1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/CallGraph.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace llvm;
34
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,bool InsertLifetime)35 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
36 bool InsertLifetime) {
37 return InlineFunction(CallSite(CI), IFI, InsertLifetime);
38 }
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,bool InsertLifetime)39 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
40 bool InsertLifetime) {
41 return InlineFunction(CallSite(II), IFI, InsertLifetime);
42 }
43
44 namespace {
45 /// A class for recording information about inlining through an invoke.
46 class InvokeInliningInfo {
47 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
48 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
49 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
50 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
51 SmallVector<Value*, 8> UnwindDestPHIValues;
52
53 public:
InvokeInliningInfo(InvokeInst * II)54 InvokeInliningInfo(InvokeInst *II)
55 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
56 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
57 // If there are PHI nodes in the unwind destination block, we need to keep
58 // track of which values came into them from the invoke before removing
59 // the edge from this block.
60 llvm::BasicBlock *InvokeBB = II->getParent();
61 BasicBlock::iterator I = OuterResumeDest->begin();
62 for (; isa<PHINode>(I); ++I) {
63 // Save the value to use for this edge.
64 PHINode *PHI = cast<PHINode>(I);
65 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
66 }
67
68 CallerLPad = cast<LandingPadInst>(I);
69 }
70
71 /// getOuterResumeDest - The outer unwind destination is the target of
72 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const73 BasicBlock *getOuterResumeDest() const {
74 return OuterResumeDest;
75 }
76
77 BasicBlock *getInnerResumeDest();
78
getLandingPadInst() const79 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
80
81 /// forwardResume - Forward the 'resume' instruction to the caller's landing
82 /// pad block. When the landing pad block has only one predecessor, this is
83 /// a simple branch. When there is more than one predecessor, we need to
84 /// split the landing pad block after the landingpad instruction and jump
85 /// to there.
86 void forwardResume(ResumeInst *RI,
87 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
88
89 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
90 /// destination block for the given basic block, using the values for the
91 /// original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const92 void addIncomingPHIValuesFor(BasicBlock *BB) const {
93 addIncomingPHIValuesForInto(BB, OuterResumeDest);
94 }
95
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const96 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
97 BasicBlock::iterator I = dest->begin();
98 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
99 PHINode *phi = cast<PHINode>(I);
100 phi->addIncoming(UnwindDestPHIValues[i], src);
101 }
102 }
103 };
104 }
105
106 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()107 BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
108 if (InnerResumeDest) return InnerResumeDest;
109
110 // Split the landing pad.
111 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
112 InnerResumeDest =
113 OuterResumeDest->splitBasicBlock(SplitPoint,
114 OuterResumeDest->getName() + ".body");
115
116 // The number of incoming edges we expect to the inner landing pad.
117 const unsigned PHICapacity = 2;
118
119 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
120 BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
121 BasicBlock::iterator I = OuterResumeDest->begin();
122 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
123 PHINode *OuterPHI = cast<PHINode>(I);
124 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
125 OuterPHI->getName() + ".lpad-body",
126 InsertPoint);
127 OuterPHI->replaceAllUsesWith(InnerPHI);
128 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
129 }
130
131 // Create a PHI for the exception values.
132 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
133 "eh.lpad-body", InsertPoint);
134 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
135 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
136
137 // All done.
138 return InnerResumeDest;
139 }
140
141 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
142 /// block. When the landing pad block has only one predecessor, this is a simple
143 /// branch. When there is more than one predecessor, we need to split the
144 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSet<LandingPadInst *,16> & InlinedLPads)145 void InvokeInliningInfo::forwardResume(ResumeInst *RI,
146 SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
147 BasicBlock *Dest = getInnerResumeDest();
148 BasicBlock *Src = RI->getParent();
149
150 BranchInst::Create(Dest, Src);
151
152 // Update the PHIs in the destination. They were inserted in an order which
153 // makes this work.
154 addIncomingPHIValuesForInto(Src, Dest);
155
156 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157 RI->eraseFromParent();
158 }
159
160 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
161 /// an invoke, we have to turn all of the calls that can throw into
162 /// invokes. This function analyze BB to see if there are any calls, and if so,
163 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
164 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,InvokeInliningInfo & Invoke)165 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
166 InvokeInliningInfo &Invoke) {
167 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
168 Instruction *I = BBI++;
169
170 // We only need to check for function calls: inlined invoke
171 // instructions require no special handling.
