1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/TableGen/Error.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "regalloc-emitter"
28
29 //===----------------------------------------------------------------------===//
30 // CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32
CodeGenSubRegIndex(Record * R,unsigned Enum)33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35 Name = R->getName();
36 if (R->getValue("Namespace"))
37 Namespace = R->getValueAsString("Namespace");
38 Size = R->getValueAsInt("Size");
39 Offset = R->getValueAsInt("Offset");
40 }
41
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43 unsigned Enum)
44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47
getQualifiedName() const48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49 std::string N = getNamespace();
50 if (!N.empty())
51 N += "::";
52 N += getName();
53 return N;
54 }
55
updateComponents(CodeGenRegBank & RegBank)56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57 if (!TheDef)
58 return;
59
60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61 if (!Comps.empty()) {
62 if (Comps.size() != 2)
63 PrintFatalError(TheDef->getLoc(),
64 "ComposedOf must have exactly two entries");
65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67 CodeGenSubRegIndex *X = A->addComposite(B, this);
68 if (X)
69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70 }
71
72 std::vector<Record*> Parts =
73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74 if (!Parts.empty()) {
75 if (Parts.size() < 2)
76 PrintFatalError(TheDef->getLoc(),
77 "CoveredBySubRegs must have two or more entries");
78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79 for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81 RegBank.addConcatSubRegIndex(IdxParts, this);
82 }
83 }
84
computeLaneMask()85 unsigned CodeGenSubRegIndex::computeLaneMask() {
86 // Already computed?
87 if (LaneMask)
88 return LaneMask;
89
90 // Recursion guard, shouldn't be required.
91 LaneMask = ~0u;
92
93 // The lane mask is simply the union of all sub-indices.
94 unsigned M = 0;
95 for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
96 M |= I->second->computeLaneMask();
97 assert(M && "Missing lane mask, sub-register cycle?");
98 LaneMask = M;
99 return LaneMask;
100 }
101
102 //===----------------------------------------------------------------------===//
103 // CodeGenRegister
104 //===----------------------------------------------------------------------===//
105
CodeGenRegister(Record * R,unsigned Enum)106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107 : TheDef(R),
108 EnumValue(Enum),
109 CostPerUse(R->getValueAsInt("CostPerUse")),
110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111 NumNativeRegUnits(0),
112 SubRegsComplete(false),
113 SuperRegsComplete(false),
114 TopoSig(~0u)
115 {}
116
buildObjectGraph(CodeGenRegBank & RegBank)117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121 if (SRIs.size() != SRs.size())
122 PrintFatalError(TheDef->getLoc(),
123 "SubRegs and SubRegIndices must have the same size");
124
125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128 }
129
130 // Also compute leading super-registers. Each register has a list of
131 // covered-by-subregs super-registers where it appears as the first explicit
132 // sub-register.
133 //
134 // This is used by computeSecondarySubRegs() to find candidates.
135 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138 // Add ad hoc alias links. This is a symmetric relationship between two
139 // registers, so build a symmetric graph by adding links in both ends.
140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143 ExplicitAliases.push_back(Reg);
144 Reg->ExplicitAliases.push_back(this);
145 }
146 }
147
getName() const148 const std::string &CodeGenRegister::getName() const {
149 return TheDef->getName();
150 }
151
152 namespace {
153 // Iterate over all register units in a set of registers.
154 class RegUnitIterator {
155 CodeGenRegister::Set::const_iterator RegI, RegE;
156 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
157
158 public:
RegUnitIterator(const CodeGenRegister::Set & Regs)159 RegUnitIterator(const CodeGenRegister::Set &Regs):
160 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
161
162 if (RegI != RegE) {
163 UnitI = (*RegI)->getRegUnits().begin();
164 UnitE = (*RegI)->getRegUnits().end();
165 advance();
166 }
167 }
168
isValid() const169 bool isValid() const { return UnitI != UnitE; }
170
operator *() const171 unsigned operator* () const { assert(isValid()); return *UnitI; }
172
getReg() const173 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
174
175 /// Preincrement. Move to the next unit.
operator ++()176 void operator++() {
177 assert(isValid() && "Cannot advance beyond the last operand");
178 ++UnitI;
179 advance();
180 }
181
182 protected:
advance()183 void advance() {
184 while (UnitI == UnitE) {
185 if (++RegI == RegE)
186 break;
187 UnitI = (*RegI)->getRegUnits().begin();
188 UnitE = (*RegI)->getRegUnits().end();
189 }
190 }
191 };
192 } // namespace
193
194 // Merge two RegUnitLists maintaining the order and removing duplicates.
195 // Overwrites MergedRU in the process.
mergeRegUnits(CodeGenRegister::RegUnitList & MergedRU,const CodeGenRegister::RegUnitList & RRU)196 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
197 const CodeGenRegister::RegUnitList &RRU) {
198 CodeGenRegister::RegUnitList LRU = MergedRU;
199 MergedRU.clear();
200 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
201 std::back_inserter(MergedRU));
202 }
203
204 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)205 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
206 return std::count(RegUnits.begin(), RegUnits.end(), Unit);
207 }
208
209 // Inherit register units from subregisters.
210 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)211 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
212 unsigned OldNumUnits = RegUnits.size();
213 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
214 I != E; ++I) {
215 CodeGenRegister *SR = I->second;
216 // Merge the subregister's units into this register's RegUnits.
217 mergeRegUnits(RegUnits, SR->RegUnits);
218 }
219 return OldNumUnits != RegUnits.size();
220 }
221
222 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)223 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
224 // Only compute this map once.
225 if (SubRegsComplete)
226 return SubRegs;
227 SubRegsComplete = true;
228
229 // First insert the explicit subregs and make sure they are fully indexed.
230 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
231 CodeGenRegister *SR = ExplicitSubRegs[i];
232 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
233 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
234 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
235 " appears twice in Register " + getName());
236 // Map explicit sub-registers first, so the names take precedence.
237 // The inherited sub-registers are mapped below.
238 SubReg2Idx.insert(std::make_pair(SR, Idx));
239 }
240
241 // Keep track of inherited subregs and how they can be reached.
242 SmallPtrSet<CodeGenRegister*, 8> Orphans;
243
244 // Clone inherited subregs and place duplicate entries in Orphans.
245 // Here the order is important - earlier subregs take precedence.
246 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
247 CodeGenRegister *SR = ExplicitSubRegs[i];
248 const SubRegMap &Map = SR->computeSubRegs(RegBank);
249
250 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
251 ++SI) {
252 if (!SubRegs.insert(*SI).second)
253 Orphans.insert(SI->second);
254 }
255 }
256
257 // Expand any composed subreg indices.
258 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
259 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
260 // expanded subreg indices recursively.
261 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
262 for (unsigned i = 0; i != Indices.size(); ++i) {
263 CodeGenSubRegIndex *Idx = Indices[i];
264 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
265 CodeGenRegister *SR = SubRegs[Idx];
266 const SubRegMap &Map = SR->computeSubRegs(RegBank);
267
268 // Look at the possible compositions of Idx.
269 // They may not all be supported by SR.
270 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
271 E = Comps.end(); I != E; ++I) {
272 SubRegMap::const_iterator SRI = Map.find(I->first);
273 if (SRI == Map.end())
274 continue; // Idx + I->first doesn't exist in SR.
275 // Add I->second as a name for the subreg SRI->second, assuming it is
276 // orphaned, and the name isn't already used for something else.
277 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
278 continue;
279 // We found a new name for the orphaned sub-register.
280 SubRegs.insert(std::make_pair(I->second, SRI->second));
281 Indices.push_back(I->second);
282 }
283 }
284
285 // Now Orphans contains the inherited subregisters without a direct index.
286 // Create inferred indexes for all missing entries.
287 // Work backwards in the Indices vector in order to compose subregs bottom-up.
288 // Consider this subreg sequence:
289 //
290 // qsub_1 -> dsub_0 -> ssub_0
291 //
292 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
293 // can be reached in two different ways:
294 //
295 // qsub_1 -> ssub_0
296 // dsub_2 -> ssub_0
297 //
298 // We pick the latter composition because another register may have [dsub_0,
299 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
300 // dsub_2 -> ssub_0 composition can be shared.
