1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasSetTracker.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include <algorithm>
50 #include <queue>
51 using namespace llvm;
52
53 #define DEBUG_TYPE "mem2reg"
54
55 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
56 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
57 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
58 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
59
isAllocaPromotable(const AllocaInst * AI)60 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
61 // FIXME: If the memory unit is of pointer or integer type, we can permit
62 // assignments to subsections of the memory unit.
63 unsigned AS = AI->getType()->getAddressSpace();
64
65 // Only allow direct and non-volatile loads and stores...
66 for (const User *U : AI->users()) {
67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68 // Note that atomic loads can be transformed; atomic semantics do
69 // not have any meaning for a local alloca.
70 if (LI->isVolatile())
71 return false;
72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73 if (SI->getOperand(0) == AI)
74 return false; // Don't allow a store OF the AI, only INTO the AI.
75 // Note that atomic stores can be transformed; atomic semantics do
76 // not have any meaning for a local alloca.
77 if (SI->isVolatile())
78 return false;
79 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
81 II->getIntrinsicID() != Intrinsic::lifetime_end)
82 return false;
83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84 if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
85 return false;
86 if (!onlyUsedByLifetimeMarkers(BCI))
87 return false;
88 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
89 if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
90 return false;
91 if (!GEPI->hasAllZeroIndices())
92 return false;
93 if (!onlyUsedByLifetimeMarkers(GEPI))
94 return false;
95 } else {
96 return false;
97 }
98 }
99
100 return true;
101 }
102
103 namespace {
104
105 struct AllocaInfo {
106 SmallVector<BasicBlock *, 32> DefiningBlocks;
107 SmallVector<BasicBlock *, 32> UsingBlocks;
108
109 StoreInst *OnlyStore;
110 BasicBlock *OnlyBlock;
111 bool OnlyUsedInOneBlock;
112
113 Value *AllocaPointerVal;
114 DbgDeclareInst *DbgDeclare;
115
clear__anona4c71eae0111::AllocaInfo116 void clear() {
117 DefiningBlocks.clear();
118 UsingBlocks.clear();
119 OnlyStore = nullptr;
120 OnlyBlock = nullptr;
121 OnlyUsedInOneBlock = true;
122 AllocaPointerVal = nullptr;
123 DbgDeclare = nullptr;
124 }
125
126 /// Scan the uses of the specified alloca, filling in the AllocaInfo used
127 /// by the rest of the pass to reason about the uses of this alloca.
AnalyzeAlloca__anona4c71eae0111::AllocaInfo128 void AnalyzeAlloca(AllocaInst *AI) {
129 clear();
130
131 // As we scan the uses of the alloca instruction, keep track of stores,
132 // and decide whether all of the loads and stores to the alloca are within
133 // the same basic block.
134 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
135 Instruction *User = cast<Instruction>(*UI++);
136
137 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
138 // Remember the basic blocks which define new values for the alloca
139 DefiningBlocks.push_back(SI->getParent());
140 AllocaPointerVal = SI->getOperand(0);
141 OnlyStore = SI;
142 } else {
143 LoadInst *LI = cast<LoadInst>(User);
144 // Otherwise it must be a load instruction, keep track of variable
145 // reads.
146 UsingBlocks.push_back(LI->getParent());
147 AllocaPointerVal = LI;
148 }
149
150 if (OnlyUsedInOneBlock) {
151 if (!OnlyBlock)
152 OnlyBlock = User->getParent();
153 else if (OnlyBlock != User->getParent())
154 OnlyUsedInOneBlock = false;
155 }
156 }
157
158 DbgDeclare = FindAllocaDbgDeclare(AI);
159 }
160 };
161
162 // Data package used by RenamePass()
163 class RenamePassData {
164 public:
165 typedef std::vector<Value *> ValVector;
166
RenamePassData()167 RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
RenamePassData(BasicBlock * B,BasicBlock * P,const ValVector & V)168 RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
169 : BB(B), Pred(P), Values(V) {}
170 BasicBlock *BB;
171 BasicBlock *Pred;
172 ValVector Values;
173
swap(RenamePassData & RHS)174 void swap(RenamePassData &RHS) {
175 std::swap(BB, RHS.BB);
176 std::swap(Pred, RHS.Pred);
177 Values.swap(RHS.Values);
178 }
179 };
180
181 /// \brief This assigns and keeps a per-bb relative ordering of load/store
182 /// instructions in the block that directly load or store an alloca.
