1#!/usr/bin/env perl 2# 3# ==================================================================== 4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9# 10# March, May, June 2010 11# 12# The module implements "4-bit" GCM GHASH function and underlying 13# single multiplication operation in GF(2^128). "4-bit" means that it 14# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two 15# code paths: vanilla x86 and vanilla MMX. Former will be executed on 16# 486 and Pentium, latter on all others. MMX GHASH features so called 17# "528B" variant of "4-bit" method utilizing additional 256+16 bytes 18# of per-key storage [+512 bytes shared table]. Performance results 19# are for streamed GHASH subroutine and are expressed in cycles per 20# processed byte, less is better: 21# 22# gcc 2.95.3(*) MMX assembler x86 assembler 23# 24# Pentium 105/111(**) - 50 25# PIII 68 /75 12.2 24 26# P4 125/125 17.8 84(***) 27# Opteron 66 /70 10.1 30 28# Core2 54 /67 8.4 18 29# 30# (*) gcc 3.4.x was observed to generate few percent slower code, 31# which is one of reasons why 2.95.3 results were chosen, 32# another reason is lack of 3.4.x results for older CPUs; 33# comparison with MMX results is not completely fair, because C 34# results are for vanilla "256B" implementation, while 35# assembler results are for "528B";-) 36# (**) second number is result for code compiled with -fPIC flag, 37# which is actually more relevant, because assembler code is 38# position-independent; 39# (***) see comment in non-MMX routine for further details; 40# 41# To summarize, it's >2-5 times faster than gcc-generated code. To 42# anchor it to something else SHA1 assembler processes one byte in 43# 11-13 cycles on contemporary x86 cores. As for choice of MMX in 44# particular, see comment at the end of the file... 45 46# May 2010 47# 48# Add PCLMULQDQ version performing at 2.10 cycles per processed byte. 49# The question is how close is it to theoretical limit? The pclmulqdq 50# instruction latency appears to be 14 cycles and there can't be more 51# than 2 of them executing at any given time. This means that single 52# Karatsuba multiplication would take 28 cycles *plus* few cycles for 53# pre- and post-processing. Then multiplication has to be followed by 54# modulo-reduction. Given that aggregated reduction method [see 55# "Carry-less Multiplication and Its Usage for Computing the GCM Mode" 56# white paper by Intel] allows you to perform reduction only once in 57# a while we can assume that asymptotic performance can be estimated 58# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction 59# and Naggr is the aggregation factor. 60# 61# Before we proceed to this implementation let's have closer look at 62# the best-performing code suggested by Intel in their white paper. 63# By tracing inter-register dependencies Tmod is estimated as ~19 64# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per 65# processed byte. As implied, this is quite optimistic estimate, 66# because it does not account for Karatsuba pre- and post-processing, 67# which for a single multiplication is ~5 cycles. Unfortunately Intel 68# does not provide performance data for GHASH alone. But benchmarking 69# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt 70# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that 71# the result accounts even for pre-computing of degrees of the hash 72# key H, but its portion is negligible at 16KB buffer size. 73# 74# Moving on to the implementation in question. Tmod is estimated as 75# ~13 cycles and Naggr is 2, giving asymptotic performance of ... 