301 while (!Indices.empty() && !Orphans.empty()) {
302 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
303 CodeGenRegister *SR = SubRegs[Idx];
304 const SubRegMap &Map = SR->computeSubRegs(RegBank);
305 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
306 ++SI)
307 if (Orphans.erase(SI->second))
308 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
309 }
310
311 // Compute the inverse SubReg -> Idx map.
312 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
313 SI != SE; ++SI) {
314 if (SI->second == this) {
315 ArrayRef<SMLoc> Loc;
316 if (TheDef)
317 Loc = TheDef->getLoc();
318 PrintFatalError(Loc, "Register " + getName() +
319 " has itself as a sub-register");
320 }
321
322 // Compute AllSuperRegsCovered.
323 if (!CoveredBySubRegs)
324 SI->first->AllSuperRegsCovered = false;
325
326 // Ensure that every sub-register has a unique name.
327 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
328 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
329 if (Ins->second == SI->first)
330 continue;
331 // Trouble: Two different names for SI->second.
332 ArrayRef<SMLoc> Loc;
333 if (TheDef)
334 Loc = TheDef->getLoc();
335 PrintFatalError(Loc, "Sub-register can't have two names: " +
336 SI->second->getName() + " available as " +
337 SI->first->getName() + " and " + Ins->second->getName());
338 }
339
340 // Derive possible names for sub-register concatenations from any explicit
341 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
342 // that getConcatSubRegIndex() won't invent any concatenated indices that the
343 // user already specified.
344 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
345 CodeGenRegister *SR = ExplicitSubRegs[i];
346 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
347 continue;
348
349 // SR is composed of multiple sub-regs. Find their names in this register.
350 SmallVector<CodeGenSubRegIndex*, 8> Parts;
351 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
352 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
353
354 // Offer this as an existing spelling for the concatenation of Parts.
355 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
356 }
357
358 // Initialize RegUnitList. Because getSubRegs is called recursively, this
359 // processes the register hierarchy in postorder.
360 //
361 // Inherit all sub-register units. It is good enough to look at the explicit
362 // sub-registers, the other registers won't contribute any more units.
363 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
364 CodeGenRegister *SR = ExplicitSubRegs[i];
365 // Explicit sub-registers are usually disjoint, so this is a good way of
366 // computing the union. We may pick up a few duplicates that will be
367 // eliminated below.
368 unsigned N = RegUnits.size();
369 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
370 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
371 }
372 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
373
374 // Absent any ad hoc aliasing, we create one register unit per leaf register.
375 // These units correspond to the maximal cliques in the register overlap
376 // graph which is optimal.
377 //
378 // When there is ad hoc aliasing, we simply create one unit per edge in the
379 // undirected ad hoc aliasing graph. Technically, we could do better by
380 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
381 // are extremely rare anyway (I've never seen one), so we don't bother with
382 // the added complexity.
383 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
384 CodeGenRegister *AR = ExplicitAliases[i];
385 // Only visit each edge once.
386 if (AR->SubRegsComplete)
387 continue;
388 // Create a RegUnit representing this alias edge, and add it to both
389 // registers.
390 unsigned Unit = RegBank.newRegUnit(this, AR);
391 RegUnits.push_back(Unit);
392 AR->RegUnits.push_back(Unit);
393 }
394
395 // Finally, create units for leaf registers without ad hoc aliases. Note that
396 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
397 // necessary. This means the aliasing leaf registers can share a single unit.
398 if (RegUnits.empty())
399 RegUnits.push_back(RegBank.newRegUnit(this));
400
401 // We have now computed the native register units. More may be adopted later
402 // for balancing purposes.
403 NumNativeRegUnits = RegUnits.size();
404
405 return SubRegs;
406 }
407
408 // In a register that is covered by its sub-registers, try to find redundant
409 // sub-registers. For example:
410 //
411 // QQ0 = {Q0, Q1}
412 // Q0 = {D0, D1}
413 // Q1 = {D2, D3}
414 //
415 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
416 // the register definition.
417 //
418 // The explicitly specified registers form a tree. This function discovers
419 // sub-register relationships that would force a DAG.
420 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)421 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
422 // Collect new sub-registers first, add them later.
423 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
424
425 // Look at the leading super-registers of each sub-register. Those are the
426 // candidates for new sub-registers, assuming they are fully contained in
427 // this register.
428 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
429 const CodeGenRegister *SubReg = I->second;
430 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
431 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
432 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
433 // Already got this sub-register?
434 if (Cand == this || getSubRegIndex(Cand))
435 continue;
436 // Check if each component of Cand is already a sub-register.
437 // We know that the first component is I->second, and is present with the
438 // name I->first.
439 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
440 assert(!Cand->ExplicitSubRegs.empty() &&
441 "Super-register has no sub-registers");
442 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
443 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
444 Parts.push_back(Idx);
445 else {
446 // Sub-register doesn't exist.
447 Parts.clear();
448 break;
449 }
450 }
451 // If some Cand sub-register is not part of this register, or if Cand only
452 // has one sub-register, there is nothing to do.
453 if (Parts.size() <= 1)
454 continue;
455
456 // Each part of Cand is a sub-register of this. Make the full Cand also
457 // a sub-register with a concatenated sub-register index.
458 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
459 NewSubRegs.push_back(std::make_pair(Concat, Cand));
460 }
461 }
462
463 // Now add all the new sub-registers.
464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465 // Don't add Cand if another sub-register is already using the index.
466 if (!SubRegs.insert(NewSubRegs[i]).second)
467 continue;
468
469 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
470 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
471 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
472 }
473
474 // Create sub-register index composition maps for the synthesized indices.
475 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
476 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
477 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
478 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
479 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
480 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
481 if (!SubIdx)
482 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
483 SI->second->getName() + " in " + getName());
484 NewIdx->addComposite(SI->first, SubIdx);
485 }
486 }
487 }
488
computeSuperRegs(CodeGenRegBank & RegBank)489 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
490 // Only visit each register once.
491 if (SuperRegsComplete)
492 return;
493 SuperRegsComplete = true;
494
495 // Make sure all sub-registers have been visited first, so the super-reg
496 // lists will be topologically ordered.
497 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
498 I != E; ++I)
499 I->second->computeSuperRegs(RegBank);
500
501 // Now add this as a super-register on all sub-registers.
502 // Also compute the TopoSigId in post-order.
503 TopoSigId Id;
504 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
505 I != E; ++I) {
506 // Topological signature computed from SubIdx, TopoId(SubReg).
507 // Loops and idempotent indices have TopoSig = ~0u.
508 Id.push_back(I->first->EnumValue);
509 Id.push_back(I->second->TopoSig);
510
511 // Don't add duplicate entries.
512 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
513 continue;
514 I->second->SuperRegs.push_back(this);
515 }
516 TopoSig = RegBank.getTopoSig(Id);
517 }
518
519 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const520 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
521 CodeGenRegBank &RegBank) const {
522 assert(SubRegsComplete && "Must precompute sub-registers");
523 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
524 CodeGenRegister *SR = ExplicitSubRegs[i];
525 if (OSet.insert(SR))
526 SR->addSubRegsPreOrder(OSet, RegBank);
527 }
528 // Add any secondary sub-registers that weren't part of the explicit tree.
529 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
530 I != E; ++I)
531 OSet.insert(I->second);
532 }
533
534 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const535 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
536 unsigned Weight = 0;
537 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
538 I != E; ++I) {
539 Weight += RegBank.getRegUnit(*I).Weight;
540 }
541 return Weight;
542 }
543
544 //===----------------------------------------------------------------------===//
545 // RegisterTuples
546 //===----------------------------------------------------------------------===//
547
548 // A RegisterTuples def is used to generate pseudo-registers from lists of
549 // sub-registers. We provide a SetTheory expander class that returns the new
550 // registers.
551 namespace {
552 struct TupleExpander : SetTheory::Expander {
expand__anonb69811410211::TupleExpander553 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
554 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
555 unsigned Dim = Indices.size();
556 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
557 if (Dim != SubRegs->getSize())
558 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
559 if (Dim < 2)
560 PrintFatalError(Def->getLoc(),
561 "Tuples must have at least 2 sub-registers");
562
563 // Evaluate the sub-register lists to be zipped.