172 CallInst *CI = dyn_cast<CallInst>(I);
173
174 // If this call cannot unwind, don't convert it to an invoke.
175 // Inline asm calls cannot throw.
176 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
177 continue;
178
179 // Convert this function call into an invoke instruction. First, split the
180 // basic block.
181 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
182
183 // Delete the unconditional branch inserted by splitBasicBlock
184 BB->getInstList().pop_back();
185
186 // Create the new invoke instruction.
187 ImmutableCallSite CS(CI);
188 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
189 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
190 Invoke.getOuterResumeDest(),
191 InvokeArgs, CI->getName(), BB);
192 II->setDebugLoc(CI->getDebugLoc());
193 II->setCallingConv(CI->getCallingConv());
194 II->setAttributes(CI->getAttributes());
195
196 // Make sure that anything using the call now uses the invoke! This also
197 // updates the CallGraph if present, because it uses a WeakVH.
198 CI->replaceAllUsesWith(II);
199
200 // Delete the original call
201 Split->getInstList().pop_front();
202
203 // Update any PHI nodes in the exceptional block to indicate that there is
204 // now a new entry in them.
205 Invoke.addIncomingPHIValuesFor(BB);
206 return;
207 }
208 }
209
210 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
211 /// in the body of the inlined function into invokes.
212 ///
213 /// II is the invoke instruction being inlined. FirstNewBlock is the first
214 /// block of the inlined code (the last block is the end of the function),
215 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedInvoke(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)216 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
217 ClonedCodeInfo &InlinedCodeInfo) {
218 BasicBlock *InvokeDest = II->getUnwindDest();
219
220 Function *Caller = FirstNewBlock->getParent();
221
222 // The inlined code is currently at the end of the function, scan from the
223 // start of the inlined code to its end, checking for stuff we need to
224 // rewrite.
225 InvokeInliningInfo Invoke(II);
226
227 // Get all of the inlined landing pad instructions.
228 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
229 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
230 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
231 InlinedLPads.insert(II->getLandingPadInst());
232
233 // Append the clauses from the outer landing pad instruction into the inlined
234 // landing pad instructions.
235 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
236 for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
237 E = InlinedLPads.end(); I != E; ++I) {
238 LandingPadInst *InlinedLPad = *I;
239 unsigned OuterNum = OuterLPad->getNumClauses();
240 InlinedLPad->reserveClauses(OuterNum);
241 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
242 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
243 if (OuterLPad->isCleanup())
244 InlinedLPad->setCleanup(true);
245 }
246
247 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
248 if (InlinedCodeInfo.ContainsCalls)
249 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
250
251 // Forward any resumes that are remaining here.
252 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
253 Invoke.forwardResume(RI, InlinedLPads);
254 }
255
256 // Now that everything is happy, we have one final detail. The PHI nodes in
257 // the exception destination block still have entries due to the original
258 // invoke instruction. Eliminate these entries (which might even delete the
259 // PHI node) now.
260 InvokeDest->removePredecessor(II->getParent());
261 }
262
263 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
264 /// into the caller, update the specified callgraph to reflect the changes we
265 /// made. Note that it's possible that not all code was copied over, so only
266 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)267 static void UpdateCallGraphAfterInlining(CallSite CS,
268 Function::iterator FirstNewBlock,
269 ValueToValueMapTy &VMap,
270 InlineFunctionInfo &IFI) {
271 CallGraph &CG = *IFI.CG;
272 const Function *Caller = CS.getInstruction()->getParent()->getParent();
273 const Function *Callee = CS.getCalledFunction();
274 CallGraphNode *CalleeNode = CG[Callee];
275 CallGraphNode *CallerNode = CG[Caller];
276
277 // Since we inlined some uninlined call sites in the callee into the caller,
278 // add edges from the caller to all of the callees of the callee.
279 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
280
281 // Consider the case where CalleeNode == CallerNode.
282 CallGraphNode::CalledFunctionsVector CallCache;
283 if (CalleeNode == CallerNode) {
284 CallCache.assign(I, E);
285 I = CallCache.begin();
286 E = CallCache.end();
287 }
288
289 for (; I != E; ++I) {
290 const Value *OrigCall = I->first;
291
292 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
293 // Only copy the edge if the call was inlined!
