *NearestDom = *PI;
538 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
539 NearestDom = DT.findNearestCommonDominator(NearestDom, *PI);
540
541 // Remember if this changes the DomTree.
542 if (Node->getIDom()->getBlock() != NearestDom) {
543 DT.changeImmediateDominator(BB, NearestDom);
544 Changed = true;
545 }
546 }
547
548 // If the dominator changed, this may have an effect on other
549 // predecessors, continue until we reach a fixpoint.
550 } while (Changed);
551 }
552 }
553
554 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
555 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
556
557 // Now that the CFG and DomTree are in a consistent state again, try to merge
558 // the OrigHeader block into OrigLatch. This will succeed if they are
559 // connected by an unconditional branch. This is just a cleanup so the
560 // emitted code isn't too gross in this common case.
561 MergeBlockIntoPredecessor(OrigHeader, this);
562
563 DEBUG(dbgs() << "LoopRotation: into "; L->dump());
564
565 ++NumRotated;
566 return true;
567 }
568