76# 2.16. How is it possible that measured performance is better than 77# optimistic theoretical estimate? There is one thing Intel failed 78# to recognize. By serializing GHASH with CTR in same subroutine 79# former's performance is really limited to above (Tmul + Tmod/Naggr) 80# equation. But if GHASH procedure is detached, the modulo-reduction 81# can be interleaved with Naggr-1 multiplications at instruction level 82# and under ideal conditions even disappear from the equation. So that 83# optimistic theoretical estimate for this implementation is ... 84# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, 85# at least for such small Naggr. I'd argue that (28+Tproc/Naggr), 86# where Tproc is time required for Karatsuba pre- and post-processing, 87# is more realistic estimate. In this case it gives ... 1.91 cycles. 88# Or in other words, depending on how well we can interleave reduction 89# and one of the two multiplications the performance should be betwen 90# 1.91 and 2.16. As already mentioned, this implementation processes 91# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart 92# - in 2.02. x86_64 performance is better, because larger register 93# bank allows to interleave reduction and multiplication better. 94# 95# Does it make sense to increase Naggr? To start with it's virtually 96# impossible in 32-bit mode, because of limited register bank 97# capacity. Otherwise improvement has to be weighed agiainst slower 98# setup, as well as code size and complexity increase. As even 99# optimistic estimate doesn't promise 30% performance improvement, 100# there are currently no plans to increase Naggr. 101# 102# Special thanks to David Woodhouse <dwmw2@infradead.org> for 103# providing access to a Westmere-based system on behalf of Intel 104# Open Source Technology Centre. 105 106# January 2010 107# 108# Tweaked to optimize transitions between integer and FP operations 109# on same XMM register, PCLMULQDQ subroutine was measured to process 110# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. 111# The minor regression on Westmere is outweighed by ~15% improvement 112# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in 113# similar manner resulted in almost 20% degradation on Sandy Bridge, 114# where original 64-bit code processes one byte in 1.95 cycles. 115 116$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 117push(@INC,"${dir}","${dir}../../perlasm"); 118require "x86asm.pl"; 119 120&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386"); 121 122$sse2=0; 123for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } 124 125($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); 126$inp = "edi"; 127$Htbl = "esi"; 128 129$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse 130 # than unrolled, which has to be weighted against 131 # 2.5x x86-specific code size reduction. 132 133sub x86_loop { 134 my $off = shift; 135 my $rem = "eax"; 136 137 &mov ($Zhh,&DWP(4,$Htbl,$Zll)); 138 &mov ($Zhl,&DWP(0,$Htbl,$Zll)); 139 &mov ($Zlh,&DWP(12,$Htbl,$Zll)); 140 &mov ($Zll,&DWP(8,$Htbl,$Zll)); 141 &xor ($rem,$rem); # avoid partial register stalls on PIII 142 143 # shrd practically kills P4, 2.5x deterioration, but P4 has 144 # MMX code-path to execute. shrd runs tad faster [than twice 145 # the shifts, move's and or's] on pre-MMX Pentium (as well as 146 # PIII and Core2), *but* minimizes code size, spares register 147 # and thus allows to fold the loop... 148 if (!