294 if (VMI == VMap.end() || VMI->second == nullptr)
295 continue;
296
297 // If the call was inlined, but then constant folded, there is no edge to
298 // add. Check for this case.
299 Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
300 if (!NewCall) continue;
301
302 // Remember that this call site got inlined for the client of
303 // InlineFunction.
304 IFI.InlinedCalls.push_back(NewCall);
305
306 // It's possible that inlining the callsite will cause it to go from an
307 // indirect to a direct call by resolving a function pointer. If this
308 // happens, set the callee of the new call site to a more precise
309 // destination. This can also happen if the call graph node of the caller
310 // was just unnecessarily imprecise.
311 if (!I->second->getFunction())
312 if (Function *F = CallSite(NewCall).getCalledFunction()) {
313 // Indirect call site resolved to direct call.
314 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
315
316 continue;
317 }
318
319 CallerNode->addCalledFunction(CallSite(NewCall), I->second);
320 }
321
322 // Update the call graph by deleting the edge from Callee to Caller. We must
323 // do this after the loop above in case Caller and Callee are the same.
324 CallerNode->removeCallEdgeFor(CS);
325 }
326
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)327 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
328 BasicBlock *InsertBlock,
329 InlineFunctionInfo &IFI) {
330 LLVMContext &Context = Src->getContext();
331 Type *VoidPtrTy = Type::getInt8PtrTy(Context);
332 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
333 Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) };
334 Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
335 IRBuilder<> builder(InsertBlock->begin());
336 Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp");
337 Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp");
338
339 Value *Size;
340 if (IFI.DL == nullptr)
341 Size = ConstantExpr::getSizeOf(AggTy);
342 else
343 Size = ConstantInt::get(Type::getInt64Ty(Context),
344 IFI.DL->getTypeStoreSize(AggTy));
345
346 // Always generate a memcpy of alignment 1 here because we don't know
347 // the alignment of the src pointer. Other optimizations can infer
348 // better alignment.
349 Value *CallArgs[] = {
350 DstCast, SrcCast, Size,
351 ConstantInt::get(Type::getInt32Ty(Context), 1),
352 ConstantInt::getFalse(Context) // isVolatile
353 };
354 builder.CreateCall(MemCpyFn, CallArgs);
355 }
356
357 /// HandleByValArgument - When inlining a call site that has a byval argument,
358 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)359 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
360 const Function *CalledFunc,
361 InlineFunctionInfo &IFI,
362 unsigned ByValAlignment) {
363 PointerType *ArgTy = cast<PointerType>(Arg->getType());
364 Type *AggTy = ArgTy->getElementType();
365
366 // If the called function is readonly, then it could not mutate the caller's
367 // copy of the byval'd memory. In this case, it is safe to elide the copy and
368 // temporary.
369 if (CalledFunc->onlyReadsMemory()) {
370 // If the byval argument has a specified alignment that is greater than the
371 // passed in pointer, then we either have to round up the input pointer or
372 // give up on this transformation.
373 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
374 return Arg;
375
376 // If the pointer is already known to be sufficiently aligned, or if we can
377 // round it up to a larger alignment, then we don't need a temporary.
378 if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
379 IFI.DL) >= ByValAlignment)
380 return Arg;
381
382 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
383 // for code quality, but rarely happens and is required for correctness.
384 }
385
386 // Create the alloca. If we have DataLayout, use nice alignment.
387 unsigned Align = 1;
388 if (IFI.DL)
389 Align = IFI.DL->getPrefTypeAlignment(AggTy);
390
391 // If the byval had an alignment specified, we *must* use at least that
392 // alignment, as it is required by the byval argument (and uses of the
393 // pointer inside the callee).
394 Align = std::max(Align, ByValAlignment);
395
396 Function *Caller = TheCall->getParent()->getParent();
397
398 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
399 &*Caller->begin()->begin());
400 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
401
402 // Uses of the argument in the function should use our new alloca
403 // instead.