183 ///
184 /// This functionality is important because it avoids scanning large basic
185 /// blocks multiple times when promoting many allocas in the same block.
186 class LargeBlockInfo {
187 /// \brief For each instruction that we track, keep the index of the
188 /// instruction.
189 ///
190 /// The index starts out as the number of the instruction from the start of
191 /// the block.
192 DenseMap<const Instruction *, unsigned> InstNumbers;
193
194 public:
195
196 /// This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)197 static bool isInterestingInstruction(const Instruction *I) {
198 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
199 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
200 }
201
202 /// Get or calculate the index of the specified instruction.
getInstructionIndex(const Instruction * I)203 unsigned getInstructionIndex(const Instruction *I) {
204 assert(isInterestingInstruction(I) &&
205 "Not a load/store to/from an alloca?");
206
207 // If we already have this instruction number, return it.
208 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
209 if (It != InstNumbers.end())
210 return It->second;
211
212 // Scan the whole block to get the instruction. This accumulates
213 // information for every interesting instruction in the block, in order to
214 // avoid gratuitus rescans.
215 const BasicBlock *BB = I->getParent();
216 unsigned InstNo = 0;
217 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
218 ++BBI)
219 if (isInterestingInstruction(BBI))
220 InstNumbers[BBI] = InstNo++;
221 It = InstNumbers.find(I);
222
223 assert(It != InstNumbers.end() && "Didn't insert instruction?");
224 return It->second;
225 }
226
deleteValue(const Instruction * I)227 void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
228
clear()229 void clear() { InstNumbers.clear(); }
230 };
231
232 struct PromoteMem2Reg {
233 /// The alloca instructions being promoted.
234 std::vector<AllocaInst *> Allocas;
235 DominatorTree &DT;
236 DIBuilder DIB;
237
238 /// An AliasSetTracker object to update. If null, don't update it.
239 AliasSetTracker *AST;
240
241 /// Reverse mapping of Allocas.
242 DenseMap<AllocaInst *, unsigned> AllocaLookup;
243
244 /// \brief The PhiNodes we're adding.
245 ///
246 /// That map is used to simplify some Phi nodes as we iterate over it, so
247 /// it should have deterministic iterators. We could use a MapVector, but
248 /// since we already maintain a map from BasicBlock* to a stable numbering
249 /// (BBNumbers), the DenseMap is more efficient (also supports removal).
250 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
251
252 /// For each PHI node, keep track of which entry in Allocas it corresponds
253 /// to.
254 DenseMap<PHINode *, unsigned> PhiToAllocaMap;
255
256 /// If we are updating an AliasSetTracker, then for each alloca that is of
257 /// pointer type, we keep track of what to copyValue to the inserted PHI
258 /// nodes here.
259 std::vector<Value *> PointerAllocaValues;
260
261 /// For each alloca, we keep track of the dbg.declare intrinsic that
262 /// describes it, if any, so that we can convert it to a dbg.value
263 /// intrinsic if the alloca gets promoted.
264 SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
265
266 /// The set of basic blocks the renamer has already visited.
267 ///
268 SmallPtrSet<BasicBlock *, 16> Visited;
269
270 /// Contains a stable numbering of basic blocks to avoid non-determinstic
271 /// behavior.
272 DenseMap<BasicBlock *, unsigned> BBNumbers;
273
274 /// Maps DomTreeNodes to their level in the dominator tree.
275 DenseMap<DomTreeNode *, unsigned> DomLevels;
276
277 /// Lazily compute the number of predecessors a block has.
278 DenseMap<const BasicBlock *, unsigned> BBNumPreds;
279
280 public:
PromoteMem2Reg__anona4c71eae0111::PromoteMem2Reg281 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
282 AliasSetTracker *AST)
283 : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
284 DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
285
286 void run();
287
288 private:
RemoveFromAllocasList__anona4c71eae0111::PromoteMem2Reg289 void RemoveFromAllocasList(unsigned &AllocaIdx) {
290 Allocas[AllocaIdx] = Allocas.back();
291 Allocas.pop_back();
292 --AllocaIdx;
293 }
294
getNumPreds__anona4c71eae0111::PromoteMem2Reg295 unsigned getNumPreds(const BasicBlock *BB) {
296 unsigned &NP = BBNumPreds[BB];
297 if (NP == 0)
298 NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
299 return NP - 1;
300 }
301
302 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
303 AllocaInfo &Info);
304 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
305 const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
306 SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
307 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
308 RenamePassData::ValVector &IncVals,
309 std::vector<RenamePassData> &Worklist);
310 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
311 };
312
313 } // end of anonymous namespace
314
removeLifetimeIntrinsicUsers(AllocaInst * AI)315 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
316 // Knowing that this alloca is promotable, we know that it's safe to kill all
317 // instructions except for load and store.
