• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  * Version:  7.1
4  *
5  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 #include "main/glheader.h"
27 #include "main/colormac.h"
28 #include "main/feedback.h"
29 #include "main/light.h"
30 #include "main/macros.h"
31 #include "main/simple_list.h"
32 #include "main/mtypes.h"
33 
34 #include "math/m_matrix.h"
35 #include "tnl/tnl.h"
36 
37 
38 
39 /**
40  * Clip a point against the view volume.
41  *
42  * \param v vertex vector describing the point to clip.
43  *
44  * \return zero if outside view volume, or one if inside.
45  */
46 static GLuint
viewclip_point_xy(const GLfloat v[])47 viewclip_point_xy( const GLfloat v[] )
48 {
49    if (   v[0] > v[3] || v[0] < -v[3]
50        || v[1] > v[3] || v[1] < -v[3] ) {
51       return 0;
52    }
53    else {
54       return 1;
55    }
56 }
57 
58 
59 /**
60  * Clip a point against the far/near Z clipping planes.
61  *
62  * \param v vertex vector describing the point to clip.
63  *
64  * \return zero if outside view volume, or one if inside.
65  */
66 static GLuint
viewclip_point_z(const GLfloat v[])67 viewclip_point_z( const GLfloat v[] )
68 {
69    if (v[2] > v[3] || v[2] < -v[3] ) {
70       return 0;
71    }
72    else {
73       return 1;
74    }
75 }
76 
77 
78 /**
79  * Clip a point against the user clipping planes.
80  *
81  * \param ctx GL context.
82  * \param v vertex vector describing the point to clip.
83  *
84  * \return zero if the point was clipped, or one otherwise.
85  */
86 static GLuint
userclip_point(struct gl_context * ctx,const GLfloat v[])87 userclip_point( struct gl_context *ctx, const GLfloat v[] )
88 {
89    GLuint p;
90 
91    for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
92       if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
93 	 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
94 		     + v[1] * ctx->Transform._ClipUserPlane[p][1]
95 		     + v[2] * ctx->Transform._ClipUserPlane[p][2]
96 		     + v[3] * ctx->Transform._ClipUserPlane[p][3];
97          if (dot < 0.0F) {
98             return 0;
99          }
100       }
101    }
102 
103    return 1;
104 }
105 
106 
107 /**
108  * Compute lighting for the raster position.  RGB modes computed.
109  * \param ctx the context
110  * \param vertex vertex location
111  * \param normal normal vector
112  * \param Rcolor returned color
113  * \param Rspec returned specular color (if separate specular enabled)
114  */
115 static void
shade_rastpos(struct gl_context * ctx,const GLfloat vertex[4],const GLfloat normal[3],GLfloat Rcolor[4],GLfloat Rspec[4])116 shade_rastpos(struct gl_context *ctx,
117               const GLfloat vertex[4],
118               const GLfloat normal[3],
119               GLfloat Rcolor[4],
120               GLfloat Rspec[4])
121 {
122    /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
123    const struct gl_light *light;
124    GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
125 
126    COPY_3V(diffuseColor, base[0]);
127    diffuseColor[3] = CLAMP(
128       ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
129    ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
130 
131    foreach (light, &ctx->Light.EnabledList) {
132       GLfloat attenuation = 1.0;
133       GLfloat VP[3]; /* vector from vertex to light pos */
134       GLfloat n_dot_VP;
135       GLfloat diffuseContrib[3], specularContrib[3];
136 
137       if (!(light->_Flags & LIGHT_POSITIONAL)) {
138          /* light at infinity */
139 	 COPY_3V(VP, light->_VP_inf_norm);
140 	 attenuation = light->_VP_inf_spot_attenuation;
141       }
142       else {
143          /* local/positional light */
144 	 GLfloat d;
145 
146          /* VP = vector from vertex pos to light[i].pos */
147 	 SUB_3V(VP, light->_Position, vertex);
148          /* d = length(VP) */
149 	 d = (GLfloat) LEN_3FV( VP );
150 	 if (d > 1.0e-6) {
151             /* normalize VP */
152 	    GLfloat invd = 1.0F / d;
153 	    SELF_SCALE_SCALAR_3V(VP, invd);
154 	 }
155 
156          /* atti */
157 	 attenuation = 1.0F / (light->ConstantAttenuation + d *
158 			       (light->LinearAttenuation + d *
159 				light->QuadraticAttenuation));
160 
161 	 if (light->_Flags & LIGHT_SPOT) {
162 	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
163 
164 	    if (PV_dot_dir<light->_CosCutoff) {
165 	       continue;
166 	    }
167 	    else {
168                GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
169 	       attenuation *= spot;
170 	    }
171 	 }
172       }
173 
174       if (attenuation < 1e-3)
175 	 continue;
176 
177       n_dot_VP = DOT3( normal, VP );
178 
179       if (n_dot_VP < 0.0F) {
180 	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
181 	 continue;
182       }
183 
184       /* Ambient + diffuse */
185       COPY_3V(diffuseContrib, light->_MatAmbient[0]);
186       ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
187 
188       /* Specular */
189       {
190          const GLfloat *h;
191          GLfloat n_dot_h;
192 
193          ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
194 
195 	 if (ctx->Light.Model.LocalViewer) {
196 	    GLfloat v[3];
197 	    COPY_3V(v, vertex);
198 	    NORMALIZE_3FV(v);
199 	    SUB_3V(VP, VP, v);
200             NORMALIZE_3FV(VP);
201 	    h = VP;
202 	 }
203 	 else if (light->_Flags & LIGHT_POSITIONAL) {
204 	    ACC_3V(VP, ctx->_EyeZDir);
205             NORMALIZE_3FV(VP);
206 	    h = VP;
207 	 }
208          else {
209 	    h = light->_h_inf_norm;
210 	 }
211 
212 	 n_dot_h = DOT3(normal, h);