404 return NewAlloca;
405 }
406
407 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
408 // intrinsic.
isUsedByLifetimeMarker(Value * V)409 static bool isUsedByLifetimeMarker(Value *V) {
410 for (User *U : V->users()) {
411 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
412 switch (II->getIntrinsicID()) {
413 default: break;
414 case Intrinsic::lifetime_start:
415 case Intrinsic::lifetime_end:
416 return true;
417 }
418 }
419 }
420 return false;
421 }
422
423 // hasLifetimeMarkers - Check whether the given alloca already has
424 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)425 static bool hasLifetimeMarkers(AllocaInst *AI) {
426 Type *Ty = AI->getType();
427 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
428 Ty->getPointerAddressSpace());
429 if (Ty == Int8PtrTy)
430 return isUsedByLifetimeMarker(AI);
431
432 // Do a scan to find all the casts to i8*.
433 for (User *U : AI->users()) {
434 if (U->getType() != Int8PtrTy) continue;
435 if (U->stripPointerCasts() != AI) continue;
436 if (isUsedByLifetimeMarker(U))
437 return true;
438 }
439 return false;
440 }
441
442 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
443 /// recursively update InlinedAtEntry of a DebugLoc.
updateInlinedAtInfo(const DebugLoc & DL,const DebugLoc & InlinedAtDL,LLVMContext & Ctx)444 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
445 const DebugLoc &InlinedAtDL,
446 LLVMContext &Ctx) {
447 if (MDNode *IA = DL.getInlinedAt(Ctx)) {
448 DebugLoc NewInlinedAtDL
449 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
450 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
451 NewInlinedAtDL.getAsMDNode(Ctx));
452 }
453
454 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
455 InlinedAtDL.getAsMDNode(Ctx));
456 }
457
458 /// fixupLineNumbers - Update inlined instructions' line numbers to
459 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall)460 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
461 Instruction *TheCall) {
462 DebugLoc TheCallDL = TheCall->getDebugLoc();
463 if (TheCallDL.isUnknown())
464 return;
465
466 for (; FI != Fn->end(); ++FI) {
467 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
468 BI != BE; ++BI) {
469 DebugLoc DL = BI->getDebugLoc();
470 if (DL.isUnknown()) {
471 // If the inlined instruction has no line number, make it look as if it
472 // originates from the call location. This is important for
473 // ((__always_inline__, __nodebug__)) functions which must use caller
474 // location for all instructions in their function body.
475 BI->setDebugLoc(TheCallDL);
476 } else {
477 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
478 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
479 LLVMContext &Ctx = BI->getContext();
480 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
481 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
482 InlinedAt, Ctx));
483 }
484 }
485 }
486 }
487 }
488
489 /// Returns a musttail call instruction if one immediately precedes the given
490 /// return instruction with an optional bitcast instruction between them.
getPrecedingMustTailCall(ReturnInst * RI)491 static CallInst *getPrecedingMustTailCall(ReturnInst *RI) {
492 Instruction *Prev = RI->getPrevNode();
493 if (!Prev)
494 return nullptr;
495
496 if (Value *RV = RI->getReturnValue()) {
497 if (RV != Prev)
498 return nullptr;
499
500 // Look through the optional bitcast.
501 if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
502 RV = BI->getOperand(0);
503 Prev = BI->getPrevNode();
504 if (!Prev || RV != Prev)
505 return nullptr;
506 }
507 }
508
509 if (auto *CI = dyn_cast<CallInst>(Prev)) {
510 if (CI->isMustTailCall())
511 return CI;
512 }
513 return nullptr;
514 }
515
516 /// InlineFunction - This function inlines the called function into the basic
517 /// block of the caller. This returns false if it is not possible to inline
518 /// this call. The program is still in a well defined state if this occurs
519 /// though.
520 ///
521 /// Note that this only does one level of inlining. For example, if the
522 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
523 /// exists in the instruction stream. Similarly this will inline a recursive
524 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,bool InsertLifetime)525 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
526 bool InsertLifetime) {
527 Instruction *TheCall = CS.getInstruction();
528 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
529 "Instruction not in function!");
530
531 // If IFI has any state in it, zap it before we fill it in.
532 IFI.reset();
533
534 const Function *CalledFunc = CS.getCalledFunction();
535 if (!CalledFunc || // Can't inline external function or indirect
536 CalledFunc->isDeclaration() || // call, or call to a vararg function!
537 CalledFunc->getFunctionType()->isVarArg()) return false;
538
539 // If the call to the callee cannot throw, set the 'nounwind' flag on any
540 // calls that we inline.