318
319 for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
320 Instruction *I = cast<Instruction>(*UI);
321 ++UI;
322 if (isa<LoadInst>(I) || isa<StoreInst>(I))
323 continue;
324
325 if (!I->getType()->isVoidTy()) {
326 // The only users of this bitcast/GEP instruction are lifetime intrinsics.
327 // Follow the use/def chain to erase them now instead of leaving it for
328 // dead code elimination later.
329 for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
330 Instruction *Inst = cast<Instruction>(*UUI);
331 ++UUI;
332 Inst->eraseFromParent();
333 }
334 }
335 I->eraseFromParent();
336 }
337 }
338
339 /// \brief Rewrite as many loads as possible given a single store.
340 ///
341 /// When there is only a single store, we can use the domtree to trivially
342 /// replace all of the dominated loads with the stored value. Do so, and return
343 /// true if this has successfully promoted the alloca entirely. If this returns
344 /// false there were some loads which were not dominated by the single store
345 /// and thus must be phi-ed with undef. We fall back to the standard alloca
346 /// promotion algorithm in that case.
rewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI,DominatorTree & DT,AliasSetTracker * AST)347 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
348 LargeBlockInfo &LBI,
349 DominatorTree &DT,
350 AliasSetTracker *AST) {
351 StoreInst *OnlyStore = Info.OnlyStore;
352 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
353 BasicBlock *StoreBB = OnlyStore->getParent();
354 int StoreIndex = -1;
355
356 // Clear out UsingBlocks. We will reconstruct it here if needed.
357 Info.UsingBlocks.clear();
358
359 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
360 Instruction *UserInst = cast<Instruction>(*UI++);
361 if (!isa<LoadInst>(UserInst)) {
362 assert(UserInst == OnlyStore && "Should only have load/stores");
363 continue;
364 }
365 LoadInst *LI = cast<LoadInst>(UserInst);
366
367 // Okay, if we have a load from the alloca, we want to replace it with the
368 // only value stored to the alloca. We can do this if the value is
369 // dominated by the store. If not, we use the rest of the mem2reg machinery
370 // to insert the phi nodes as needed.
371 if (!StoringGlobalVal) { // Non-instructions are always dominated.
372 if (LI->getParent() == StoreBB) {
373 // If we have a use that is in the same block as the store, compare the
374 // indices of the two instructions to see which one came first. If the
375 // load came before the store, we can't handle it.
376 if (StoreIndex == -1)
377 StoreIndex = LBI.getInstructionIndex(OnlyStore);
378
379 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
380 // Can't handle this load, bail out.
381 Info.UsingBlocks.push_back(StoreBB);
382 continue;
383 }
384
385 } else if (LI->getParent() != StoreBB &&
386 !DT.dominates(StoreBB, LI->getParent())) {
387 // If the load and store are in different blocks, use BB dominance to
388 // check their relationships. If the store doesn't dom the use, bail
389 // out.
390 Info.UsingBlocks.push_back(LI->getParent());
391 continue;
392 }
393 }
394
395 // Otherwise, we *can* safely rewrite this load.
396 Value *ReplVal = OnlyStore->getOperand(0);
397 // If the replacement value is the load, this must occur in unreachable
398 // code.
399 if (ReplVal == LI)
400 ReplVal = UndefValue::get(LI->getType());
401 LI->replaceAllUsesWith(ReplVal);
402 if (AST && LI->getType()->isPointerTy())
403 AST->deleteValue(LI);
404 LI->eraseFromParent();
405 LBI.deleteValue(LI);
406 }
407
408 // Finally, after the scan, check to see if the store is all that is left.
409 if (!Info.UsingBlocks.empty())
410 return false; // If not, we'll have to fall back for the remainder.
411
412 // Record debuginfo for the store and remove the declaration's
413 // debuginfo.
414 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
415 DIBuilder DIB(*AI->getParent()->getParent()->getParent());
416 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
417 DDI->eraseFromParent();
418 LBI.deleteValue(DDI);
419 }
420 // Remove the (now dead) store and alloca.
