1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0. When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations. Other strategies
20 // include generate a loop before or after the unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/LoopPass.h"
28 #include "llvm/Analysis/ScalarEvolution.h"
29 #include "llvm/Analysis/ScalarEvolutionExpander.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/Cloning.h"
35 #include <algorithm>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "loop-unroll"
40
41 STATISTIC(NumRuntimeUnrolled,
42 "Number of loops unrolled with run-time trip counts");
43
44 /// Connect the unrolling prolog code to the original loop.
45 /// The unrolling prolog code contains code to execute the
46 /// 'extra' iterations if the run-time trip count modulo the
47 /// unroll count is non-zero.
48 ///
49 /// This function performs the following:
50 /// - Create PHI nodes at prolog end block to combine values
51 /// that exit the prolog code and jump around the prolog.
52 /// - Add a PHI operand to a PHI node at the loop exit block
53 /// for values that exit the prolog and go around the loop.
54 /// - Branch around the original loop if the trip count is less
55 /// than the unroll factor.
56 ///
ConnectProlog(Loop * L,Value * TripCount,unsigned Count,BasicBlock * LastPrologBB,BasicBlock * PrologEnd,BasicBlock * OrigPH,BasicBlock * NewPH,ValueToValueMapTy & LVMap,Pass * P)57 static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
58 BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
59 BasicBlock *OrigPH, BasicBlock *NewPH,
60 ValueToValueMapTy &LVMap, Pass *P) {
61 BasicBlock *Latch = L->getLoopLatch();
62 assert(Latch && "Loop must have a latch");
63
64 // Create a PHI node for each outgoing value from the original loop
65 // (which means it is an outgoing value from the prolog code too).
66 // The new PHI node is inserted in the prolog end basic block.
67 // The new PHI name is added as an operand of a PHI node in either
68 // the loop header or the loop exit block.
69 for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
70 SBI != SBE; ++SBI) {
71 for (BasicBlock::iterator BBI = (*SBI)->begin();
72 PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
73
74 // Add a new PHI node to the prolog end block and add the
75 // appropriate incoming values.
76 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
77 PrologEnd->getTerminator());
78 // Adding a value to the new PHI node from the original loop preheader.
79 // This is the value that skips all the prolog code.
80 if (L->contains(PN)) {
81 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
82 } else {
83 NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
84 }
85
86 Value *V = PN->getIncomingValueForBlock(Latch);
87 if (Instruction *I = dyn_cast<Instruction>(V)) {
88 if (L->contains(I)) {
89 V = LVMap[I];
90 }
91 }
92 // Adding a value to the new PHI node from the last prolog block
93 // that was created.
94 NewPN->addIncoming(V, LastPrologBB);
95
96 // Update the existing PHI node operand with the value from the
97 // new PHI node. How this is done depends on if the existing
98 // PHI node is in the original loop block, or the exit block.
99 if (L->contains(PN)) {
100 PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
101 } else {
102 PN->addIncoming(NewPN, PrologEnd);
103 }
104 }
105 }
106
107 // Create a branch around the orignal loop, which is taken if the
108 // trip count is less than the unroll factor.
109 Instruction *InsertPt = PrologEnd->getTerminator();
110 Instruction *BrLoopExit =
111 new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
112 ConstantInt::get(TripCount->getType(), Count));
113 BasicBlock *Exit = L->getUniqueExitBlock();
114 assert(Exit && "Loop must have a single exit block only");
115 // Split the exit to maintain loop canonicalization guarantees
116 SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
117 if (!Exit->isLandingPad()) {
118 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
119 } else {
120 SmallVector<BasicBlock*, 2> NewBBs;
121 SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
122 P, NewBBs);
123 }
124 // Add the branch to the exit block (around the unrolled loop)
125 BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
126 InsertPt->eraseFromParent();
127 }
128
129 /// Create a clone of the blocks in a loop and connect them together.
130 /// This function doesn't create a clone of the loop structure.
131 ///
132 /// There are two value maps that are defined and used. VMap is
133 /// for the values in the current loop instance. LVMap contains
134 /// the values from the last loop instance. We need the LVMap values
135 /// to update the initial values for the current loop instance.