541 bool MarkNoUnwind = CS.doesNotThrow();
542
543 BasicBlock *OrigBB = TheCall->getParent();
544 Function *Caller = OrigBB->getParent();
545
546 // GC poses two hazards to inlining, which only occur when the callee has GC:
547 // 1. If the caller has no GC, then the callee's GC must be propagated to the
548 // caller.
549 // 2. If the caller has a differing GC, it is invalid to inline.
550 if (CalledFunc->hasGC()) {
551 if (!Caller->hasGC())
552 Caller->setGC(CalledFunc->getGC());
553 else if (CalledFunc->getGC() != Caller->getGC())
554 return false;
555 }
556
557 // Get the personality function from the callee if it contains a landing pad.
558 Value *CalleePersonality = nullptr;
559 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
560 I != E; ++I)
561 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
562 const BasicBlock *BB = II->getUnwindDest();
563 const LandingPadInst *LP = BB->getLandingPadInst();
564 CalleePersonality = LP->getPersonalityFn();
565 break;
566 }
567
568 // Find the personality function used by the landing pads of the caller. If it
569 // exists, then check to see that it matches the personality function used in
570 // the callee.
571 if (CalleePersonality) {
572 for (Function::const_iterator I = Caller->begin(), E = Caller->end();
573 I != E; ++I)
574 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
575 const BasicBlock *BB = II->getUnwindDest();
576 const LandingPadInst *LP = BB->getLandingPadInst();
577
578 // If the personality functions match, then we can perform the
579 // inlining. Otherwise, we can't inline.
580 // TODO: This isn't 100% true. Some personality functions are proper
581 // supersets of others and can be used in place of the other.
582 if (LP->getPersonalityFn() != CalleePersonality)
583 return false;
584
585 break;
586 }
587 }
588
589 // Get an iterator to the last basic block in the function, which will have
590 // the new function inlined after it.
591 Function::iterator LastBlock = &Caller->back();
592
593 // Make sure to capture all of the return instructions from the cloned
594 // function.
595 SmallVector<ReturnInst*, 8> Returns;
596 ClonedCodeInfo InlinedFunctionInfo;
597 Function::iterator FirstNewBlock;
598
599 { // Scope to destroy VMap after cloning.
600 ValueToValueMapTy VMap;
601 // Keep a list of pair (dst, src) to emit byval initializations.
602 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
603
604 assert(CalledFunc->arg_size() == CS.arg_size() &&
605 "No varargs calls can be inlined!");
606
607 // Calculate the vector of arguments to pass into the function cloner, which
608 // matches up the formal to the actual argument values.
609 CallSite::arg_iterator AI = CS.arg_begin();
610 unsigned ArgNo = 0;
611 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
612 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
613 Value *ActualArg = *AI;
614
615 // When byval arguments actually inlined, we need to make the copy implied
616 // by them explicit. However, we don't do this if the callee is readonly
617 // or readnone, because the copy would be unneeded: the callee doesn't
618 // modify the struct.
619 if (CS.isByValArgument(ArgNo)) {
620 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
621 CalledFunc->getParamAlignment(ArgNo+1));
622 if (ActualArg != *AI)
623 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
624 }
625
626 VMap[I] = ActualArg;
627 }
628
629 // We want the inliner to prune the code as it copies. We would LOVE to
630 // have no dead or constant instructions leftover after inlining occurs
631 // (which can happen, e.g., because an argument was constant), but we'll be
632 // happy with whatever the cloner can do.
633 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
634 /*ModuleLevelChanges=*/false, Returns, ".i",
635 &InlinedFunctionInfo, IFI.DL, TheCall);
636
637 // Remember the first block that is newly cloned over.
638 FirstNewBlock = LastBlock; ++FirstNewBlock;
639
640 // Inject byval arguments initialization.
641 for (std::pair<Value*, Value*> &Init : ByValInit)
642 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
643 FirstNewBlock, IFI);
644
645 // Update the callgraph if requested.
646 if (IFI.CG)
647 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
648
649 // Update inlined instructions' line number information.