421 Info.OnlyStore->eraseFromParent();
422 LBI.deleteValue(Info.OnlyStore);
423
424 if (AST)
425 AST->deleteValue(AI);
426 AI->eraseFromParent();
427 LBI.deleteValue(AI);
428 return true;
429 }
430
431 /// Many allocas are only used within a single basic block. If this is the
432 /// case, avoid traversing the CFG and inserting a lot of potentially useless
433 /// PHI nodes by just performing a single linear pass over the basic block
434 /// using the Alloca.
435 ///
436 /// If we cannot promote this alloca (because it is read before it is written),
437 /// return true. This is necessary in cases where, due to control flow, the
438 /// alloca is potentially undefined on some control flow paths. e.g. code like
439 /// this is potentially correct:
440 ///
441 /// for (...) { if (c) { A = undef; undef = B; } }
442 ///
443 /// ... so long as A is not used before undef is set.
promoteSingleBlockAlloca(AllocaInst * AI,const AllocaInfo & Info,LargeBlockInfo & LBI,AliasSetTracker * AST)444 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
445 LargeBlockInfo &LBI,
446 AliasSetTracker *AST) {
447 // The trickiest case to handle is when we have large blocks. Because of this,
448 // this code is optimized assuming that large blocks happen. This does not
449 // significantly pessimize the small block case. This uses LargeBlockInfo to
450 // make it efficient to get the index of various operations in the block.
451
452 // Walk the use-def list of the alloca, getting the locations of all stores.
453 typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
454 StoresByIndexTy StoresByIndex;
455
456 for (User *U : AI->users())
457 if (StoreInst *SI = dyn_cast<StoreInst>(U))
458 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
459
460 // Sort the stores by their index, making it efficient to do a lookup with a
461 // binary search.
462 std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
463
464 // Walk all of the loads from this alloca, replacing them with the nearest
465 // store above them, if any.
466 for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
467 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
468 if (!LI)
469 continue;
470
471 unsigned LoadIdx = LBI.getInstructionIndex(LI);
472
473 // Find the nearest store that has a lower index than this load.
474 StoresByIndexTy::iterator I =
475 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
476 std::make_pair(LoadIdx,
477 static_cast<StoreInst *>(nullptr)),
478 less_first());
479
480 if (I == StoresByIndex.begin())
481 // If there is no store before this load, the load takes the undef value.
482 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
483 else
484 // Otherwise, there was a store before this load, the load takes its value.
485 LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
486
487 if (AST && LI->getType()->isPointerTy())
488 AST->deleteValue(LI);
489 LI->eraseFromParent();
490 LBI.deleteValue(LI);
491 }
492
493 // Remove the (now dead) stores and alloca.
494 while (!AI->use_empty()) {
495 StoreInst *SI = cast<StoreInst>(AI->user_back());
496 // Record debuginfo for the store before removing it.
497 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
498 DIBuilder DIB(*AI->getParent()->getParent()->getParent());
499 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
500 }
501 SI->eraseFromParent();
502 LBI.deleteValue(SI);
503 }
504
505 if (AST)
506 AST->deleteValue(AI);
507 AI->eraseFromParent();
508 LBI.deleteValue(AI);
509
510 // The alloca's debuginfo can be removed as well.
511 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
512 DDI->eraseFromParent();
513 LBI.deleteValue(DDI);
514 }
515
516 ++NumLocalPromoted;
517 }
518
run()519 void PromoteMem2Reg::run() {
520 Function &F = *DT.getRoot()->getParent();
521
522 if (AST)
523 PointerAllocaValues.resize(Allocas.size());
524 AllocaDbgDeclares.resize(Allocas.size());
525
526 AllocaInfo Info;
527 LargeBlockInfo LBI;
528
529 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
530 AllocaInst *AI = Allocas[AllocaNum];
531
532 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
533 assert(AI->getParent()->getParent() == &F &&
534 "All allocas should be in the same function, which is same as DF!");
535
536 removeLifetimeIntrinsicUsers(AI);
537
538 if (AI->use_empty()) {
539 // If there are no uses of the alloca, just delete it now.
540 if (AST)
541 AST->deleteValue(AI);
542 AI->eraseFromParent();
543
544 // Remove the alloca from the Allocas list, since it has been processed
545 RemoveFromAllocasList(AllocaNum);
546 ++NumDeadAlloca;
547 continue;
548 }
549
550 // Calculate the set of read and write-locations for each alloca. This is
551 // analogous to finding the 'uses' and 'definitions' of each variable.