$unroll) { 149 my $cnt = $inp; 150 &mov ($cnt,15); 151 &jmp (&label("x86_loop")); 152 &set_label("x86_loop",16); 153 for($i=1;$i<=2;$i++) { 154 &mov (&LB($rem),&LB($Zll)); 155 &shrd ($Zll,$Zlh,4); 156 &and (&LB($rem),0xf); 157 &shrd ($Zlh,$Zhl,4); 158 &shrd ($Zhl,$Zhh,4); 159 &shr ($Zhh,4); 160 &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); 161 162 &mov (&LB($rem),&BP($off,"esp",$cnt)); 163 if ($i&1) { 164 &and (&LB($rem),0xf0); 165 } else { 166 &shl (&LB($rem),4); 167 } 168 169 &xor ($Zll,&DWP(8,$Htbl,$rem)); 170 &xor ($Zlh,&DWP(12,$Htbl,$rem)); 171 &xor ($Zhl,&DWP(0,$Htbl,$rem)); 172 &xor ($Zhh,&DWP(4,$Htbl,$rem)); 173 174 if ($i&1) { 175 &dec ($cnt); 176 &js (&label("x86_break")); 177 } else { 178 &jmp (&label("x86_loop")); 179 } 180 } 181 &set_label("x86_break",16); 182 } else { 183 for($i=1;$i<32;$i++) { 184 &comment($i); 185 &mov (&LB($rem),&LB($Zll)); 186 &shrd ($Zll,$Zlh,4); 187 &and (&LB($rem),0xf); 188 &shrd ($Zlh,$Zhl,4); 189 &shrd ($Zhl,$Zhh,4); 190 &shr ($Zhh,4); 191 &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); 192 193 if ($i&1) { 194 &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); 195 &and (&LB($rem),0xf0); 196 } else { 197 &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); 198 &shl (&LB($rem),4); 199 } 200 201 &xor ($Zll,&DWP(8,$Htbl,$rem)); 202 &xor ($Zlh,&DWP(12,$Htbl,$rem)); 203 &xor ($Zhl,&DWP(0,$Htbl,$rem)); 204 &xor ($Zhh,&DWP(4,$Htbl,$rem)); 205 } 206 } 207 &bswap ($Zll); 208 &bswap ($Zlh); 209 &bswap ($Zhl); 210 if (!$x86only) { 211 &bswap ($Zhh); 212 } else { 213 &mov ("eax",$Zhh); 214 &bswap ("eax"); 215 &mov ($Zhh,"eax"); 216 } 217} 218 219if ($unroll) { 220 &function_begin_B("_x86_gmult_4bit_inner"); 221 &x86_loop(4); 222 &ret (); 223 &function_end_B("_x86_gmult_4bit_inner"); 224} 225 226sub deposit_rem_4bit { 227 my $bias = shift; 228 229 &mov (&DWP($bias+0, "esp"),0x0000<<16); 230 &mov (&DWP($bias+4, "esp"),0x1C20<<16); 231 &mov (&DWP($bias+8, "esp"),0x3840<<16); 232 &mov (&DWP($bias+12,"esp"),0x2460<<16); 233 &mov (&DWP($bias+16,"esp"),0x7080<<16); 234 &mov (&DWP($bias+20,"esp"),0x6CA0<<16); 235 &mov (&DWP($bias+24,"esp"),0x48C0<<16); 236 &mov (&DWP($bias+28,"esp"),0x54E0<<16); 237 &mov (&DWP($bias+32,"esp"),0xE100<<16); 238 &mov (&DWP($bias+36,"esp"),0xFD20<<16); 239 &mov (&DWP($bias+40,"esp"),0xD940<<16); 240 &mov (&DWP($bias+44,"esp"),0xC560<<16); 241 &mov (&DWP($bias+48,"esp"),0x9180<<16); 242 &mov (&DWP($bias+52,"esp"),0x8DA0<<16); 243 &mov (&DWP($bias+56,"esp"),0xA9C0<<16); 244 &mov (&DWP($bias+60,"esp"),0xB5E0<<16); 245} 246 247$suffix = $x86only ? "" : "_x86"; 248 249&function_begin("gcm_gmult_4bit".$suffix); 250 &stack_push(16+4+1); # +1 for stack alignment 251 &mov ($inp,&wparam(0)); # load Xi 252 &mov ($Htbl,&wparam(1)); # load Htable 253 254 &mov ($Zhh,&DWP(0,$inp)); # load Xi[16] 255 &mov ($Zhl,&DWP(4,$inp)); 256 &mov ($Zlh,&DWP(8,$inp)); 257 &mov ($Zll,&DWP(12,$inp)); 258 259 &deposit_rem_4bit(16); 260 261 &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack 262 &mov (&DWP(4,"esp"),$Zhl); 263 &mov (&DWP(8,"esp"),$Zlh); 264 &mov (&DWP(12,"esp"),$Zll); 265 &shr ($Zll,20); 266 &and ($Zll,0xf0); 267 268 if ($unroll) { 269 &call ("_x86_gmult_4bit_inner"); 270 } else { 271 &x86_loop(0); 272 &mov ($inp,&wparam(0)); 273 } 274 275 &mov (&DWP(12,$inp),$Zll); 276 &mov (&DWP(8,$inp),$Zlh); 277 &mov (&DWP(4,$inp),$Zhl); 278 &mov (&DWP(0,$inp),$Zhh); 279 &stack_pop(16+4+1); 280&function_end("gcm_gmult_4bit".