650 fixupLineNumbers(Caller, FirstNewBlock, TheCall);
651 }
652
653 // If there are any alloca instructions in the block that used to be the entry
654 // block for the callee, move them to the entry block of the caller. First
655 // calculate which instruction they should be inserted before. We insert the
656 // instructions at the end of the current alloca list.
657 {
658 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
659 for (BasicBlock::iterator I = FirstNewBlock->begin(),
660 E = FirstNewBlock->end(); I != E; ) {
661 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
662 if (!AI) continue;
663
664 // If the alloca is now dead, remove it. This often occurs due to code
665 // specialization.
666 if (AI->use_empty()) {
667 AI->eraseFromParent();
668 continue;
669 }
670
671 if (!isa<Constant>(AI->getArraySize()))
672 continue;
673
674 // Keep track of the static allocas that we inline into the caller.
675 IFI.StaticAllocas.push_back(AI);
676
677 // Scan for the block of allocas that we can move over, and move them
678 // all at once.
679 while (isa<AllocaInst>(I) &&
680 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
681 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
682 ++I;
683 }
684
685 // Transfer all of the allocas over in a block. Using splice means
686 // that the instructions aren't removed from the symbol table, then
687 // reinserted.
688 Caller->getEntryBlock().getInstList().splice(InsertPoint,
689 FirstNewBlock->getInstList(),
690 AI, I);
691 }
692 }
693
694 bool InlinedMustTailCalls = false;
695 if (InlinedFunctionInfo.ContainsCalls) {
696 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
697 if (CallInst *CI = dyn_cast<CallInst>(TheCall))
698 CallSiteTailKind = CI->getTailCallKind();
699
700 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
701 ++BB) {
702 for (Instruction &I : *BB) {
703 CallInst *CI = dyn_cast<CallInst>(&I);
704 if (!CI)
705 continue;
706
707 // We need to reduce the strength of any inlined tail calls. For
708 // musttail, we have to avoid introducing potential unbounded stack
709 // growth. For example, if functions 'f' and 'g' are mutually recursive
710 // with musttail, we can inline 'g' into 'f' so long as we preserve
711 // musttail on the cloned call to 'f'. If either the inlined call site
712 // or the cloned call site is *not* musttail, the program already has
713 // one frame of stack growth, so it's safe to remove musttail. Here is
714 // a table of example transformations:
715 //
716 // f -> musttail g -> musttail f ==> f -> musttail f
717 // f -> musttail g -> tail f ==> f -> tail f
718 // f -> g -> musttail f ==> f -> f
719 // f -> g -> tail f ==> f -> f
720 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
721 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
722 CI->setTailCallKind(ChildTCK);
723 InlinedMustTailCalls |= CI->isMustTailCall();
724
725 // Calls inlined through a 'nounwind' call site should be marked
726 // 'nounwind'.
727 if (MarkNoUnwind)
728 CI->setDoesNotThrow();
729 }
730 }
731 }
732
733 // Leave lifetime markers for the static alloca's, scoping them to the
734 // function we just inlined.
735 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
736 IRBuilder<> builder(FirstNewBlock->begin());
737 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
738 AllocaInst *AI = IFI.StaticAllocas[ai];
739
740 // If the alloca is already scoped to something smaller than the whole
741 // function then there's no need to add redundant, less accurate markers.
742 if (hasLifetimeMarkers(AI))
743 continue;
744
745 // Try to determine the size of the allocation.
746 ConstantInt *AllocaSize = nullptr;
747 if (ConstantInt *AIArraySize =
748 dyn_cast<ConstantInt>(AI->getArraySize())) {
749 if (IFI.DL) {
750 Type *AllocaType = AI->getAllocatedType();
751 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType);
752 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
753 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
754 // Check that array size doesn't saturate uint64_t and doesn't
755 // overflow when it's multiplied by type size.
756 if (AllocaArraySize != ~0ULL &&
757 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
758 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
759 AllocaArraySize * AllocaTypeSize);
760 }
761 }
762 }
763
764 builder.CreateLifetimeStart(AI, AllocaSize);
765 for (ReturnInst *RI : Returns) {
766 // Don't insert llvm.lifetime.end calls between a musttail call and a
767 // return. The return kills all local allocas.