213 
214 	 if (n_dot_h > 0.0F) {
215 	    GLfloat shine;
216 	    GLfloat spec_coef;
217 
218 	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
219 	    spec_coef = powf(n_dot_h, shine);
220 
221 	    if (spec_coef > 1.0e-10) {
222                if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
223                   ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
224                                        light->_MatSpecular[0]);
225                }
226                else {
227                   ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
228                                        light->_MatSpecular[0]);
229                }
230 	    }
231 	 }
232       }
233 
234       ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
235       ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
236    }
237 
238    Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
239    Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
240    Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
241    Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
242    Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
243    Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
244    Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
245    Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
246 }
247 
248 
249 /**
250  * Do texgen needed for glRasterPos.
251  * \param ctx  rendering context
252  * \param vObj  object-space vertex coordinate
253  * \param vEye  eye-space vertex coordinate
254  * \param normal  vertex normal
255  * \param unit  texture unit number
256  * \param texcoord  incoming texcoord and resulting texcoord
257  */
258 static void
compute_texgen(struct gl_context * ctx,const GLfloat vObj[4],const GLfloat vEye[4],const GLfloat normal[3],GLuint unit,GLfloat texcoord[4])259 compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
260                const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
261 {
262    const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
263 
264    /* always compute sphere map terms, just in case */
265    GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
266    COPY_3V(u, vEye);
267    NORMALIZE_3FV(u);
268    two_nu = 2.0F * DOT3(normal, u);
269    rx = u[0] - normal[0] * two_nu;
270    ry = u[1] - normal[1] * two_nu;
271    rz = u[2] - normal[2] * two_nu;
272    m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
273    if (m > 0.0F)
274       mInv = 0.5F * INV_SQRTF(m);
275    else
276       mInv = 0.0F;
277 
278    if (texUnit->TexGenEnabled & S_BIT) {
279       switch (texUnit->GenS.Mode) {
280          case GL_OBJECT_LINEAR:
281             texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
282             break;
283          case GL_EYE_LINEAR:
284             texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
285             break;
286          case GL_SPHERE_MAP:
287             texcoord[0] = rx * mInv + 0.5F;
288             break;
289          case GL_REFLECTION_MAP:
290             texcoord[0] = rx;
291             break;
292          case GL_NORMAL_MAP:
293             texcoord[0] = normal[0];
294             break;
295          default:
296             _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
297             return;
298       }
299    }
300 
301    if (texUnit->TexGenEnabled & T_BIT) {
302       switch (texUnit->GenT.Mode) {
303          case GL_OBJECT_LINEAR:
304             texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
305             break;
306          case GL_EYE_LINEAR:
307             texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
308             break;
309          case GL_SPHERE_MAP:
310             texcoord[1] = ry * mInv + 0.5F;
311             break;
312          case GL_REFLECTION_MAP:
313             texcoord[1] = ry;
314             break;
315          case GL_NORMAL_MAP:
316             texcoord[1] = normal[1];
317             break;
318          default:
319             _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
320             return;
321       }
322    }
323 
324    if (texUnit->TexGenEnabled & R_BIT) {
325       switch (texUnit->GenR.Mode) {
326          case GL_OBJECT_LINEAR:
327             texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
328             break;
329          case GL_EYE_LINEAR:
330             texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
331             break;
332          case GL_REFLECTION_MAP:
333             texcoord[2] = rz;
334             break;
335          case GL_NORMAL_MAP:
336             texcoord[2] = normal[2];
337             break;
338          default:
339             _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
340             return;
341       }
342    }
343 
344    if (texUnit->TexGenEnabled & Q_BIT) {
345       switch (texUnit->GenQ.Mode) {
346          case GL_OBJECT_LINEAR:
347             texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
348             break;
349          case GL_EYE_LINEAR:
350             texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
351             break;
352          default:
353             _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
354             return;
355       }
356    }
357 }
358 
359 
360 /**
361  * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
362  * XXX some of this code (such as viewport xform, clip testing and setting
363  * of ctx->Current.Raster* fields) could get lifted up into the
364  * main/rasterpos.c code.