$suffix); 281 282&function_begin("gcm_ghash_4bit".$suffix); 283 &stack_push(16+4+1); # +1 for 64-bit alignment 284 &mov ($Zll,&wparam(0)); # load Xi 285 &mov ($Htbl,&wparam(1)); # load Htable 286 &mov ($inp,&wparam(2)); # load in 287 &mov ("ecx",&wparam(3)); # load len 288 &add ("ecx",$inp); 289 &mov (&wparam(3),"ecx"); 290 291 &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16] 292 &mov ($Zhl,&DWP(4,$Zll)); 293 &mov ($Zlh,&DWP(8,$Zll)); 294 &mov ($Zll,&DWP(12,$Zll)); 295 296 &deposit_rem_4bit(16); 297 298 &set_label("x86_outer_loop",16); 299 &xor ($Zll,&DWP(12,$inp)); # xor with input 300 &xor ($Zlh,&DWP(8,$inp)); 301 &xor ($Zhl,&DWP(4,$inp)); 302 &xor ($Zhh,&DWP(0,$inp)); 303 &mov (&DWP(12,"esp"),$Zll); # dump it on stack 304 &mov (&DWP(8,"esp"),$Zlh); 305 &mov (&DWP(4,"esp"),$Zhl); 306 &mov (&DWP(0,"esp"),$Zhh); 307 308 &shr ($Zll,20); 309 &and ($Zll,0xf0); 310 311 if ($unroll) { 312 &call ("_x86_gmult_4bit_inner"); 313 } else { 314 &x86_loop(0); 315 &mov ($inp,&wparam(2)); 316 } 317 &lea ($inp,&DWP(16,$inp)); 318 &cmp ($inp,&wparam(3)); 319 &mov (&wparam(2),$inp) if (!$unroll); 320 &jb (&label("x86_outer_loop")); 321 322 &mov ($inp,&wparam(0)); # load Xi 323 &mov (&DWP(12,$inp),$Zll); 324 &mov (&DWP(8,$inp),$Zlh); 325 &mov (&DWP(4,$inp),$Zhl); 326 &mov (&DWP(0,$inp),$Zhh); 327 &stack_pop(16+4+1); 328&function_end("gcm_ghash_4bit".$suffix); 329 330if (!$x86only) {{{ 331 332&static_label("rem_4bit"); 333 334if (!$sse2) {{ # pure-MMX "May" version... 335 336$S=12; # shift factor for rem_4bit 337 338&function_begin_B("_mmx_gmult_4bit_inner"); 339# MMX version performs 3.5 times better on P4 (see comment in non-MMX 340# routine for further details), 100% better on Opteron, ~70% better 341# on Core2 and PIII... In other words effort is considered to be well 342# spent... Since initial release the loop was unrolled in order to 343# "liberate" register previously used as loop counter. Instead it's 344# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'. 345# The path involves move of Z.lo from MMX to integer register, 346# effective address calculation and finally merge of value to Z.hi. 347# Reference to rem_4bit is scheduled so late that I had to >>4 348# rem_4bit elements. This resulted in 20-45% procent improvement 349# on contemporary µ-archs. 350{ 351 my $cnt; 352 my $rem_4bit = "eax"; 353 my @rem = ($Zhh,$Zll); 354 my $nhi = $Zhl; 355 my $nlo = $Zlh; 356 357 my ($Zlo,$Zhi) = ("mm0","mm1"); 358 my $tmp = "mm2"; 359 360 &xor ($nlo,$nlo); # avoid partial register stalls on PIII 361 &mov ($nhi,$Zll); 362 &mov (&LB($nlo),&LB($nhi)); 363 &shl (&LB($nlo),4); 364 &and ($nhi,0xf0); 365 &movq ($Zlo,&QWP(8,$Htbl,$nlo)); 366 &movq ($Zhi,&QWP(0,$Htbl,$nlo)); 367 &movd ($rem[0],$Zlo); 368 369 for ($cnt=28;$cnt>=-2;$cnt--) { 370 my $odd = $cnt&1; 371 my $nix = $odd ? $nlo : $nhi; 372 373 &shl (&LB($nlo),4) if ($odd); 374 &psrlq ($Zlo,4); 375 &movq ($tmp,$Zhi); 376 &psrlq ($Zhi,4); 377 &pxor ($Zlo,&QWP(8,$Htbl,$nix)); 378 &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0); 379 &psllq ($tmp,60); 380 &and ($nhi,0xf0) if ($odd); 381 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28); 382 &and ($rem[0],0xf); 383 &pxor ($Zhi,&QWP(0,$Htbl,$nix)); 384 &mov ($nhi,$nlo) if (!