552 Info.AnalyzeAlloca(AI);
553
554 // If there is only a single store to this value, replace any loads of
555 // it that are directly dominated by the definition with the value stored.
556 if (Info.DefiningBlocks.size() == 1) {
557 if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
558 // The alloca has been processed, move on.
559 RemoveFromAllocasList(AllocaNum);
560 ++NumSingleStore;
561 continue;
562 }
563 }
564
565 // If the alloca is only read and written in one basic block, just perform a
566 // linear sweep over the block to eliminate it.
567 if (Info.OnlyUsedInOneBlock) {
568 promoteSingleBlockAlloca(AI, Info, LBI, AST);
569
570 // The alloca has been processed, move on.
571 RemoveFromAllocasList(AllocaNum);
572 continue;
573 }
574
575 // If we haven't computed dominator tree levels, do so now.
576 if (DomLevels.empty()) {
577 SmallVector<DomTreeNode *, 32> Worklist;
578
579 DomTreeNode *Root = DT.getRootNode();
580 DomLevels[Root] = 0;
581 Worklist.push_back(Root);
582
583 while (!Worklist.empty()) {
584 DomTreeNode *Node = Worklist.pop_back_val();
585 unsigned ChildLevel = DomLevels[Node] + 1;
586 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
587 CI != CE; ++CI) {
588 DomLevels[*CI] = ChildLevel;
589 Worklist.push_back(*CI);
590 }
591 }
592 }
593
594 // If we haven't computed a numbering for the BB's in the function, do so
595 // now.
596 if (BBNumbers.empty()) {
597 unsigned ID = 0;
598 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
599 BBNumbers[I] = ID++;
600 }
601
602 // If we have an AST to keep updated, remember some pointer value that is
603 // stored into the alloca.
604 if (AST)
605 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
606
607 // Remember the dbg.declare intrinsic describing this alloca, if any.
608 if (Info.DbgDeclare)
609 AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
610
611 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
612 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
613
614 // At this point, we're committed to promoting the alloca using IDF's, and
615 // the standard SSA construction algorithm. Determine which blocks need PHI
616 // nodes and see if we can optimize out some work by avoiding insertion of
617 // dead phi nodes.
618 DetermineInsertionPoint(AI, AllocaNum, Info);
619 }
620
621 if (Allocas.empty())
622 return; // All of the allocas must have been trivial!
623
624 LBI.clear();
625
626 // Set the incoming values for the basic block to be null values for all of
627 // the alloca's. We do this in case there is a load of a value that has not
628 // been stored yet. In this case, it will get this null value.
629 //
630 RenamePassData::ValVector Values(Allocas.size());
631 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
632 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
633
634 // Walks all basic blocks in the function performing the SSA rename algorithm
635 // and inserting the phi nodes we marked as necessary
636 //
637 std::vector<RenamePassData> RenamePassWorkList;
638 RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
639 do {
640 RenamePassData RPD;
641 RPD.swap(RenamePassWorkList.back());
642 RenamePassWorkList.pop_back();
643 // RenamePass may add new worklist entries.
644 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
645 } while (!RenamePassWorkList.empty());
646
647 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
648 Visited.clear();
649
650 // Remove the allocas themselves from the function.
651 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
652 Instruction *A = Allocas[i];
653
654 // If there are any uses of the alloca instructions left, they must be in
655 // unreachable basic blocks that were not processed by walking the dominator
656 // tree. Just delete the users now.
657 if (!A->use_empty())
658 A->replaceAllUsesWith(UndefValue::get(A->getType()));
659 if (AST)
660 AST->deleteValue(A);
661 A->eraseFromParent();
662 }
663
664 // Remove alloca's dbg.declare instrinsics from the function.
665 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
666 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
667 DDI->eraseFromParent();
668
669 // Loop over all of the PHI nodes and see if there are any that we can get
670 // rid of because they merge all of the same incoming values. This can
671 // happen due to undef values coming into the PHI nodes. This process is
672 // iterative, because eliminating one PHI node can cause others to be removed.
673 bool EliminatedAPHI = true;
674 while (EliminatedAPHI) {
675 EliminatedAPHI = false;
676
677 // Iterating over NewPhiNodes is deterministic, so it is safe to try to
678 // simplify and RAUW them as we go. If it was not, we could add uses to
679 // the values we replace with in a non-deterministic order, thus creating
680 // non-deterministic def->use chains.