136 ///
CloneLoopBlocks(Loop * L,bool FirstCopy,BasicBlock * InsertTop,BasicBlock * InsertBot,std::vector<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,LoopInfo * LI)137 static void CloneLoopBlocks(Loop *L,
138 bool FirstCopy,
139 BasicBlock *InsertTop,
140 BasicBlock *InsertBot,
141 std::vector<BasicBlock *> &NewBlocks,
142 LoopBlocksDFS &LoopBlocks,
143 ValueToValueMapTy &VMap,
144 ValueToValueMapTy &LVMap,
145 LoopInfo *LI) {
146
147 BasicBlock *Preheader = L->getLoopPreheader();
148 BasicBlock *Header = L->getHeader();
149 BasicBlock *Latch = L->getLoopLatch();
150 Function *F = Header->getParent();
151 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
152 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
153 // For each block in the original loop, create a new copy,
154 // and update the value map with the newly created values.
155 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
156 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
157 NewBlocks.push_back(NewBB);
158
159 if (Loop *ParentLoop = L->getParentLoop())
160 ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
161
162 VMap[*BB] = NewBB;
163 if (Header == *BB) {
164 // For the first block, add a CFG connection to this newly
165 // created block
166 InsertTop->getTerminator()->setSuccessor(0, NewBB);
167
168 // Change the incoming values to the ones defined in the
169 // previously cloned loop.
170 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
171 PHINode *NewPHI = cast<PHINode>(VMap[I]);
172 if (FirstCopy) {
173 // We replace the first phi node with the value from the preheader
174 VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
175 NewBB->getInstList().erase(NewPHI);
176 } else {
177 // Update VMap with values from the previous block
178 unsigned idx = NewPHI->getBasicBlockIndex(Latch);
179 Value *InVal = NewPHI->getIncomingValue(idx);
180 if (Instruction *I = dyn_cast<Instruction>(InVal))
181 if (L->contains(I))
182 InVal = LVMap[InVal];
183 NewPHI->setIncomingValue(idx, InVal);
184 NewPHI->setIncomingBlock(idx, InsertTop);
185 }
186 }
187 }
188
189 if (Latch == *BB) {
190 VMap.erase((*BB)->getTerminator());
191 NewBB->getTerminator()->eraseFromParent();
192 BranchInst::Create(InsertBot, NewBB);
193 }
194 }
195 // LastValueMap is updated with the values for the current loop
196 // which are used the next time this function is called.
197 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
198 VI != VE; ++VI) {
199 LVMap[VI->first] = VI->second;
200 }
201 }
202
203 /// Insert code in the prolog code when unrolling a loop with a
204 /// run-time trip-count.
205 ///
206 /// This method assumes that the loop unroll factor is total number
207 /// of loop bodes in the loop after unrolling. (Some folks refer
208 /// to the unroll factor as the number of *extra* copies added).
209 /// We assume also that the loop unroll factor is a power-of-two. So, after
210 /// unrolling the loop, the number of loop bodies executed is 2,
211 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
212 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
213 /// the switch instruction is generated.
214 ///
215 /// extraiters = tripcount % loopfactor
216 /// if (extraiters == 0) jump Loop:
217 /// if (extraiters == loopfactor) jump L1
218 /// if (extraiters == loopfactor-1) jump L2
219 /// ...
220 /// L1: LoopBody;
221 /// L2: LoopBody;
222 /// ...
223 /// if tripcount < loopfactor jump End
224 /// Loop:
225 /// ...
226 /// End:
227 ///
UnrollRuntimeLoopProlog(Loop * L,unsigned Count,LoopInfo * LI,LPPassManager * LPM)228 bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
229 LPPassManager *LPM) {
230 // for now, only unroll loops that contain a single exit
231 if (!L->getExitingBlock())
232 return false;
233
234 // Make sure the loop is in canonical form, and there is a single
235 // exit block only.
236 if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
237 return false;
238
239 // Use Scalar Evolution to compute the trip count. This allows more
240 // loops to be unrolled than relying on induction var simplification
241 if (!LPM)
242 return false;
243 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
244 if (!SE)
245 return false;
246
247 // Only unroll loops with a computable trip count and the trip count needs
248 // to be an int value (allowing a pointer type is a TODO item)
249 const SCEV *BECount = SE->getBackedgeTakenCount(L);
250 if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
251 return false;
252
253 // Add 1 since the backedge count doesn't include the first loop iteration
254 const SCEV *TripCountSC =
255 SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
256 if (isa<SCEVCouldNotCompute>(TripCountSC))
257 return false;
258
259 // We only handle cases when the unroll factor is a power of 2.