564 unsigned Length = ~0u;
565 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
566 for (unsigned i = 0; i != Dim; ++i) {
567 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
568 Length = std::min(Length, unsigned(Lists[i].size()));
569 }
570
571 if (Length == 0)
572 return;
573
574 // Precompute some types.
575 Record *RegisterCl = Def->getRecords().getClass("Register");
576 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
577 StringInit *BlankName = StringInit::get("");
578
579 // Zip them up.
580 for (unsigned n = 0; n != Length; ++n) {
581 std::string Name;
582 Record *Proto = Lists[0][n];
583 std::vector<Init*> Tuple;
584 unsigned CostPerUse = 0;
585 for (unsigned i = 0; i != Dim; ++i) {
586 Record *Reg = Lists[i][n];
587 if (i) Name += '_';
588 Name += Reg->getName();
589 Tuple.push_back(DefInit::get(Reg));
590 CostPerUse = std::max(CostPerUse,
591 unsigned(Reg->getValueAsInt("CostPerUse")));
592 }
593
594 // Create a new Record representing the synthesized register. This record
595 // is only for consumption by CodeGenRegister, it is not added to the
596 // RecordKeeper.
597 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
598 Elts.insert(NewReg);
599
600 // Copy Proto super-classes.
601 ArrayRef<Record *> Supers = Proto->getSuperClasses();
602 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
603 for (unsigned i = 0, e = Supers.size(); i != e; ++i)
604 NewReg->addSuperClass(Supers[i], Ranges[i]);
605
606 // Copy Proto fields.
607 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
608 RecordVal RV = Proto->getValues()[i];
609
610 // Skip existing fields, like NAME.
611 if (NewReg->getValue(RV.getNameInit()))
612 continue;
613
614 StringRef Field = RV.getName();
615
616 // Replace the sub-register list with Tuple.
617 if (Field == "SubRegs")
618 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
619
620 // Provide a blank AsmName. MC hacks are required anyway.
621 if (Field == "AsmName")
622 RV.setValue(BlankName);
623
624 // CostPerUse is aggregated from all Tuple members.
625 if (Field == "CostPerUse")
626 RV.setValue(IntInit::get(CostPerUse));
627
628 // Composite registers are always covered by sub-registers.
629 if (Field == "CoveredBySubRegs")
630 RV.setValue(BitInit::get(true));
631
632 // Copy fields from the RegisterTuples def.
633 if (Field == "SubRegIndices" ||
634 Field == "CompositeIndices") {
635 NewReg->addValue(*Def->getValue(Field));
636 continue;
637 }
638
639 // Some fields get their default uninitialized value.
640 if (Field == "DwarfNumbers" ||
641 Field == "DwarfAlias" ||
642 Field == "Aliases") {
643 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
644 NewReg->addValue(*DefRV);
645 continue;
646 }
647
648 // Everything else is copied from Proto.
649 NewReg->addValue(RV);
650 }
651 }
652 }
653 };
654 }
655
656 //===----------------------------------------------------------------------===//
657 // CodeGenRegisterClass
658 //===----------------------------------------------------------------------===//
659
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)660 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
661 : TheDef(R),
662 Name(R->getName()),
663 TopoSigs(RegBank.getNumTopoSigs()),
664 EnumValue(-1) {
665 // Rename anonymous register classes.
666 if (R->getName().size() > 9 && R->getName()[9] == '.') {
667 static unsigned AnonCounter = 0;
668 R->setName("AnonRegClass_" + utostr(AnonCounter));
669 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
670 ++AnonCounter;
671 }
672
673 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
674 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
675 Record *Type = TypeList[i];
676 if (!Type->isSubClassOf("ValueType"))
677 PrintFatalError("RegTypes list member '" + Type->getName() +
678 "' does not derive from the ValueType class!");
679 VTs.push_back(getValueType(Type));
680 }
681 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
682
683 // Allocation order 0 is the full set. AltOrders provides others.
684 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
685 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
686 Orders.resize(1 + AltOrders->size());
687
688 // Default allocation order always contains all registers.
689 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
690 Orders[0].push_back((*Elements)[i]);
691 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
692 Members.insert(Reg);
693 TopoSigs.set(Reg->getTopoSig());
694 }
695
696 // Alternative allocation orders may be subsets.
697 SetTheory::RecSet Order;
698 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
699 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
700 Orders[1 + i].append(Order.begin(), Order.end());
701 // Verify that all altorder members are regclass members.
702 while (!Order.empty()) {
703 CodeGenRegister *Reg = RegBank.getReg(Order.back());
704 Order.pop_back();
705 if (!contains(Reg))
706 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
707 " is not a class member");
708 }
709 }
710
711 // Allow targets to override the size in bits of the RegisterClass.
712 unsigned Size = R->getValueAsInt("Size");
713
714 Namespace = R->getValueAsString("Namespace");
715 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
716 SpillAlignment = R->getValueAsInt("Alignment");
717 CopyCost = R->getValueAsInt("CopyCost");
718 Allocatable = R->getValueAsBit("isAllocatable");
719 AltOrderSelect = R->getValueAsString("AltOrderSelect");
720 }
721
722 // Create an inferred register class that was missing from the .td files.
723 // Most properties will be inherited from the closest super-class after the
724 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)725 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
726 StringRef Name, Key Props)
727 : Members(*Props.Members),
728 TheDef(nullptr),
729 Name(Name),
730 TopoSigs(RegBank.getNumTopoSigs()),
731 EnumValue(-1),
732 SpillSize(Props.SpillSize),
733 SpillAlignment(Props.SpillAlignment),
734 CopyCost(0),
735 Allocatable(true) {
736 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
737 I != E; ++I)
738 TopoSigs.set((*I)->getTopoSig());
739 }
740
741 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)742 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
743 assert(!getDef() && "Only synthesized classes can inherit properties");
744 assert(!SuperClasses.empty() && "Synthesized class without super class");
745
746 // The last super-class is the smallest one.
747 CodeGenRegisterClass &Super = *SuperClasses.back();
748
749 // Most properties are copied directly.
750 // Exceptions are members, size, and alignment
751 Namespace = Super.Namespace;
752 VTs = Super.VTs;
753 CopyCost = Super.CopyCost;
754 Allocatable = Super.Allocatable;
755 AltOrderSelect = Super.AltOrderSelect;
756
757 // Copy all allocation orders, filter out foreign registers from the larger
758 // super-class.
759 Orders.resize(Super.Orders.size());
760 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
761 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
762 if (contains(RegBank.getReg(Super.Orders[i][j])))
763 Orders[i].push_back(Super.Orders[i][j]);
764 }
765
contains(const CodeGenRegister * Reg) const766 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
767 return Members.count(Reg);
768 }
769
770 namespace llvm {
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)771 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
772 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
773 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
774 E = K.Members->end(); I != E; ++I)
775 OS << ", " << (*I)->getName();
776 return OS << " }";
777 }
778 }
779
780 // This is a simple lexicographical order that can be used to search for sets.
781 // It is not the same as the topological order provided by TopoOrderRC.
782 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const783 operator<(const CodeGenRegisterClass::Key &B) const {
784 assert(Members && B.Members);
785 return std::tie(*Members, SpillSize, SpillAlignment) <
786 std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
787 }
788
789 // Returns true if RC is a strict subclass.
790 // RC is a sub-class of this class if it is a valid replacement for any
791 // instruction operand where a register of this classis required. It must
792 // satisfy these conditions:
793 //
794 // 1. All RC registers are also in this.
795 // 2. The RC spill size must not be smaller than our spill size.
796 // 3. RC spill alignment must be compatible with ours.
797 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)798 static bool testSubClass(const CodeGenRegisterClass *A,
799 const CodeGenRegisterClass *B) {
800 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
801 A->SpillSize <= B->SpillSize &&
802 std::includes(A->getMembers().begin(), A->getMembers().end(),
803 B->getMembers().begin(), B->getMembers().end(),
804 CodeGenRegister::Less());
805 }
806
807 /// Sorting predicate for register classes. This provides a topological
808 /// ordering that arranges all register classes before their sub-classes.
