• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations.  Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include <algorithm>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "loop-unroll"
40 
41 STATISTIC(NumRuntimeUnrolled,
42           "Number of loops unrolled with run-time trip counts");
43 
44 /// Connect the unrolling prolog code to the original loop.
45 /// The unrolling prolog code contains code to execute the
46 /// 'extra' iterations if the run-time trip count modulo the
47 /// unroll count is non-zero.
48 ///
49 /// This function performs the following:
50 /// - Create PHI nodes at prolog end block to combine values
51 ///   that exit the prolog code and jump around the prolog.
52 /// - Add a PHI operand to a PHI node at the loop exit block
53 ///   for values that exit the prolog and go around the loop.
54 /// - Branch around the original loop if the trip count is less
55 ///   than the unroll factor.
56 ///
ConnectProlog(Loop * L,Value * TripCount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & LVMap,Pass * P)57 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
58                           BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
59                           BasicBlock *OrigPH, BasicBlock *NewPH,
60                           ValueToValueMapTy &LVMap, Pass *P) {
61   BasicBlock *Latch = L->getLoopLatch();
62   assert(Latch && "Loop must have a latch");
63 
64   // Create a PHI node for each outgoing value from the original loop
65   // (which means it is an outgoing value from the prolog code too).
66   // The new PHI node is inserted in the prolog end basic block.
67   // The new PHI name is added as an operand of a PHI node in either
68   // the loop header or the loop exit block.
69   for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
70        SBI != SBE; ++SBI) {
71     for (BasicBlock::iterator BBI = (*SBI)->begin();
72          PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
73 
74       // Add a new PHI node to the prolog end block and add the
75       // appropriate incoming values.
76       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
77                                        PrologEnd->getTerminator());
78       // Adding a value to the new PHI node from the original loop preheader.
79       // This is the value that skips all the prolog code.
80       if (L->contains(PN)) {
81         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
82       } else {
83         NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
84       }
85 
86       Value *V = PN->getIncomingValueForBlock(Latch);
87       if (Instruction *I = dyn_cast<Instruction>(V)) {
88         if (L->contains(I)) {
89           V = LVMap[I];
90         }
91       }
92       // Adding a value to the new PHI node from the last prolog block
93       // that was created.
94       NewPN->addIncoming(V, LastPrologBB);
95 
96       // Update the existing PHI node operand with the value from the
97       // new PHI node.  How this is done depends on if the existing
98       // PHI node is in the original loop block, or the exit block.
99       if (L->contains(PN)) {
100         PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
101       } else {
102         PN->addIncoming(NewPN, PrologEnd);
103       }
104     }
105   }
106 
107   // Create a branch around the orignal loop, which is taken if the
108   // trip count is less than the unroll factor.
109   Instruction *InsertPt = PrologEnd->getTerminator();
110   Instruction *BrLoopExit =
111     new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
112                  ConstantInt::get(TripCount->getType(), Count));
113   BasicBlock *Exit = L->getUniqueExitBlock();
114   assert(Exit && "Loop must have a single exit block only");
115   // Split the exit to maintain loop canonicalization guarantees
116   SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
117   if (!Exit->isLandingPad()) {
118     SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
119   } else {
120     SmallVector<BasicBlock*, 2> NewBBs;
121     SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
122                                 P, NewBBs);
123   }
124   // Add the branch to the exit block (around the unrolled loop)
125   BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
126   InsertPt->eraseFromParent();
127 }
128 
129 /// Create a clone of the blocks in a loop and connect them together.
130 /// This function doesn't create a clone of the loop structure.
131 ///
132 /// There are two value maps that are defined and used.  VMap is
133 /// for the values in the current loop instance.  LVMap contains
134 /// the values from the last loop instance.  We need the LVMap values
135 /// to update the initial values for the current loop instance.