768 if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
769 continue;
770 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
771 }
772 }
773 }
774
775 // If the inlined code contained dynamic alloca instructions, wrap the inlined
776 // code with llvm.stacksave/llvm.stackrestore intrinsics.
777 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
778 Module *M = Caller->getParent();
779 // Get the two intrinsics we care about.
780 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
781 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
782
783 // Insert the llvm.stacksave.
784 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
785 .CreateCall(StackSave, "savedstack");
786
787 // Insert a call to llvm.stackrestore before any return instructions in the
788 // inlined function.
789 for (ReturnInst *RI : Returns) {
790 // Don't insert llvm.stackrestore calls between a musttail call and a
791 // return. The return will restore the stack pointer.
792 if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
793 continue;
794 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
795 }
796 }
797
798 // If we are inlining for an invoke instruction, we must make sure to rewrite
799 // any call instructions into invoke instructions.
800 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
801 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
802
803 // Handle any inlined musttail call sites. In order for a new call site to be
804 // musttail, the source of the clone and the inlined call site must have been
805 // musttail. Therefore it's safe to return without merging control into the
806 // phi below.
807 if (InlinedMustTailCalls) {
808 // Check if we need to bitcast the result of any musttail calls.
809 Type *NewRetTy = Caller->getReturnType();
810 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
811
812 // Handle the returns preceded by musttail calls separately.
813 SmallVector<ReturnInst *, 8> NormalReturns;
814 for (ReturnInst *RI : Returns) {
815 CallInst *ReturnedMustTail = getPrecedingMustTailCall(RI);
816 if (!ReturnedMustTail) {
817 NormalReturns.push_back(RI);
818 continue;
819 }
820 if (!NeedBitCast)
821 continue;
822
823 // Delete the old return and any preceding bitcast.
824 BasicBlock *CurBB = RI->getParent();
825 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
826 RI->eraseFromParent();
827 if (OldCast)
828 OldCast->eraseFromParent();
829
830 // Insert a new bitcast and return with the right type.
831 IRBuilder<> Builder(CurBB);
832 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
833 }
834
835 // Leave behind the normal returns so we can merge control flow.
836 std::swap(Returns, NormalReturns);
837 }
838
839 // If we cloned in _exactly one_ basic block, and if that block ends in a
840 // return instruction, we splice the body of the inlined callee directly into
841 // the calling basic block.
842 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
843 // Move all of the instructions right before the call.
844 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
845 FirstNewBlock->begin(), FirstNewBlock->end());
846 // Remove the cloned basic block.
847 Caller->getBasicBlockList().pop_back();
848
849 // If the call site was an invoke instruction, add a branch to the normal
850 // destination.
851 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
852 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
853 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
854 }
855
856 // If the return instruction returned a value, replace uses of the call with
857 // uses of the returned value.
858 if (!TheCall->use_empty()) {
859 ReturnInst *R = Returns[0];
860 if (TheCall == R->getReturnValue())
861 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
862 else
863 TheCall->replaceAllUsesWith(R->getReturnValue());
864 }
865 // Since we are now done with the Call/Invoke, we can delete it.
866 TheCall->eraseFromParent();
867
868 // Since we are now done with the return instruction, delete it also.
869 Returns[0]->eraseFromParent();
870
871 // We are now done with the inlining.
872 return true;
873 }
874
875 // Otherwise, we have the normal case, of more than one block to inline or
876 // multiple return sites.
877
878 // We want to clone the entire callee function into the hole between the
879 // "starter" and "ender" blocks. How we accomplish this depends on whether
880 // this is an invoke instruction or a call instruction.
881 BasicBlock *AfterCallBB;
882 BranchInst *CreatedBranchToNormalDest = nullptr;
883 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
884
885 // Add an unconditional branch to make this look like the CallInst case...
886 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
887
888 // Split the basic block. This guarantees that no PHI nodes will have to be
889 // updated due to new incoming edges, and make the invoke case more
890 // symmetric to the call case.
891 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
892 CalledFunc->getName()+".exit");
893
894 } else { // It's a call
895 // If this is a call instruction, we need to split the basic block that
896 // the call lives in.
897 //
898 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
899 CalledFunc->getName()+".exit");
900 }
901
902 // Change the branch that used to go to AfterCallBB to branch to the first
903 // basic block of the inlined function.