809 ///
810 /// Register classes with the same registers, spill size, and alignment form a
811 /// clique. They will be ordered alphabetically.
812 ///
TopoOrderRC(CodeGenRegisterClass * const * PA,CodeGenRegisterClass * const * PB)813 static int TopoOrderRC(CodeGenRegisterClass *const *PA,
814 CodeGenRegisterClass *const *PB) {
815 const CodeGenRegisterClass *A = *PA;
816 const CodeGenRegisterClass *B = *PB;
817 if (A == B)
818 return 0;
819
820 // Order by ascending spill size.
821 if (A->SpillSize < B->SpillSize)
822 return -1;
823 if (A->SpillSize > B->SpillSize)
824 return 1;
825
826 // Order by ascending spill alignment.
827 if (A->SpillAlignment < B->SpillAlignment)
828 return -1;
829 if (A->SpillAlignment > B->SpillAlignment)
830 return 1;
831
832 // Order by descending set size. Note that the classes' allocation order may
833 // not have been computed yet. The Members set is always vaild.
834 if (A->getMembers().size() > B->getMembers().size())
835 return -1;
836 if (A->getMembers().size() < B->getMembers().size())
837 return 1;
838
839 // Finally order by name as a tie breaker.
840 return StringRef(A->getName()).compare(B->getName());
841 }
842
getQualifiedName() const843 std::string CodeGenRegisterClass::getQualifiedName() const {
844 if (Namespace.empty())
845 return getName();
846 else
847 return Namespace + "::" + getName();
848 }
849
850 // Compute sub-classes of all register classes.
851 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)852 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
853 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
854
855 // Visit backwards so sub-classes are seen first.
856 for (unsigned rci = RegClasses.size(); rci; --rci) {
857 CodeGenRegisterClass &RC = *RegClasses[rci - 1];
858 RC.SubClasses.resize(RegClasses.size());
859 RC.SubClasses.set(RC.EnumValue);
860
861 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
862 for (unsigned s = rci; s != RegClasses.size(); ++s) {
863 if (RC.SubClasses.test(s))
864 continue;
865 CodeGenRegisterClass *SubRC = RegClasses[s];
866 if (!testSubClass(&RC, SubRC))
867 continue;
868 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
869 // check them again.
870 RC.SubClasses |= SubRC->SubClasses;
871 }
872
873 // Sweep up missed clique members. They will be immediately preceding RC.
874 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
875 RC.SubClasses.set(s - 1);
876 }
877
878 // Compute the SuperClasses lists from the SubClasses vectors.
879 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
880 const BitVector &SC = RegClasses[rci]->getSubClasses();
881 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
882 if (unsigned(s) == rci)
883 continue;
884 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
885 }
886 }
887
888 // With the class hierarchy in place, let synthesized register classes inherit
889 // properties from their closest super-class. The iteration order here can
890 // propagate properties down multiple levels.
891 for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
892 if (!RegClasses[rci]->getDef())
893 RegClasses[rci]->inheritProperties(RegBank);
894 }
895
896 void
getSuperRegClasses(CodeGenSubRegIndex * SubIdx,BitVector & Out) const897 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
898 BitVector &Out) const {
899 DenseMap<CodeGenSubRegIndex*,
900 SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
901 FindI = SuperRegClasses.find(SubIdx);
902 if (FindI == SuperRegClasses.end())
903 return;
904 for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
905 FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
906 Out.set((*I)->EnumValue);
907 }
908
909 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(std::vector<unsigned> & RegUnits) const910 void CodeGenRegisterClass::buildRegUnitSet(
911 std::vector<unsigned> &RegUnits) const {
912 std::vector<unsigned> TmpUnits;
913 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
914 TmpUnits.push_back(*UnitI);
915 std::sort(TmpUnits.begin(), TmpUnits.end());
916 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
917 std::back_inserter(RegUnits));
918 }
919
920 //===----------------------------------------------------------------------===//
921 // CodeGenRegBank
922 //===----------------------------------------------------------------------===//
923
CodeGenRegBank(RecordKeeper & Records)924 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
925 // Configure register Sets to understand register classes and tuples.
926 Sets.addFieldExpander("RegisterClass", "MemberList");
927 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
928 Sets.addExpander("RegisterTuples", new TupleExpander());
929
930 // Read in the user-defined (named) sub-register indices.
931 // More indices will be synthesized later.
932 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
933 std::sort(SRIs.begin(), SRIs.end(), LessRecord());
934 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
935 getSubRegIdx(SRIs[i]);
936 // Build composite maps from ComposedOf fields.
937 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
938 SubRegIndices[i]->updateComponents(*this);
939
940 // Read in the register definitions.
941 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
942 std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
943 Registers.reserve(Regs.size());
944 // Assign the enumeration values.
945 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
946 getReg(Regs[i]);
947
948 // Expand tuples and number the new registers.
949 std::vector<Record*> Tups =
950 Records.getAllDerivedDefinitions("RegisterTuples");
951
952 std::vector<Record*> TupRegsCopy;
953 for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
954 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
955 TupRegsCopy.reserve(TupRegs->size());
956 TupRegsCopy.assign(TupRegs->begin(), TupRegs->end());
957 std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister());
958 for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j)
959 getReg((TupRegsCopy)[j]);
960 TupRegsCopy.clear();
961 }
962
963 // Now all the registers are known. Build the object graph of explicit
964 // register-register references.
965 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
966 Registers[i]->buildObjectGraph(*this);
967
968 // Compute register name map.
969 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
970 RegistersByName.GetOrCreateValue(
971 Registers[i]->TheDef->getValueAsString("AsmName"),
972 Registers[i]);
973
974 // Precompute all sub-register maps.
975 // This will create Composite entries for all inferred sub-register indices.
976 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
977 Registers[i]->computeSubRegs(*this);
978
979 // Infer even more sub-registers by combining leading super-registers.
980 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
981 if (Registers[i]->CoveredBySubRegs)
982 Registers[i]->computeSecondarySubRegs(*this);
983
984 // After the sub-register graph is complete, compute the topologically
985 // ordered SuperRegs list.
986 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
987 Registers[i]->computeSuperRegs(*this);
988
989 // Native register units are associated with a leaf register. They've all been
990 // discovered now.
991 NumNativeRegUnits = RegUnits.size();
992
993 // Read in register class definitions.
994 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
995 if (RCs.empty())
996 PrintFatalError("No 'RegisterClass' subclasses defined!");
997
998 // Allocate user-defined register classes.
999 RegClasses.reserve(RCs.size());
1000 for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1001 addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1002
1003 // Infer missing classes to create a full algebra.
1004 computeInferredRegisterClasses();
1005
1006 // Order register classes topologically and assign enum values.
1007 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1008 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1009 RegClasses[i]->EnumValue = i;
1010 CodeGenRegisterClass::computeSubClasses(*this);
1011 }
1012
1013 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1014 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1015 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1016 CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1017 SubRegIndices.size() + 1);
1018 SubRegIndices.push_back(Idx);
1019 return Idx;
1020 }
1021
getSubRegIdx(Record * Def)1022 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1023 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1024 if (Idx)
1025 return Idx;
1026 Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1027 SubRegIndices.push_back(Idx);
1028 return Idx;
1029 }
1030
getReg(Record * Def)1031 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1032 CodeGenRegister *&Reg = Def2Reg[Def];
1033 if (Reg)
1034 return Reg;
1035 Reg = new CodeGenRegister(Def, Registers.size() + 1);
1036 Registers.push_back(Reg);
1037 return Reg;
1038 }
1039
addToMaps(CodeGenRegisterClass * RC)1040 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1041 RegClasses.push_back(RC);
1042
1043 if (Record *Def = RC->getDef())
1044 Def2RC.insert(std::make_pair(Def, RC));
1045
1046 // Duplicate classes are rejected by insert().
1047 // That's OK, we only care about the properties handled by CGRC::Key.
1048 CodeGenRegisterClass::Key K(*RC);
1049 Key2RC.insert(std::make_pair(K, RC));
1050 }
1051
1052 // Create a synthetic sub-class if it is missing.