136 ///
CloneLoopBlocks(Loop * L,bool FirstCopy,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,LoopInfo * LI)137 static void CloneLoopBlocks(Loop *L,
138                             bool FirstCopy,
139                             BasicBlock *InsertTop,
140                             BasicBlock *InsertBot,
141                             std::vector<BasicBlock *> &NewBlocks,
142                             LoopBlocksDFS &LoopBlocks,
143                             ValueToValueMapTy &VMap,
144                             ValueToValueMapTy &LVMap,
145                             LoopInfo *LI) {
146 
147   BasicBlock *Preheader = L->getLoopPreheader();
148   BasicBlock *Header = L->getHeader();
149   BasicBlock *Latch = L->getLoopLatch();
150   Function *F = Header->getParent();
151   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
152   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
153   // For each block in the original loop, create a new copy,
154   // and update the value map with the newly created values.
155   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
156     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
157     NewBlocks.push_back(NewBB);
158 
159     if (Loop *ParentLoop = L->getParentLoop())
160       ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
161 
162     VMap[*BB] = NewBB;
163     if (Header == *BB) {
164       // For the first block, add a CFG connection to this newly
165       // created block
166       InsertTop->getTerminator()->setSuccessor(0, NewBB);
167 
168       // Change the incoming values to the ones defined in the
169       // previously cloned loop.
170       for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
171         PHINode *NewPHI = cast<PHINode>(VMap[I]);
172         if (FirstCopy) {
173           // We replace the first phi node with the value from the preheader
174           VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
175           NewBB->getInstList().erase(NewPHI);
176         } else {
177           // Update VMap with values from the previous block
178           unsigned idx = NewPHI->getBasicBlockIndex(Latch);
179           Value *InVal = NewPHI->getIncomingValue(idx);
180           if (Instruction *I = dyn_cast<Instruction>(InVal))
181             if (L->contains(I))
182               InVal = LVMap[InVal];
183           NewPHI->setIncomingValue(idx, InVal);
184           NewPHI->setIncomingBlock(idx, InsertTop);
185         }
186       }
187     }
188 
189     if (Latch == *BB) {
190       VMap.erase((*BB)->getTerminator());
191       NewBB->getTerminator()->eraseFromParent();
192       BranchInst::Create(InsertBot, NewBB);
193     }
194   }
195   // LastValueMap is updated with the values for the current loop
196   // which are used the next time this function is called.
197   for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
198        VI != VE; ++VI) {
199     LVMap[VI->first] = VI->second;
200   }
201 }
202 
203 /// Insert code in the prolog code when unrolling a loop with a
204 /// run-time trip-count.
205 ///
206 /// This method assumes that the loop unroll factor is total number
207 /// of loop bodes in the loop after unrolling. (Some folks refer
208 /// to the unroll factor as the number of *extra* copies added).
209 /// We assume also that the loop unroll factor is a power-of-two. So, after
210 /// unrolling the loop, the number of loop bodies executed is 2,
211 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
212 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
213 /// the switch instruction is generated.
214 ///
215 ///    extraiters = tripcount % loopfactor
216 ///    if (extraiters == 0) jump Loop:
217 ///    if (extraiters == loopfactor) jump L1
218 ///    if (extraiters == loopfactor-1) jump L2
219 ///    ...
220 ///    L1:  LoopBody;
221 ///    L2:  LoopBody;
222 ///    ...
223 ///    if tripcount < loopfactor jump End
224 ///    Loop:
225 ///    ...
226 ///    End:
227 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,LoopInfo * LI,LPPassManager * LPM)228 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
229                                    LPPassManager *LPM) {
230   // for now, only unroll loops that contain a single exit
231   if (!L->getExitingBlock())
232     return false;
233 
234   // Make sure the loop is in canonical form, and there is a single
235   // exit block only.
236   if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
237     return false;
238 
239   // Use Scalar Evolution to compute the trip count.  This allows more
240   // loops to be unrolled than relying on induction var simplification
241   if (!LPM)
242     return false;
243   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
244   if (!SE)
245     return false;
246 
247   // Only unroll loops with a computable trip count and the trip count needs
248   // to be an int value (allowing a pointer type is a TODO item)
249   const SCEV *BECount = SE->getBackedgeTakenCount(L);
250   if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
251     return false;
252 
253   // Add 1 since the backedge count doesn't include the first loop iteration
254   const SCEV *TripCountSC =
255     SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
256   if (isa<SCEVCouldNotCompute>(TripCountSC))
257     return false;
258 
259   // We only handle cases when the unroll factor is a power of 2.
260   // Count is the loop unroll factor, the number of extra copies added + 1.