365  *
366  * \param vObj  vertex position in object space
367  */
368 void
_tnl_RasterPos(struct gl_context * ctx,const GLfloat vObj[4])369 _tnl_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
370 {
371    if (ctx->VertexProgram._Enabled) {
372       /* XXX implement this */
373       _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
374       return;
375    }
376    else {
377       GLfloat eye[4], clip[4], ndc[3], d;
378       GLfloat *norm, eyenorm[3];
379       GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
380 
381       /* apply modelview matrix:  eye = MV * obj */
382       TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
383       /* apply projection matrix:  clip = Proj * eye */
384       TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
385 
386       /* clip to view volume. */
387       if (!ctx->Transform.DepthClamp) {
388          if (viewclip_point_z(clip) == 0) {
389             ctx->Current.RasterPosValid = GL_FALSE;
390             return;
391          }
392       }
393       if (!ctx->Transform.RasterPositionUnclipped) {
394          if (viewclip_point_xy(clip) == 0) {
395             ctx->Current.RasterPosValid = GL_FALSE;
396             return;
397          }
398       }
399 
400       /* clip to user clipping planes */
401       if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
402          ctx->Current.RasterPosValid = GL_FALSE;
403          return;
404       }
405 
406       /* ndc = clip / W */
407       d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
408       ndc[0] = clip[0] * d;
409       ndc[1] = clip[1] * d;
410       ndc[2] = clip[2] * d;
411       /* wincoord = viewport_mapping(ndc) */
412       ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
413                                    + ctx->Viewport._WindowMap.m[MAT_TX]);
414       ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
415                                    + ctx->Viewport._WindowMap.m[MAT_TY]);
416       ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
417                                    + ctx->Viewport._WindowMap.m[MAT_TZ])
418                                   / ctx->DrawBuffer->_DepthMaxF;
419       ctx->Current.RasterPos[3] = clip[3];
420 
421       if (ctx->Transform.DepthClamp) {
422 	 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
423 					   ctx->Viewport.Near,
424 					   ctx->Viewport.Far);
425       }
426 
427       /* compute raster distance */
428       if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
429          ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
430       else
431          ctx->Current.RasterDistance =
432                         SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
433 
434       /* compute transformed normal vector (for lighting or texgen) */
435       if (ctx->_NeedEyeCoords) {
436          const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
437          TRANSFORM_NORMAL( eyenorm, objnorm, inv );
438          norm = eyenorm;
439       }
440       else {
441          norm = objnorm;
442       }
443 
444       /* update raster color */
445       if (ctx->Light.Enabled) {
446          /* lighting */
447          shade_rastpos( ctx, vObj, norm,
448                         ctx->Current.RasterColor,
449                         ctx->Current.RasterSecondaryColor );
450       }
451       else {
452          /* use current color */
453 	 COPY_4FV(ctx->Current.RasterColor,
454 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
455 	 COPY_4FV(ctx->Current.RasterSecondaryColor,
456 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
457       }
458 
459       /* texture coords */
460       {
461          GLuint u;
462          for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
463             GLfloat tc[4];
464             COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
465             if (ctx->Texture.Unit[u].TexGenEnabled) {
466                compute_texgen(ctx, vObj, eye, norm, u, tc);
467             }
468             TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
469                             ctx->TextureMatrixStack[u].Top->m, tc);
470          }
471       }
472 
473       ctx->Current.RasterPosValid = GL_TRUE;
474    }
475 
476    if (ctx->RenderMode == GL_SELECT) {
477       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
478    }
479 }
480