1053 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Set * Members,StringRef Name)1054 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1055 const CodeGenRegister::Set *Members,
1056 StringRef Name) {
1057 // Synthetic sub-class has the same size and alignment as RC.
1058 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1059 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1060 if (FoundI != Key2RC.end())
1061 return FoundI->second;
1062
1063 // Sub-class doesn't exist, create a new one.
1064 CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1065 addToMaps(NewRC);
1066 return NewRC;
1067 }
1068
getRegClass(Record * Def)1069 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1070 if (CodeGenRegisterClass *RC = Def2RC[Def])
1071 return RC;
1072
1073 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1074 }
1075
1076 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1077 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1078 CodeGenSubRegIndex *B) {
1079 // Look for an existing entry.
1080 CodeGenSubRegIndex *Comp = A->compose(B);
1081 if (Comp)
1082 return Comp;
1083
1084 // None exists, synthesize one.
1085 std::string Name = A->getName() + "_then_" + B->getName();
1086 Comp = createSubRegIndex(Name, A->getNamespace());
1087 A->addComposite(B, Comp);
1088 return Comp;
1089 }
1090
1091 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1092 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1093 assert(Parts.size() > 1 && "Need two parts to concatenate");
1094
1095 // Look for an existing entry.
1096 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1097 if (Idx)
1098 return Idx;
1099
1100 // None exists, synthesize one.
1101 std::string Name = Parts.front()->getName();
1102 // Determine whether all parts are contiguous.
1103 bool isContinuous = true;
1104 unsigned Size = Parts.front()->Size;
1105 unsigned LastOffset = Parts.front()->Offset;
1106 unsigned LastSize = Parts.front()->Size;
1107 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1108 Name += '_';
1109 Name += Parts[i]->getName();
1110 Size += Parts[i]->Size;
1111 if (Parts[i]->Offset != (LastOffset + LastSize))
1112 isContinuous = false;
1113 LastOffset = Parts[i]->Offset;
1114 LastSize = Parts[i]->Size;
1115 }
1116 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1117 Idx->Size = Size;
1118 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1119 return Idx;
1120 }
1121
computeComposites()1122 void CodeGenRegBank::computeComposites() {
1123 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1124 // and many registers will share TopoSigs on regular architectures.
1125 BitVector TopoSigs(getNumTopoSigs());
1126
1127 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1128 CodeGenRegister *Reg1 = Registers[i];
1129
1130 // Skip identical subreg structures already processed.
1131 if (TopoSigs.test(Reg1->getTopoSig()))
1132 continue;
1133 TopoSigs.set(Reg1->getTopoSig());
1134
1135 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1136 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1137 e1 = SRM1.end(); i1 != e1; ++i1) {
1138 CodeGenSubRegIndex *Idx1 = i1->first;
1139 CodeGenRegister *Reg2 = i1->second;
1140 // Ignore identity compositions.
1141 if (Reg1 == Reg2)
1142 continue;
1143 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1144 // Try composing Idx1 with another SubRegIndex.
1145 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1146 e2 = SRM2.end(); i2 != e2; ++i2) {
1147 CodeGenSubRegIndex *Idx2 = i2->first;
1148 CodeGenRegister *Reg3 = i2->second;
1149 // Ignore identity compositions.
1150 if (Reg2 == Reg3)
1151 continue;
1152 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1153 CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1154 assert(Idx3 && "Sub-register doesn't have an index");
1155
1156 // Conflicting composition? Emit a warning but allow it.
1157 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1158 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1159 " and " + Idx2->getQualifiedName() +
1160 " compose ambiguously as " + Prev->getQualifiedName() +
1161 " or " + Idx3->getQualifiedName());
1162 }
1163 }
1164 }
1165 }
1166
1167 // Compute lane masks. This is similar to register units, but at the
1168 // sub-register index level. Each bit in the lane mask is like a register unit
1169 // class, and two lane masks will have a bit in common if two sub-register
1170 // indices overlap in some register.
1171 //
1172 // Conservatively share a lane mask bit if two sub-register indices overlap in
1173 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegIndexLaneMasks()1174 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1175 // First assign individual bits to all the leaf indices.
1176 unsigned Bit = 0;
1177 // Determine mask of lanes that cover their registers.
1178 CoveringLanes = ~0u;
1179 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1180 CodeGenSubRegIndex *Idx = SubRegIndices[i];
1181 if (Idx->getComposites().empty()) {
1182 Idx->LaneMask = 1u << Bit;
1183 // Share bit 31 in the unlikely case there are more than 32 leafs.
1184 //
1185 // Sharing bits is harmless; it allows graceful degradation in targets
1186 // with more than 32 vector lanes. They simply get a limited resolution
1187 // view of lanes beyond the 32nd.
1188 //
1189 // See also the comment for getSubRegIndexLaneMask().
1190 if (Bit < 31)
1191 ++Bit;
1192 else
1193 // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1194 // is no longer covering its registers.
1195 CoveringLanes &= ~(1u << Bit);
1196 } else {
1197 Idx->LaneMask = 0;
1198 }
1199 }
1200
1201 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1202 // by the sub-register graph? This doesn't occur in any known targets.
1203
1204 // Inherit lanes from composites.
1205 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1206 unsigned Mask = SubRegIndices[i]->computeLaneMask();
1207 // If some super-registers without CoveredBySubRegs use this index, we can
1208 // no longer assume that the lanes are covering their registers.
1209 if (!SubRegIndices[i]->AllSuperRegsCovered)
1210 CoveringLanes &= ~Mask;
1211 }
1212 }
1213
1214 namespace {
1215 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1216 // the transitive closure of the union of overlapping register
1217 // classes. Together, the UberRegSets form a partition of the registers. If we
1218 // consider overlapping register classes to be connected, then each UberRegSet
1219 // is a set of connected components.
1220 //
1221 // An UberRegSet will likely be a horizontal slice of register names of
1222 // the same width. Nontrivial subregisters should then be in a separate
1223 // UberRegSet. But this property isn't required for valid computation of
1224 // register unit weights.
1225 //
1226 // A Weight field caches the max per-register unit weight in each UberRegSet.
1227 //
1228 // A set of SingularDeterminants flags single units of some register in this set
1229 // for which the unit weight equals the set weight. These units should not have
1230 // their weight increased.
1231 struct UberRegSet {
1232 CodeGenRegister::Set Regs;
1233 unsigned Weight;
1234 CodeGenRegister::RegUnitList SingularDeterminants;
1235
UberRegSet__anonb69811410311::UberRegSet1236 UberRegSet(): Weight(0) {}
1237 };
1238 } // namespace
1239
1240 // Partition registers into UberRegSets, where each set is the transitive
1241 // closure of the union of overlapping register classes.
1242 //
1243 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1244 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1245 std::vector<UberRegSet*> &RegSets,
1246 CodeGenRegBank &RegBank) {
1247
1248 const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1249
1250 // The Register EnumValue is one greater than its index into Registers.
1251 assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1252 "register enum value mismatch");
1253
1254 // For simplicitly make the SetID the same as EnumValue.
1255 IntEqClasses UberSetIDs(Registers.size()+1);
1256 std::set<unsigned> AllocatableRegs;
1257 for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1258
1259 CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1260 if (!RegClass->Allocatable)
1261 continue;
1262
1263 const CodeGenRegister::Set &Regs = RegClass->getMembers();
1264 if (Regs.empty())
1265 continue;
1266
1267 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1268 assert(USetID && "register number 0 is invalid");
1269
1270 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1271 for (CodeGenRegister::Set::const_iterator I = std::next(Regs.begin()),
1272 E = Regs.end(); I != E; ++I) {
1273 AllocatableRegs.insert((*I)->EnumValue);
1274 UberSetIDs.join(USetID, (*I)->EnumValue);
1275 }
1276 }
1277 // Combine non-allocatable regs.
1278 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1279 unsigned RegNum = Registers[i]->EnumValue;
1280 if (AllocatableRegs.count(RegNum))
1281 continue;
1282
1283 UberSetIDs.join(0, RegNum);
1284 }
1285 UberSetIDs.compress();
1286
1287 // Make the first UberSet a special unallocatable set.
1288 unsigned ZeroID = UberSetIDs[0];
1289
1290 // Insert Registers into the UberSets formed by union-find.