260 // Count is the loop unroll factor, the number of extra copies added + 1.
261 if ((Count & (Count-1)) != 0)
262 return false;
263
264 // If this loop is nested, then the loop unroller changes the code in
265 // parent loop, so the Scalar Evolution pass needs to be run again
266 if (Loop *ParentLoop = L->getParentLoop())
267 SE->forgetLoop(ParentLoop);
268
269 BasicBlock *PH = L->getLoopPreheader();
270 BasicBlock *Header = L->getHeader();
271 BasicBlock *Latch = L->getLoopLatch();
272 // It helps to splits the original preheader twice, one for the end of the
273 // prolog code and one for a new loop preheader
274 BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
275 BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
276 BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
277
278 // Compute the number of extra iterations required, which is:
279 // extra iterations = run-time trip count % (loop unroll factor + 1)
280 SCEVExpander Expander(*SE, "loop-unroll");
281 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
282 PreHeaderBR);
283
284 IRBuilder<> B(PreHeaderBR);
285 Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
286
287 // Check if for no extra iterations, then jump to unrolled loop. We have to
288 // check that the trip count computation didn't overflow when adding one to
289 // the backedge taken count.
290 Value *LCmp = B.CreateIsNotNull(ModVal, "lcmp.mod");
291 Value *OverflowCheck = B.CreateIsNull(TripCount, "lcmp.overflow");
292 Value *BranchVal = B.CreateOr(OverflowCheck, LCmp, "lcmp.or");
293
294 // Branch to either the extra iterations or the unrolled loop
295 // We will fix up the true branch label when adding loop body copies
296 BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
297 assert(PreHeaderBR->isUnconditional() &&
298 PreHeaderBR->getSuccessor(0) == PEnd &&
299 "CFG edges in Preheader are not correct");
300 PreHeaderBR->eraseFromParent();
301
302 ValueToValueMapTy LVMap;
303 Function *F = Header->getParent();
304 // These variables are used to update the CFG links in each iteration
305 BasicBlock *CompareBB = nullptr;
306 BasicBlock *LastLoopBB = PH;
307 // Get an ordered list of blocks in the loop to help with the ordering of the
308 // cloned blocks in the prolog code
309 LoopBlocksDFS LoopBlocks(L);
310 LoopBlocks.perform(LI);
311
312 //
313 // For each extra loop iteration, create a copy of the loop's basic blocks
314 // and generate a condition that branches to the copy depending on the
315 // number of 'left over' iterations.
316 //
317 for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
318 std::vector<BasicBlock*> NewBlocks;
319 ValueToValueMapTy VMap;
320
321 // Clone all the basic blocks in the loop, but we don't clone the loop
322 // This function adds the appropriate CFG connections.
323 CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
324 LoopBlocks, VMap, LVMap, LI);
325 LastLoopBB = cast<BasicBlock>(VMap[Latch]);
326
327 // Insert the cloned blocks into function just before the original loop
328 F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
329 NewBlocks[0], F->end());
330
331 // Generate the code for the comparison which determines if the loop
332 // prolog code needs to be executed.
333 if (leftOverIters == Count-1) {
334 // There is no compare block for the fall-thru case when for the last
335 // left over iteration
336 CompareBB = NewBlocks[0];
337 } else {
338 // Create a new block for the comparison
339 BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
340 F, CompareBB);
341 if (Loop *ParentLoop = L->getParentLoop()) {
342 // Add the new block to the parent loop, if needed
343 ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
344 }
345
346 // The comparison w/ the extra iteration value and branch
347 Type *CountTy = TripCount->getType();
348 Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
349 ConstantInt::get(CountTy, leftOverIters),
350 "un.tmp");
351 // Branch to either the extra iterations or the unrolled loop
352 BranchInst::Create(NewBlocks[0], CompareBB,
353 BranchVal, NewBB);
354 CompareBB = NewBB;
355 PH->getTerminator()->setSuccessor(0, NewBB);
356 VMap[NewPH] = CompareBB;
357 }
358
359 // Rewrite the cloned instruction operands to use the values
360 // created when the clone is created.
361 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
362 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
363 E = NewBlocks[i]->end(); I != E; ++I) {
364 RemapInstruction(I, VMap,
365 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
366 }
367 }
368 }
369
370 // Connect the prolog code to the original loop and update the
371 // PHI functions.
372 ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
373 LPM->getAsPass());
374 NumRuntimeUnrolled++;
375 return true;
376 }
377