681 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
682 I = NewPhiNodes.begin(),
683 E = NewPhiNodes.end();
684 I != E;) {
685 PHINode *PN = I->second;
686
687 // If this PHI node merges one value and/or undefs, get the value.
688 if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT)) {
689 if (AST && PN->getType()->isPointerTy())
690 AST->deleteValue(PN);
691 PN->replaceAllUsesWith(V);
692 PN->eraseFromParent();
693 NewPhiNodes.erase(I++);
694 EliminatedAPHI = true;
695 continue;
696 }
697 ++I;
698 }
699 }
700
701 // At this point, the renamer has added entries to PHI nodes for all reachable
702 // code. Unfortunately, there may be unreachable blocks which the renamer
703 // hasn't traversed. If this is the case, the PHI nodes may not
704 // have incoming values for all predecessors. Loop over all PHI nodes we have
705 // created, inserting undef values if they are missing any incoming values.
706 //
707 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
708 I = NewPhiNodes.begin(),
709 E = NewPhiNodes.end();
710 I != E; ++I) {
711 // We want to do this once per basic block. As such, only process a block
712 // when we find the PHI that is the first entry in the block.
713 PHINode *SomePHI = I->second;
714 BasicBlock *BB = SomePHI->getParent();
715 if (&BB->front() != SomePHI)
716 continue;
717
718 // Only do work here if there the PHI nodes are missing incoming values. We
719 // know that all PHI nodes that were inserted in a block will have the same
720 // number of incoming values, so we can just check any of them.
721 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
722 continue;
723
724 // Get the preds for BB.
725 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
726
727 // Ok, now we know that all of the PHI nodes are missing entries for some
728 // basic blocks. Start by sorting the incoming predecessors for efficient
729 // access.
730 std::sort(Preds.begin(), Preds.end());
731
732 // Now we loop through all BB's which have entries in SomePHI and remove
733 // them from the Preds list.
734 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
735 // Do a log(n) search of the Preds list for the entry we want.
736 SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
737 Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
738 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
739 "PHI node has entry for a block which is not a predecessor!");
740
741 // Remove the entry
742 Preds.erase(EntIt);
743 }
744
745 // At this point, the blocks left in the preds list must have dummy
746 // entries inserted into every PHI nodes for the block. Update all the phi
747 // nodes in this block that we are inserting (there could be phis before
748 // mem2reg runs).
749 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
750 BasicBlock::iterator BBI = BB->begin();
751 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
752 SomePHI->getNumIncomingValues() == NumBadPreds) {
753 Value *UndefVal = UndefValue::get(SomePHI->getType());
754 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
755 SomePHI->addIncoming(UndefVal, Preds[pred]);
756 }
757 }
758
759 NewPhiNodes.clear();
760 }
761
762 /// \brief Determine which blocks the value is live in.
763 ///
764 /// These are blocks which lead to uses. Knowing this allows us to avoid
765 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
766 /// inserted phi nodes would be dead).
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSet<BasicBlock *,32> & DefBlocks,SmallPtrSet<BasicBlock *,32> & LiveInBlocks)767 void PromoteMem2Reg::ComputeLiveInBlocks(
768 AllocaInst *AI, AllocaInfo &Info,
769 const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
770 SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
771
772 // To determine liveness, we must iterate through the predecessors of blocks
773 // where the def is live. Blocks are added to the worklist if we need to
774 // check their predecessors. Start with all the using blocks.
775 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
776 Info.UsingBlocks.end());
777
778 // If any of the using blocks is also a definition block, check to see if the
779 // definition occurs before or after the use. If it happens before the use,
780 // the value isn't really live-in.
781 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
782 BasicBlock *BB = LiveInBlockWorklist[i];
783 if (!DefBlocks.count(BB))
784 continue;
785
786 // Okay, this is a block that both uses and defines the value. If the first
787 // reference to the alloca is a def (store), then we know it isn't live-in.
788 for (BasicBlock::iterator I = BB->begin();; ++I) {
789 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
790 if (SI->getOperand(1) != AI)
791 continue;
792
793 // We found a store to the alloca before a load. The alloca is not
794 // actually live-in here.
795 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
796 LiveInBlockWorklist.pop_back();
797 --i, --e;
798 break;
799 }
800
801 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
802 if (LI->getOperand(0) != AI)
803 continue;
804
805 // Okay, we found a load before a store to the alloca. It is actually
806 // live into this block.