1291 // Do not resize after this.
1292 UberSets.resize(UberSetIDs.getNumClasses());
1293 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1294 const CodeGenRegister *Reg = Registers[i];
1295 unsigned USetID = UberSetIDs[Reg->EnumValue];
1296 if (!USetID)
1297 USetID = ZeroID;
1298 else if (USetID == ZeroID)
1299 USetID = 0;
1300
1301 UberRegSet *USet = &UberSets[USetID];
1302 USet->Regs.insert(Reg);
1303 RegSets[i] = USet;
1304 }
1305 }
1306
1307 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1308 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1309 CodeGenRegBank &RegBank) {
1310 // Skip the first unallocatable set.
1311 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1312 E = UberSets.end(); I != E; ++I) {
1313
1314 // Initialize all unit weights in this set, and remember the max units/reg.
1315 const CodeGenRegister *Reg = nullptr;
1316 unsigned MaxWeight = 0, Weight = 0;
1317 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1318 if (Reg != UnitI.getReg()) {
1319 if (Weight > MaxWeight)
1320 MaxWeight = Weight;
1321 Reg = UnitI.getReg();
1322 Weight = 0;
1323 }
1324 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1325 if (!UWeight) {
1326 UWeight = 1;
1327 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1328 }
1329 Weight += UWeight;
1330 }
1331 if (Weight > MaxWeight)
1332 MaxWeight = Weight;
1333 if (I->Weight != MaxWeight) {
1334 DEBUG(
1335 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1336 for (CodeGenRegister::Set::iterator
1337 UnitI = I->Regs.begin(), UnitE = I->Regs.end();
1338 UnitI != UnitE; ++UnitI) {
1339 dbgs() << " " << (*UnitI)->getName();
1340 }
1341 dbgs() << "\n");
1342 // Update the set weight.
1343 I->Weight = MaxWeight;
1344 }
1345
1346 // Find singular determinants.
1347 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1348 RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1349 if ((*RegI)->getRegUnits().size() == 1
1350 && (*RegI)->getWeight(RegBank) == I->Weight)
1351 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1352 }
1353 }
1354 }
1355
1356 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1357 // a register and its subregisters so that they have the same weight as their
1358 // UberSet. Self-recursion processes the subregister tree in postorder so
1359 // subregisters are normalized first.
1360 //
1361 // Side effects:
1362 // - creates new adopted register units
1363 // - causes superregisters to inherit adopted units
1364 // - increases the weight of "singular" units
1365 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,std::set<unsigned> & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1366 static bool normalizeWeight(CodeGenRegister *Reg,
1367 std::vector<UberRegSet> &UberSets,
1368 std::vector<UberRegSet*> &RegSets,
1369 std::set<unsigned> &NormalRegs,
1370 CodeGenRegister::RegUnitList &NormalUnits,
1371 CodeGenRegBank &RegBank) {
1372 bool Changed = false;
1373 if (!NormalRegs.insert(Reg->EnumValue).second)
1374 return Changed;
1375
1376 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1377 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1378 SRE = SRM.end(); SRI != SRE; ++SRI) {
1379 if (SRI->second == Reg)
1380 continue; // self-cycles happen
1381
1382 Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1383 NormalRegs, NormalUnits, RegBank);
1384 }
1385 // Postorder register normalization.
1386
1387 // Inherit register units newly adopted by subregisters.
1388 if (Reg->inheritRegUnits(RegBank))
1389 computeUberWeights(UberSets, RegBank);
1390
1391 // Check if this register is too skinny for its UberRegSet.
1392 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1393
1394 unsigned RegWeight = Reg->getWeight(RegBank);
1395 if (UberSet->Weight > RegWeight) {
1396 // A register unit's weight can be adjusted only if it is the singular unit
1397 // for this register, has not been used to normalize a subregister's set,
1398 // and has not already been used to singularly determine this UberRegSet.
1399 unsigned AdjustUnit = Reg->getRegUnits().front();
1400 if (Reg->getRegUnits().size() != 1
1401 || hasRegUnit(NormalUnits, AdjustUnit)
1402 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1403 // We don't have an adjustable unit, so adopt a new one.
1404 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1405 Reg->adoptRegUnit(AdjustUnit);
1406 // Adopting a unit does not immediately require recomputing set weights.
1407 }
1408 else {
1409 // Adjust the existing single unit.
1410 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1411 // The unit may be shared among sets and registers within this set.
1412 computeUberWeights(UberSets, RegBank);
1413 }
1414 Changed = true;
1415 }
1416
1417 // Mark these units normalized so superregisters can't change their weights.
1418 mergeRegUnits(NormalUnits, Reg->getRegUnits());
1419
1420 return Changed;
1421 }
1422
1423 // Compute a weight for each register unit created during getSubRegs.
1424 //
1425 // The goal is that two registers in the same class will have the same weight,
1426 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1427 void CodeGenRegBank::computeRegUnitWeights() {
1428 std::vector<UberRegSet> UberSets;
1429 std::vector<UberRegSet*> RegSets(Registers.size());
1430 computeUberSets(UberSets, RegSets, *this);
1431 // UberSets and RegSets are now immutable.
1432
1433 computeUberWeights(UberSets, *this);
1434
1435 // Iterate over each Register, normalizing the unit weights until reaching
1436 // a fix point.
1437 unsigned NumIters = 0;
1438 for (bool Changed = true; Changed; ++NumIters) {
1439 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1440 Changed = false;
1441 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1442 CodeGenRegister::RegUnitList NormalUnits;
1443 std::set<unsigned> NormalRegs;
1444 Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1445 NormalRegs, NormalUnits, *this);
1446 }
1447 }
1448 }
1449
1450 // Find a set in UniqueSets with the same elements as Set.
1451 // Return an iterator into UniqueSets.
1452 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1453 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1454 const RegUnitSet &Set) {
1455 std::vector<RegUnitSet>::const_iterator
1456 I = UniqueSets.begin(), E = UniqueSets.end();
1457 for(;I != E; ++I) {
1458 if (I->Units == Set.Units)
1459 break;
1460 }
1461 return I;
1462 }
1463
1464 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1465 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1466 const std::vector<unsigned> &RUSuperSet) {
1467 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1468 RUSubSet.begin(), RUSubSet.end());
1469 }
1470
1471 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1472 /// but with one or two registers removed. We occasionally have registers like
1473 /// APSR and PC thrown in with the general registers. We also see many
1474 /// special-purpose register subsets, such as tail-call and Thumb
1475 /// encodings. Generating all possible overlapping sets is combinatorial and
1476 /// overkill for modeling pressure. Ideally we could fix this statically in
1477 /// tablegen by (1) having the target define register classes that only include
1478 /// the allocatable registers and marking other classes as non-allocatable and
1479 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1480 /// the purpose of pressure. However, we make an attempt to handle targets that
1481 /// are not nicely defined by merging nearly identical register unit sets
1482 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1483 /// set limit by filtering the reserved registers.
1484 ///
1485 /// Merge sets only if the units have the same weight. For example, on ARM,
1486 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1487 /// should not expand the S set to include D regs.
pruneUnitSets()1488 void CodeGenRegBank::pruneUnitSets() {
1489 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1490
1491 // Form an equivalence class of UnitSets with no significant difference.
1492 std::vector<unsigned> SuperSetIDs;
1493 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1494 SubIdx != EndIdx; ++SubIdx) {
1495 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1496 unsigned SuperIdx = 0;
1497 for (; SuperIdx != EndIdx; ++SuperIdx) {
1498 if (SuperIdx == SubIdx)
1499 continue;
1500
1501 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1502 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1503 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1504 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1505 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1506 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1507 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1508 << "\n");
1509 break;
1510 }
1511 }
1512 if (SuperIdx == EndIdx)
1513 SuperSetIDs.push_back(SubIdx);
1514 }
1515 // Populate PrunedUnitSets with each equivalence class's superset.
1516 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1517 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1518 unsigned SuperIdx = SuperSetIDs[i];
1519 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1520 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1521 }
1522 RegUnitSets.swap(PrunedUnitSets);
1523 }
1524
1525 // Create a RegUnitSet for each RegClass that contains all units in the class
1526 // including adopted units that are necessary to model register pressure. Then
1527 // iteratively compute RegUnitSets such that the union of any two overlapping
1528 // RegUnitSets is repreresented.