904 //
905 TerminatorInst *Br = OrigBB->getTerminator();
906 assert(Br && Br->getOpcode() == Instruction::Br &&
907 "splitBasicBlock broken!");
908 Br->setOperand(0, FirstNewBlock);
909
910
911 // Now that the function is correct, make it a little bit nicer. In
912 // particular, move the basic blocks inserted from the end of the function
913 // into the space made by splitting the source basic block.
914 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
915 FirstNewBlock, Caller->end());
916
917 // Handle all of the return instructions that we just cloned in, and eliminate
918 // any users of the original call/invoke instruction.
919 Type *RTy = CalledFunc->getReturnType();
920
921 PHINode *PHI = nullptr;
922 if (Returns.size() > 1) {
923 // The PHI node should go at the front of the new basic block to merge all
924 // possible incoming values.
925 if (!TheCall->use_empty()) {
926 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
927 AfterCallBB->begin());
928 // Anything that used the result of the function call should now use the
929 // PHI node as their operand.
930 TheCall->replaceAllUsesWith(PHI);
931 }
932
933 // Loop over all of the return instructions adding entries to the PHI node
934 // as appropriate.
935 if (PHI) {
936 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
937 ReturnInst *RI = Returns[i];
938 assert(RI->getReturnValue()->getType() == PHI->getType() &&
939 "Ret value not consistent in function!");
940 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
941 }
942 }
943
944
945 // Add a branch to the merge points and remove return instructions.
946 DebugLoc Loc;
947 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
948 ReturnInst *RI = Returns[i];
949 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
950 Loc = RI->getDebugLoc();
951 BI->setDebugLoc(Loc);
952 RI->eraseFromParent();
953 }
954 // We need to set the debug location to *somewhere* inside the
955 // inlined function. The line number may be nonsensical, but the
956 // instruction will at least be associated with the right
957 // function.
958 if (CreatedBranchToNormalDest)
959 CreatedBranchToNormalDest->setDebugLoc(Loc);
960 } else if (!Returns.empty()) {
961 // Otherwise, if there is exactly one return value, just replace anything
962 // using the return value of the call with the computed value.
963 if (!TheCall->use_empty()) {
964 if (TheCall == Returns[0]->getReturnValue())
965 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
966 else
967 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
968 }
969
970 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
971 BasicBlock *ReturnBB = Returns[0]->getParent();
972 ReturnBB->replaceAllUsesWith(AfterCallBB);
973
974 // Splice the code from the return block into the block that it will return
975 // to, which contains the code that was after the call.
976 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
977 ReturnBB->getInstList());
978
979 if (CreatedBranchToNormalDest)
980 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
981
982 // Delete the return instruction now and empty ReturnBB now.
983 Returns[0]->eraseFromParent();
984 ReturnBB->eraseFromParent();
985 } else if (!TheCall->use_empty()) {
986 // No returns, but something is using the return value of the call. Just
987 // nuke the result.
988 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
989 }
990
991 // Since we are now done with the Call/Invoke, we can delete it.
992 TheCall->eraseFromParent();
993
994 // If we inlined any musttail calls and the original return is now
995 // unreachable, delete it. It can only contain a bitcast and ret.
996 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
997 AfterCallBB->eraseFromParent();
998
999 // We should always be able to fold the entry block of the function into the
1000 // single predecessor of the block...
1001 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1002 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1003
1004 // Splice the code entry block into calling block, right before the
1005 // unconditional branch.
1006 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
1007 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1008
1009 // Remove the unconditional branch.
1010 OrigBB->getInstList().erase(Br);
1011
1012 // Now we can remove the CalleeEntry block, which is now empty.
1013 Caller->getBasicBlockList().erase(CalleeEntry);
1014
1015 // If we inserted a phi node, check to see if it has a single value (e.g. all
1016 // the entries are the same or undef). If so, remove the PHI so it doesn't
1017 // block other optimizations.
1018 if (PHI) {
1019 if (Value *V = SimplifyInstruction(PHI, IFI.DL)) {
1020 PHI->replaceAllUsesWith(V);
1021 PHI->eraseFromParent();
1022 }
1023 }
1024
1025 return true;
1026 }
1027