261   if ((Count & (Count-1)) != 0)
262     return false;
263 
264   // If this loop is nested, then the loop unroller changes the code in
265   // parent loop, so the Scalar Evolution pass needs to be run again
266   if (Loop *ParentLoop = L->getParentLoop())
267     SE->forgetLoop(ParentLoop);
268 
269   BasicBlock *PH = L->getLoopPreheader();
270   BasicBlock *Header = L->getHeader();
271   BasicBlock *Latch = L->getLoopLatch();
272   // It helps to splits the original preheader twice, one for the end of the
273   // prolog code and one for a new loop preheader
274   BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
275   BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
276   BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
277 
278   // Compute the number of extra iterations required, which is:
279   //  extra iterations = run-time trip count % (loop unroll factor + 1)
280   SCEVExpander Expander(*SE, "loop-unroll");
281   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
282                                             PreHeaderBR);
283 
284   IRBuilder<> B(PreHeaderBR);
285   Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
286 
287   // Check if for no extra iterations, then jump to unrolled loop.  We have to
288   // check that the trip count computation didn't overflow when adding one to
289   // the backedge taken count.
290   Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
291   Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
292   Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
293 
294   // Branch to either the extra iterations or the unrolled loop
295   // We will fix up the true branch label when adding loop body copies
296   BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
297   assert(PreHeaderBR->isUnconditional() &&
298          PreHeaderBR->getSuccessor(0) == PEnd &&
299          "CFG edges in Preheader are not correct");
300   PreHeaderBR->eraseFromParent();
301 
302   ValueToValueMapTy LVMap;
303   Function *F = Header->getParent();
304   // These variables are used to update the CFG links in each iteration
305   BasicBlock *CompareBB = nullptr;
306   BasicBlock *LastLoopBB = PH;
307   // Get an ordered list of blocks in the loop to help with the ordering of the
308   // cloned blocks in the prolog code
309   LoopBlocksDFS LoopBlocks(L);
310   LoopBlocks.perform(LI);
311 
312   //
313   // For each extra loop iteration, create a copy of the loop's basic blocks
314   // and generate a condition that branches to the copy depending on the
315   // number of 'left over' iterations.
316   //
317   for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
318     std::vector<BasicBlock*> NewBlocks;
319     ValueToValueMapTy VMap;
320 
321     // Clone all the basic blocks in the loop, but we don't clone the loop
322     // This function adds the appropriate CFG connections.
323     CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
324                     LoopBlocks, VMap, LVMap, LI);
325     LastLoopBB = cast<BasicBlock>(VMap[Latch]);
326 
327     // Insert the cloned blocks into function just before the original loop
328     F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
329                                   NewBlocks[0], F->end());
330 
331     // Generate the code for the comparison which determines if the loop
332     // prolog code needs to be executed.
333     if (leftOverIters == Count-1) {
334       // There is no compare block for the fall-thru case when for the last
335       // left over iteration
336       CompareBB = NewBlocks[0];
337     } else {
338       // Create a new block for the comparison
339       BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
340                                              F, CompareBB);
341       if (Loop *ParentLoop = L->getParentLoop()) {
342         // Add the new block to the parent loop, if needed
343         ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
344       }
345 
346       // The comparison w/ the extra iteration value and branch
347       Type *CountTy = TripCount->getType();
348       Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
349                                       ConstantInt::get(CountTy, leftOverIters),
350                                       "un.tmp");
351       // Branch to either the extra iterations or the unrolled loop
352       BranchInst::Create(NewBlocks[0], CompareBB,
353                          BranchVal, NewBB);
354       CompareBB = NewBB;
355       PH->getTerminator()->setSuccessor(0, NewBB);
356       VMap[NewPH] = CompareBB;
357     }
358 
359     // Rewrite the cloned instruction operands to use the values
360     // created when the clone is created.
361     for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
362       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
363              E = NewBlocks[i]->end(); I != E; ++I) {
364         RemapInstruction(I, VMap,
365                          RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
366       }
367     }
368   }
369 
370   // Connect the prolog code to the original loop and update the
371   // PHI functions.
372   ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
373                 LPM->getAsPass());
374   NumRuntimeUnrolled++;
375   return true;
376 }
377