1529 //
1530 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1531 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1532 void CodeGenRegBank::computeRegUnitSets() {
1533 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1534
1535 // Compute a unique RegUnitSet for each RegClass.
1536 const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1537 unsigned NumRegClasses = RegClasses.size();
1538 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1539 if (!RegClasses[RCIdx]->Allocatable)
1540 continue;
1541
1542 // Speculatively grow the RegUnitSets to hold the new set.
1543 RegUnitSets.resize(RegUnitSets.size() + 1);
1544 RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1545
1546 // Compute a sorted list of units in this class.
1547 RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1548
1549 // Find an existing RegUnitSet.
1550 std::vector<RegUnitSet>::const_iterator SetI =
1551 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1552 if (SetI != std::prev(RegUnitSets.end()))
1553 RegUnitSets.pop_back();
1554 }
1555
1556 DEBUG(dbgs() << "\nBefore pruning:\n";
1557 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1558 USIdx < USEnd; ++USIdx) {
1559 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1560 << ":";
1561 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1562 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1563 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1564 dbgs() << "\n";
1565 });
1566
1567 // Iteratively prune unit sets.
1568 pruneUnitSets();
1569
1570 DEBUG(dbgs() << "\nBefore union:\n";
1571 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1572 USIdx < USEnd; ++USIdx) {
1573 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1574 << ":";
1575 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1576 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1577 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1578 dbgs() << "\n";
1579 }
1580 dbgs() << "\nUnion sets:\n");
1581
1582 // Iterate over all unit sets, including new ones added by this loop.
1583 unsigned NumRegUnitSubSets = RegUnitSets.size();
1584 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1585 // In theory, this is combinatorial. In practice, it needs to be bounded
1586 // by a small number of sets for regpressure to be efficient.
1587 // If the assert is hit, we need to implement pruning.
1588 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1589
1590 // Compare new sets with all original classes.
1591 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1592 SearchIdx != EndIdx; ++SearchIdx) {
1593 std::set<unsigned> Intersection;
1594 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1595 RegUnitSets[Idx].Units.end(),
1596 RegUnitSets[SearchIdx].Units.begin(),
1597 RegUnitSets[SearchIdx].Units.end(),
1598 std::inserter(Intersection, Intersection.begin()));
1599 if (Intersection.empty())
1600 continue;
1601
1602 // Speculatively grow the RegUnitSets to hold the new set.
1603 RegUnitSets.resize(RegUnitSets.size() + 1);
1604 RegUnitSets.back().Name =
1605 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1606
1607 std::set_union(RegUnitSets[Idx].Units.begin(),
1608 RegUnitSets[Idx].Units.end(),
1609 RegUnitSets[SearchIdx].Units.begin(),
1610 RegUnitSets[SearchIdx].Units.end(),
1611 std::inserter(RegUnitSets.back().Units,
1612 RegUnitSets.back().Units.begin()));
1613
1614 // Find an existing RegUnitSet, or add the union to the unique sets.
1615 std::vector<RegUnitSet>::const_iterator SetI =
1616 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1617 if (SetI != std::prev(RegUnitSets.end()))
1618 RegUnitSets.pop_back();
1619 else {
1620 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1621 << " " << RegUnitSets.back().Name << ":";
1622 ArrayRef<unsigned> Units = RegUnitSets.back().Units;
1623 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1624 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1625 dbgs() << "\n";);
1626 }
1627 }
1628 }
1629
1630 // Iteratively prune unit sets after inferring supersets.
1631 pruneUnitSets();
1632
1633 DEBUG(dbgs() << "\n";
1634 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1635 USIdx < USEnd; ++USIdx) {
1636 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1637 << ":";
1638 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units;
1639 for (unsigned i = 0, e = Units.size(); i < e; ++i)
1640 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName();
1641 dbgs() << "\n";
1642 });
1643
1644 // For each register class, list the UnitSets that are supersets.
1645 RegClassUnitSets.resize(NumRegClasses);
1646 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1647 if (!RegClasses[RCIdx]->Allocatable)
1648 continue;
1649
1650 // Recompute the sorted list of units in this class.
1651 std::vector<unsigned> RCRegUnits;
1652 RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits);
1653
1654 // Don't increase pressure for unallocatable regclasses.
1655 if (RCRegUnits.empty())
1656 continue;
1657
1658 DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n";
1659 for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i)
1660 dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " ";
1661 dbgs() << "\n UnitSetIDs:");
1662
1663 // Find all supersets.
1664 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1665 USIdx != USEnd; ++USIdx) {
1666 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1667 DEBUG(dbgs() << " " << USIdx);
1668 RegClassUnitSets[RCIdx].push_back(USIdx);
1669 }
1670 }
1671 DEBUG(dbgs() << "\n");
1672 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1673 }
1674
1675 // For each register unit, ensure that we have the list of UnitSets that
1676 // contain the unit. Normally, this matches an existing list of UnitSets for a
1677 // register class. If not, we create a new entry in RegClassUnitSets as a
1678 // "fake" register class.
1679 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1680 UnitIdx < UnitEnd; ++UnitIdx) {
1681 std::vector<unsigned> RUSets;
1682 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1683 RegUnitSet &RUSet = RegUnitSets[i];
1684 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1685 == RUSet.Units.end())
1686 continue;
1687 RUSets.push_back(i);
1688 }
1689 unsigned RCUnitSetsIdx = 0;
1690 for (unsigned e = RegClassUnitSets.size();
1691 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1692 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1693 break;
1694 }
1695 }
1696 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1697 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1698 // Create a new list of UnitSets as a "fake" register class.
1699 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1700 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1701 }
1702 }
1703 }
1704
computeDerivedInfo()1705 void CodeGenRegBank::computeDerivedInfo() {
1706 computeComposites();
1707 computeSubRegIndexLaneMasks();
1708
1709 // Compute a weight for each register unit created during getSubRegs.
1710 // This may create adopted register units (with unit # >= NumNativeRegUnits).
1711 computeRegUnitWeights();
1712
1713 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1714 // supersets for the union of overlapping sets.
1715 computeRegUnitSets();
1716
1717 // Get the weight of each set.
1718 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1719 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1720
1721 // Find the order of each set.
1722 RegUnitSetOrder.reserve(RegUnitSets.size());
1723 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1724 RegUnitSetOrder.push_back(Idx);
1725
1726 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1727 [this](unsigned ID1, unsigned ID2) {
1728 return getRegPressureSet(ID1).Units.size() <
1729 getRegPressureSet(ID2).Units.size();
1730 });
1731 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1732 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1733 }
1734 }
1735
1736 //
1737 // Synthesize missing register class intersections.
1738 //
1739 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1740 // returns a maximal register class for all X.
1741 //
inferCommonSubClass(CodeGenRegisterClass * RC)1742 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1743 for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1744 CodeGenRegisterClass *RC1 = RC;
1745 CodeGenRegisterClass *RC2 = RegClasses[rci];
1746 if (RC1 == RC2)
1747 continue;
1748
1749 // Compute the set intersection of RC1 and RC2.
1750 const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1751 const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1752 CodeGenRegister::Set Intersection;
1753 std::set_intersection(Memb1.begin(), Memb1.end(),
1754 Memb2.begin(), Memb2.end(),
1755 std::inserter(Intersection, Intersection.begin()),
1756 CodeGenRegister::Less());
1757
1758 // Skip disjoint class pairs.
1759 if (Intersection.empty())
1760 continue;
1761
1762 // If RC1 and RC2 have different spill sizes or alignments, use the
1763 // larger size for sub-classing. If they are equal, prefer RC1.
1764 if (RC2->SpillSize > RC1->SpillSize ||
1765 (RC2->SpillSize == RC1->SpillSize &&
1766 RC2->SpillAlignment > RC1->SpillAlignment))
1767 std::swap(RC1, RC2);
1768
1769 getOrCreateSubClass(RC1, &Intersection,
1770 RC1->getName() + "_and_" + RC2->getName());
1771 }
1772 }
1773
1774 //
1775 // Synthesize missing sub-classes for getSubClassWithSubReg().
