1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "break-crit-edges"
33
34 STATISTIC(NumBroken, "Number of blocks inserted");
35
36 namespace {
37 struct BreakCriticalEdges : public FunctionPass {
38 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4777203f0111::BreakCriticalEdges39 BreakCriticalEdges() : FunctionPass(ID) {
40 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
41 }
42
43 bool runOnFunction(Function &F) override;
44
getAnalysisUsage__anon4777203f0111::BreakCriticalEdges45 void getAnalysisUsage(AnalysisUsage &AU) const override {
46 AU.addPreserved<DominatorTreeWrapperPass>();
47 AU.addPreserved<LoopInfo>();
48
49 // No loop canonicalization guarantees are broken by this pass.
50 AU.addPreservedID(LoopSimplifyID);
51 }
52 };
53 }
54
55 char BreakCriticalEdges::ID = 0;
56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57 "Break critical edges in CFG", false, false)
58
59 // Publicly exposed interface to pass...
60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
62 return new BreakCriticalEdges();
63 }
64
65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
66 // edges as they are found.
67 //
runOnFunction(Function & F)68 bool BreakCriticalEdges::runOnFunction(Function &F) {
69 bool Changed = false;
70 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71 TerminatorInst *TI = I->getTerminator();
72 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74 if (SplitCriticalEdge(TI, i, this)) {
75 ++NumBroken;
76 Changed = true;
77 }
78 }
79
80 return Changed;
81 }
82
83 //===----------------------------------------------------------------------===//
84 // Implementation of the external critical edge manipulation functions
85 //===----------------------------------------------------------------------===//
86
87 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
88 /// may require new PHIs in the new exit block. This function inserts the
89 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
90 /// is the new loop exit block, and DestBB is the old loop exit, now the
91 /// successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)92 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
93 BasicBlock *SplitBB,
94 BasicBlock *DestBB) {
95 // SplitBB shouldn't have anything non-trivial in it yet.
96 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
97 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
98
99 // For each PHI in the destination block.
100 for (BasicBlock::iterator I = DestBB->begin();
101 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
102 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
103 Value *V = PN->getIncomingValue(Idx);
104
105 // If the input is a PHI which already satisfies LCSSA, don't create
106 // a new one.
107 if (const PHINode *VP = dyn_cast<PHINode>(V))
108 if (VP->getParent() == SplitBB)
109 continue;
110
111 // Otherwise a new PHI is needed. Create one and populate it.
112 PHINode *NewPN =
113 PHINode::Create(PN->getType(), Preds.size(), "split",
114 SplitBB->isLandingPad() ?
115 SplitBB->begin() : SplitBB->getTerminator());
116 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
117 NewPN->addIncoming(V, Preds[i]);
118
119 // Update the original PHI.
120 PN->setIncomingValue(Idx, NewPN);
121 }
122 }
123
124 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
125 /// split the critical edge. This will update DominatorTree information if it
126 /// is available, thus calling this pass will not invalidate either of them.
127 /// This returns the new block if the edge was split, null otherwise.
128 ///
129 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
130 /// specified successor will be merged into the same critical edge block.
131 /// This is most commonly interesting with switch instructions, which may
132 /// have many edges to any one destination. This ensures that all edges to that
133 /// dest go to one block instead of each going to a different block, but isn't
134 /// the standard definition of a "critical edge".
135 ///
136 /// It is invalid to call this function on a critical edge that starts at an
137 /// IndirectBrInst. Splitting these edges will almost always create an invalid
138 /// program because the address of the new block won't be the one that is jumped
139 /// to.
140 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges,bool DontDeleteUselessPhis,bool SplitLandingPads)141 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
142 Pass *P, bool MergeIdenticalEdges,
143 bool DontDeleteUselessPhis,
144 bool SplitLandingPads) {
145 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr;
146
147 assert(!isa<IndirectBrInst>(TI) &&
148 "Cannot split critical edge from IndirectBrInst");
149
150 BasicBlock *TIBB = TI->getParent();
151 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
152
153 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
154 // it in this generic function.
155 if (DestBB->isLandingPad()) return nullptr;
156
157 // Create a new basic block, linking it into the CFG.
158 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
159 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
160 // Create our unconditional branch.
161 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
162 NewBI->setDebugLoc(TI->getDebugLoc());
163
164 // Branch to the new block, breaking the edge.
165 TI->setSuccessor(SuccNum, NewBB);
166
167 // Insert the block into the function... right after the block TI lives in.
168 Function &F = *TIBB->getParent();
169 Function::iterator FBBI = TIBB;
170 F.getBasicBlockList().insert(++FBBI, NewBB);
171
172 // If there are any PHI nodes in DestBB, we need to update them so that they
173 // merge incoming values from NewBB instead of from TIBB.
174 {
175 unsigned BBIdx = 0;
176 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
177 // We no longer enter through TIBB, now we come in through NewBB.
178 // Revector exactly one entry in the PHI node that used to come from
179 // TIBB to come from NewBB.
180 PHINode *PN = cast<PHINode>(I);
181
182 // Reuse the previous value of BBIdx if it lines up. In cases where we
183 // have multiple phi nodes with *lots* of predecessors, this is a speed
184 // win because we don't have to scan the PHI looking for TIBB. This
185 // happens because the BB list of PHI nodes are usually in the same
186 // order.
187 if (PN->getIncomingBlock(BBIdx) != TIBB)
188 BBIdx = PN->getBasicBlockIndex(TIBB);
189 PN->setIncomingBlock(BBIdx, NewBB);
190 }
191 }
192
193 // If there are any other edges from TIBB to DestBB, update those to go
194 // through the split block, making those edges non-critical as well (and
195 // reducing the number of phi entries in the DestBB if relevant).