807 break;
808 }
809 }
810 }
811
812 // Now that we have a set of blocks where the phi is live-in, recursively add
813 // their predecessors until we find the full region the value is live.
814 while (!LiveInBlockWorklist.empty()) {
815 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
816
817 // The block really is live in here, insert it into the set. If already in
818 // the set, then it has already been processed.
819 if (!LiveInBlocks.insert(BB))
820 continue;
821
822 // Since the value is live into BB, it is either defined in a predecessor or
823 // live into it to. Add the preds to the worklist unless they are a
824 // defining block.
825 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
826 BasicBlock *P = *PI;
827
828 // The value is not live into a predecessor if it defines the value.
829 if (DefBlocks.count(P))
830 continue;
831
832 // Otherwise it is, add to the worklist.
833 LiveInBlockWorklist.push_back(P);
834 }
835 }
836 }
837
838 /// At this point, we're committed to promoting the alloca using IDF's, and the
839 /// standard SSA construction algorithm. Determine which blocks need phi nodes
840 /// and see if we can optimize out some work by avoiding insertion of dead phi
841 /// nodes.
DetermineInsertionPoint(AllocaInst * AI,unsigned AllocaNum,AllocaInfo & Info)842 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
843 AllocaInfo &Info) {
844 // Unique the set of defining blocks for efficient lookup.
845 SmallPtrSet<BasicBlock *, 32> DefBlocks;
846 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
847
848 // Determine which blocks the value is live in. These are blocks which lead
849 // to uses.
850 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
851 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
852
853 // Use a priority queue keyed on dominator tree level so that inserted nodes
854 // are handled from the bottom of the dominator tree upwards.
855 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
856 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
857 less_second> IDFPriorityQueue;
858 IDFPriorityQueue PQ;
859
860 for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
861 E = DefBlocks.end();
862 I != E; ++I) {
863 if (DomTreeNode *Node = DT.getNode(*I))
864 PQ.push(std::make_pair(Node, DomLevels[Node]));
865 }
866
867 SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
868 SmallPtrSet<DomTreeNode *, 32> Visited;
869 SmallVector<DomTreeNode *, 32> Worklist;
870 while (!PQ.empty()) {
871 DomTreeNodePair RootPair = PQ.top();
872 PQ.pop();
873 DomTreeNode *Root = RootPair.first;
874 unsigned RootLevel = RootPair.second;
875
876 // Walk all dominator tree children of Root, inspecting their CFG edges with
877 // targets elsewhere on the dominator tree. Only targets whose level is at
878 // most Root's level are added to the iterated dominance frontier of the
879 // definition set.
880
881 Worklist.clear();
882 Worklist.push_back(Root);
883
884 while (!Worklist.empty()) {
885 DomTreeNode *Node = Worklist.pop_back_val();
886 BasicBlock *BB = Node->getBlock();
887
888 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
889 ++SI) {
890 DomTreeNode *SuccNode = DT.getNode(*SI);
891
892 // Quickly skip all CFG edges that are also dominator tree edges instead
893 // of catching them below.
894 if (SuccNode->getIDom() == Node)
895 continue;
896
897 unsigned SuccLevel = DomLevels[SuccNode];
898 if (SuccLevel > RootLevel)
899 continue;
900
901 if (!Visited.insert(SuccNode))
902 continue;
903
904 BasicBlock *SuccBB = SuccNode->getBlock();
905 if (!LiveInBlocks.count(SuccBB))
906 continue;
907
908 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
909 if (!DefBlocks.count(SuccBB))
910 PQ.push(std::make_pair(SuccNode, SuccLevel));
911 }
912
913 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
914 ++CI) {
915 if (!Visited.count(*CI))
916 Worklist.push_back(*CI);
917 }
918 }
919 }
920
921 if (DFBlocks.size() > 1)
922 std::sort(DFBlocks.begin(), DFBlocks.end());
923
924 unsigned CurrentVersion = 0;
925 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
926 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
927 }
928
929 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
930 ///
931 /// Returns true if there wasn't already a phi-node for that variable
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)932 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
933 unsigned &Version) {
934 // Look up the basic-block in question.
935 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
936
937 // If the BB already has a phi node added for the i'th alloca then we're done!
938 if (PN)
939 return false;
940
941 // Create a PhiNode using the dereferenced type... and add the phi-node to the
942 // BasicBlock.