1776 //
1777 // Make sure that the set of registers in RC with a given SubIdx sub-register
1778 // form a register class. Update RC->SubClassWithSubReg.
1779 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)1780 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1781 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1782 typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1783 CodeGenSubRegIndex::Less> SubReg2SetMap;
1784
1785 // Compute the set of registers supporting each SubRegIndex.
1786 SubReg2SetMap SRSets;
1787 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1788 RE = RC->getMembers().end(); RI != RE; ++RI) {
1789 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1790 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1791 E = SRM.end(); I != E; ++I)
1792 SRSets[I->first].insert(*RI);
1793 }
1794
1795 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
1796 // numerical order to visit synthetic indices last.
1797 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1798 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1799 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1800 // Unsupported SubRegIndex. Skip it.
1801 if (I == SRSets.end())
1802 continue;
1803 // In most cases, all RC registers support the SubRegIndex.
1804 if (I->second.size() == RC->getMembers().size()) {
1805 RC->setSubClassWithSubReg(SubIdx, RC);
1806 continue;
1807 }
1808 // This is a real subset. See if we have a matching class.
1809 CodeGenRegisterClass *SubRC =
1810 getOrCreateSubClass(RC, &I->second,
1811 RC->getName() + "_with_" + I->first->getName());
1812 RC->setSubClassWithSubReg(SubIdx, SubRC);
1813 }
1814 }
1815
1816 //
1817 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1818 //
1819 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1820 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1821 //
1822
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,unsigned FirstSubRegRC)1823 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1824 unsigned FirstSubRegRC) {
1825 SmallVector<std::pair<const CodeGenRegister*,
1826 const CodeGenRegister*>, 16> SSPairs;
1827 BitVector TopoSigs(getNumTopoSigs());
1828
1829 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1830 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1831 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1832 // Skip indexes that aren't fully supported by RC's registers. This was
1833 // computed by inferSubClassWithSubReg() above which should have been
1834 // called first.
1835 if (RC->getSubClassWithSubReg(SubIdx) != RC)
1836 continue;
1837
1838 // Build list of (Super, Sub) pairs for this SubIdx.
1839 SSPairs.clear();
1840 TopoSigs.reset();
1841 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1842 RE = RC->getMembers().end(); RI != RE; ++RI) {
1843 const CodeGenRegister *Super = *RI;
1844 const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1845 assert(Sub && "Missing sub-register");
1846 SSPairs.push_back(std::make_pair(Super, Sub));
1847 TopoSigs.set(Sub->getTopoSig());
1848 }
1849
1850 // Iterate over sub-register class candidates. Ignore classes created by
1851 // this loop. They will never be useful.
1852 for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1853 ++rci) {
1854 CodeGenRegisterClass *SubRC = RegClasses[rci];
1855 // Topological shortcut: SubRC members have the wrong shape.
1856 if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1857 continue;
1858 // Compute the subset of RC that maps into SubRC.
1859 CodeGenRegister::Set SubSet;
1860 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1861 if (SubRC->contains(SSPairs[i].second))
1862 SubSet.insert(SSPairs[i].first);
1863 if (SubSet.empty())
1864 continue;
1865 // RC injects completely into SubRC.
1866 if (SubSet.size() == SSPairs.size()) {
1867 SubRC->addSuperRegClass(SubIdx, RC);
1868 continue;
1869 }
1870 // Only a subset of RC maps into SubRC. Make sure it is represented by a
1871 // class.
1872 getOrCreateSubClass(RC, &SubSet, RC->getName() +
1873 "_with_" + SubIdx->getName() +
1874 "_in_" + SubRC->getName());
1875 }
1876 }
1877 }
1878
1879
1880 //
1881 // Infer missing register classes.
1882 //
computeInferredRegisterClasses()1883 void CodeGenRegBank::computeInferredRegisterClasses() {
1884 // When this function is called, the register classes have not been sorted
1885 // and assigned EnumValues yet. That means getSubClasses(),
1886 // getSuperClasses(), and hasSubClass() functions are defunct.
1887 unsigned FirstNewRC = RegClasses.size();
1888
1889 // Visit all register classes, including the ones being added by the loop.
1890 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1891 CodeGenRegisterClass *RC = RegClasses[rci];
1892
1893 // Synthesize answers for getSubClassWithSubReg().
1894 inferSubClassWithSubReg(RC);
1895
1896 // Synthesize answers for getCommonSubClass().
1897 inferCommonSubClass(RC);
1898
1899 // Synthesize answers for getMatchingSuperRegClass().
1900 inferMatchingSuperRegClass(RC);
1901
1902 // New register classes are created while this loop is running, and we need
1903 // to visit all of them. I particular, inferMatchingSuperRegClass needs
1904 // to match old super-register classes with sub-register classes created
1905 // after inferMatchingSuperRegClass was called. At this point,
1906 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1907 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
1908 if (rci + 1 == FirstNewRC) {
1909 unsigned NextNewRC = RegClasses.size();
1910 for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1911 inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1912 FirstNewRC = NextNewRC;
1913 }
1914 }
1915 }
1916
1917 /// getRegisterClassForRegister - Find the register class that contains the
1918 /// specified physical register. If the register is not in a register class,
1919 /// return null. If the register is in multiple classes, and the classes have a
1920 /// superset-subset relationship and the same set of types, return the
1921 /// superclass. Otherwise return null.
1922 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)1923 CodeGenRegBank::getRegClassForRegister(Record *R) {
1924 const CodeGenRegister *Reg = getReg(R);
1925 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1926 const CodeGenRegisterClass *FoundRC = nullptr;
1927 for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1928 const CodeGenRegisterClass &RC = *RCs[i];
1929 if (!RC.contains(Reg))
1930 continue;
1931
1932 // If this is the first class that contains the register,
1933 // make a note of it and go on to the next class.
1934 if (!FoundRC) {
1935 FoundRC = &RC;
1936 continue;
1937 }
1938
1939 // If a register's classes have different types, return null.
1940 if (RC.getValueTypes() != FoundRC->getValueTypes())
1941 return nullptr;
1942
1943 // Check to see if the previously found class that contains
1944 // the register is a subclass of the current class. If so,
1945 // prefer the superclass.
1946 if (RC.hasSubClass(FoundRC)) {
1947 FoundRC = &RC;
1948 continue;
1949 }
1950
1951 // Check to see if the previously found class that contains
1952 // the register is a superclass of the current class. If so,
1953 // prefer the superclass.
1954 if (FoundRC->hasSubClass(&RC))
1955 continue;
1956
1957 // Multiple classes, and neither is a superclass of the other.
1958 // Return null.
1959 return nullptr;
1960 }
1961 return FoundRC;
1962 }
1963
computeCoveredRegisters(ArrayRef<Record * > Regs)1964 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1965 SetVector<const CodeGenRegister*> Set;
1966
1967 // First add Regs with all sub-registers.
1968 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1969 CodeGenRegister *Reg = getReg(Regs[i]);
1970 if (Set.insert(Reg))
1971 // Reg is new, add all sub-registers.
1972 // The pre-ordering is not important here.
1973 Reg->addSubRegsPreOrder(Set, *this);
1974 }
1975
1976 // Second, find all super-registers that are completely covered by the set.
1977 for (unsigned i = 0; i != Set.size(); ++i) {
1978 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1979 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1980 const CodeGenRegister *Super = SR[j];
1981 if (!Super->CoveredBySubRegs || Set.count(Super))
1982 continue;
1983 // This new super-register is covered by its sub-registers.
1984 bool AllSubsInSet = true;
1985 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1986 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1987 E = SRM.end(); I != E; ++I)
1988 if (!Set.count(I->second)) {
1989 AllSubsInSet = false;
1990 break;
1991 }
1992 // All sub-registers in Set, add Super as well.
1993 // We will visit Super later to recheck its super-registers.
1994 if (AllSubsInSet)
1995 Set.insert(Super);
1996 }
1997 }
1998
1999 // Convert to BitVector.
2000 BitVector BV(Registers.size() + 1);
2001 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2002 BV.set(Set[i]->EnumValue);
2003 return BV;
2004 }
2005