196 if (MergeIdenticalEdges) {
197 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
198 if (TI->getSuccessor(i) != DestBB) continue;
199
200 // Remove an entry for TIBB from DestBB phi nodes.
201 DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
202
203 // We found another edge to DestBB, go to NewBB instead.
204 TI->setSuccessor(i, NewBB);
205 }
206 }
207
208
209
210 // If we don't have a pass object, we can't update anything...
211 if (!P) return NewBB;
212
213 DominatorTreeWrapperPass *DTWP =
214 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
215 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
216 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
217
218 // If we have nothing to update, just return.
219 if (!DT && !LI)
220 return NewBB;
221
222 // Now update analysis information. Since the only predecessor of NewBB is
223 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
224 // anything, as there are other successors of DestBB. However, if all other
225 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
226 // loop header) then NewBB dominates DestBB.
227 SmallVector<BasicBlock*, 8> OtherPreds;
228
229 // If there is a PHI in the block, loop over predecessors with it, which is
230 // faster than iterating pred_begin/end.
231 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
233 if (PN->getIncomingBlock(i) != NewBB)
234 OtherPreds.push_back(PN->getIncomingBlock(i));
235 } else {
236 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
237 I != E; ++I) {
238 BasicBlock *P = *I;
239 if (P != NewBB)
240 OtherPreds.push_back(P);
241 }
242 }
243
244 bool NewBBDominatesDestBB = true;
245
246 // Should we update DominatorTree information?
247 if (DT) {
248 DomTreeNode *TINode = DT->getNode(TIBB);
249
250 // The new block is not the immediate dominator for any other nodes, but
251 // TINode is the immediate dominator for the new node.
252 //
253 if (TINode) { // Don't break unreachable code!
254 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
255 DomTreeNode *DestBBNode = nullptr;
256
257 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
258 if (!OtherPreds.empty()) {
259 DestBBNode = DT->getNode(DestBB);
260 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
261 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
262 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
263 OtherPreds.pop_back();
264 }
265 OtherPreds.clear();
266 }
267
268 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
269 // doesn't dominate anything.
270 if (NewBBDominatesDestBB) {
271 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
272 DT->changeImmediateDominator(DestBBNode, NewBBNode);
273 }
274 }
275 }
276
277 // Update LoopInfo if it is around.
278 if (LI) {
279 if (Loop *TIL = LI->getLoopFor(TIBB)) {
280 // If one or the other blocks were not in a loop, the new block is not
281 // either, and thus LI doesn't need to be updated.
282 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
283 if (TIL == DestLoop) {
284 // Both in the same loop, the NewBB joins loop.
285 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
286 } else if (TIL->contains(DestLoop)) {
287 // Edge from an outer loop to an inner loop. Add to the outer loop.
288 TIL->addBasicBlockToLoop(NewBB, LI->getBase());
289 } else if (DestLoop->contains(TIL)) {
290 // Edge from an inner loop to an outer loop. Add to the outer loop.
291 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
292 } else {
293 // Edge from two loops with no containment relation. Because these
294 // are natural loops, we know that the destination block must be the
295 // header of its loop (adding a branch into a loop elsewhere would
296 // create an irreducible loop).
297 assert(DestLoop->getHeader() == DestBB &&
298 "Should not create irreducible loops!");
299 if (Loop *P = DestLoop->getParentLoop())
300 P->addBasicBlockToLoop(NewBB, LI->getBase());
301 }
302 }
303 // If TIBB is in a loop and DestBB is outside of that loop, we may need
304 // to update LoopSimplify form and LCSSA form.
305 if (!TIL->contains(DestBB) &&
306 P->mustPreserveAnalysisID(LoopSimplifyID)) {
307 assert(!TIL->contains(NewBB) &&
308 "Split point for loop exit is contained in loop!");
309
310 // Update LCSSA form in the newly created exit block.
311 if (P->mustPreserveAnalysisID(LCSSAID))
312 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
313
314 // The only that we can break LoopSimplify form by splitting a critical
315 // edge is if after the split there exists some edge from TIL to DestBB
316 // *and* the only edge into DestBB from outside of TIL is that of
317 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
318 // is the new exit block and it has no non-loop predecessors. If the
319 // second isn't true, then DestBB was not in LoopSimplify form prior to
320 // the split as it had a non-loop predecessor. In both of these cases,
321 // the predecessor must be directly in TIL, not in a subloop, or again
322 // LoopSimplify doesn't hold.
323 SmallVector<BasicBlock *, 4> LoopPreds;
324 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
325 ++I) {
326 BasicBlock *P = *I;
327 if (P == NewBB)
328 continue; // The new block is known.
329 if (LI->getLoopFor(P) != TIL) {
330 // No need to re-simplify, it wasn't to start with.
331 LoopPreds.clear();
332 break;
333 }
334 LoopPreds.push_back(P);
335 }
336 if (!LoopPreds.empty()) {
337 assert(!DestBB->isLandingPad() &&
338 "We don't split edges to landing pads!");
339 BasicBlock *NewExitBB =
340 SplitBlockPredecessors(DestBB, LoopPreds, "split", P);
341 if (P->mustPreserveAnalysisID(LCSSAID))
342 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
343 }
344 }
345 // LCSSA form was updated above for the case where LoopSimplify is
346 // available, which means that all predecessors of loop exit blocks
347 // are within the loop. Without LoopSimplify form, it would be
348 // necessary to insert a new phi.
349 assert((!P->mustPreserveAnalysisID(LCSSAID) ||
350 P->mustPreserveAnalysisID(LoopSimplifyID)) &&
351 "SplitCriticalEdge doesn't know how to update LCCSA form "
352 "without LoopSimplify!");
353 }
354 }
355
356 return NewBB;
357 }
358