943 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
944 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
945 BB->begin());
946 ++NumPHIInsert;
947 PhiToAllocaMap[PN] = AllocaNo;
948
949 if (AST && PN->getType()->isPointerTy())
950 AST->copyValue(PointerAllocaValues[AllocaNo], PN);
951
952 return true;
953 }
954
955 /// \brief Recursively traverse the CFG of the function, renaming loads and
956 /// stores to the allocas which we are promoting.
957 ///
958 /// IncomingVals indicates what value each Alloca contains on exit from the
959 /// predecessor block Pred.
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,std::vector<RenamePassData> & Worklist)960 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
961 RenamePassData::ValVector &IncomingVals,
962 std::vector<RenamePassData> &Worklist) {
963 NextIteration:
964 // If we are inserting any phi nodes into this BB, they will already be in the
965 // block.
966 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
967 // If we have PHI nodes to update, compute the number of edges from Pred to
968 // BB.
969 if (PhiToAllocaMap.count(APN)) {
970 // We want to be able to distinguish between PHI nodes being inserted by
971 // this invocation of mem2reg from those phi nodes that already existed in
972 // the IR before mem2reg was run. We determine that APN is being inserted
973 // because it is missing incoming edges. All other PHI nodes being
974 // inserted by this pass of mem2reg will have the same number of incoming
975 // operands so far. Remember this count.
976 unsigned NewPHINumOperands = APN->getNumOperands();
977
978 unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
979 assert(NumEdges && "Must be at least one edge from Pred to BB!");
980
981 // Add entries for all the phis.
982 BasicBlock::iterator PNI = BB->begin();
983 do {
984 unsigned AllocaNo = PhiToAllocaMap[APN];
985
986 // Add N incoming values to the PHI node.
987 for (unsigned i = 0; i != NumEdges; ++i)
988 APN->addIncoming(IncomingVals[AllocaNo], Pred);
989
990 // The currently active variable for this block is now the PHI.
991 IncomingVals[AllocaNo] = APN;
992
993 // Get the next phi node.
994 ++PNI;
995 APN = dyn_cast<PHINode>(PNI);
996 if (!APN)
997 break;
998
999 // Verify that it is missing entries. If not, it is not being inserted
1000 // by this mem2reg invocation so we want to ignore it.
1001 } while (APN->getNumOperands() == NewPHINumOperands);
1002 }
1003 }
1004
1005 // Don't revisit blocks.
1006 if (!Visited.insert(BB))
1007 return;
1008
1009 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1010 Instruction *I = II++; // get the instruction, increment iterator
1011
1012 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1013 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1014 if (!Src)
1015 continue;
1016
1017 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1018 if (AI == AllocaLookup.end())
1019 continue;
1020
1021 Value *V = IncomingVals[AI->second];
1022
1023 // Anything using the load now uses the current value.
1024 LI->replaceAllUsesWith(V);
1025 if (AST && LI->getType()->isPointerTy())
1026 AST->deleteValue(LI);
1027 BB->getInstList().erase(LI);
1028 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1029 // Delete this instruction and mark the name as the current holder of the
1030 // value
1031 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1032 if (!Dest)
1033 continue;
1034
1035 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1036 if (ai == AllocaLookup.end())
1037 continue;
1038
1039 // what value were we writing?
1040 IncomingVals[ai->second] = SI->getOperand(0);
1041 // Record debuginfo for the store before removing it.
1042 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1043 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1044 BB->getInstList().erase(SI);
1045 }
1046 }
1047
1048 // 'Recurse' to our successors.
1049 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1050 if (I == E)
1051 return;
1052
1053 // Keep track of the successors so we don't visit the same successor twice
1054 SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1055
1056 // Handle the first successor without using the worklist.
1057 VisitedSuccs.insert(*I);
1058 Pred = BB;
1059 BB = *I;
1060 ++I;
1061
1062 for (; I != E; ++I)
1063 if (VisitedSuccs.insert(*I))
1064 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1065
1066 goto NextIteration;
1067 }
1068
PromoteMemToReg(ArrayRef<AllocaInst * > Allocas,DominatorTree & DT,AliasSetTracker * AST)1069 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1070 AliasSetTracker *AST) {
1071 // If there is nothing to do, bail out...
1072 if (Allocas.empty())
1073 return;
1074
1075 PromoteMem2Reg(Allocas, DT, AST).run();
1076 }
1077