$odd && $cnt>=0); 385 &movd ($rem[1],$Zlo); 386 &pxor ($Zlo,$tmp); 387 388 push (@rem,shift(@rem)); # "rotate" registers 389 } 390 391 &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem] 392 393 &psrlq ($Zlo,32); # lower part of Zlo is already there 394 &movd ($Zhl,$Zhi); 395 &psrlq ($Zhi,32); 396 &movd ($Zlh,$Zlo); 397 &movd ($Zhh,$Zhi); 398 &shl ($inp,4); # compensate for rem_4bit[i] being >>4 399 400 &bswap ($Zll); 401 &bswap ($Zhl); 402 &bswap ($Zlh); 403 &xor ($Zhh,$inp); 404 &bswap ($Zhh); 405 406 &ret (); 407} 408&function_end_B("_mmx_gmult_4bit_inner"); 409 410&function_begin("gcm_gmult_4bit_mmx"); 411 &mov ($inp,&wparam(0)); # load Xi 412 &mov ($Htbl,&wparam(1)); # load Htable 413 414 &call (&label("pic_point")); 415 &set_label("pic_point"); 416 &blindpop("eax"); 417 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); 418 419 &movz ($Zll,&BP(15,$inp)); 420 421 &call ("_mmx_gmult_4bit_inner"); 422 423 &mov ($inp,&wparam(0)); # load Xi 424 &emms (); 425 &mov (&DWP(12,$inp),$Zll); 426 &mov (&DWP(4,$inp),$Zhl); 427 &mov (&DWP(8,$inp),$Zlh); 428 &mov (&DWP(0,$inp),$Zhh); 429&function_end("gcm_gmult_4bit_mmx"); 430 431# Streamed version performs 20% better on P4, 7% on Opteron, 432# 10% on Core2 and PIII... 433&function_begin("gcm_ghash_4bit_mmx"); 434 &mov ($Zhh,&wparam(0)); # load Xi 435 &mov ($Htbl,&wparam(1)); # load Htable 436 &mov ($inp,&wparam(2)); # load in 437 &mov ($Zlh,&wparam(3)); # load len 438 439 &call (&label("pic_point")); 440 &set_label("pic_point"); 441 &blindpop("eax"); 442 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); 443 444 &add ($Zlh,$inp); 445 &mov (&wparam(3),$Zlh); # len to point at the end of input 446 &stack_push(4+1); # +1 for stack alignment 447 448 &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16] 449 &mov ($Zhl,&DWP(4,$Zhh)); 450 &mov ($Zlh,&DWP(8,$Zhh)); 451 &mov ($Zhh,&DWP(0,$Zhh)); 452 &jmp (&label("mmx_outer_loop")); 453 454 &set_label("mmx_outer_loop",16); 455 &xor ($Zll,&DWP(12,$inp)); 456 &xor ($Zhl,&DWP(4,$inp)); 457 &xor ($Zlh,&DWP(8,$inp)); 458 &xor ($Zhh,&DWP(0,$inp)); 459 &mov (&wparam(2),$inp); 460 &mov (&DWP(12,"esp"),$Zll); 461 &mov (&DWP(4,"esp"),$Zhl); 462 &mov (&DWP(8,"esp"),$Zlh); 463 &mov (&DWP(0,"esp"),$Zhh); 464 465 &mov ($inp,"esp"); 466 &shr ($Zll,24); 467 468 &call ("_mmx_gmult_4bit_inner"); 469 470 &mov ($inp,&wparam(2)); 471 &lea ($inp,&DWP(16,$inp)); 472 &cmp ($inp,&wparam(3)); 473 &jb (&label("mmx_outer_loop")); 474 475 &mov ($inp,&wparam(0)); # load Xi 476 &emms (); 477 &mov (&DWP(12,$inp),$Zll); 478 &mov (&DWP(4,$inp),$Zhl); 479 &mov (&DWP(8,$inp),$Zlh); 480 &mov (&DWP(0,$inp),$Zhh); 481 482 &stack_pop(4+1); 483&function_end("gcm_ghash_4bit_mmx"); 484 485}} else {{ # "June" MMX version... 486 # ... has slower "April" gcm_gmult_4bit_mmx with folded 487 # loop. This is done to conserve code size... 488$S=16; # shift factor for rem_4bit 489 490sub mmx_loop() { 491# MMX version performs 2.8 times better on P4 (see comment in non-MMX 492# routine for further details), 40% better on Opteron and Core2, 50% 493# better on PIII... In other words effort is considered to be well 494# spent... 495 my $inp = shift; 496 my $rem_4bit = shift; 497 my $cnt = $Zhh; 498 my $nhi = $Zhl; 499 my $nlo = $Zlh; 500 my $rem = $Zll; 501 502 my ($Zlo,$Zhi) = ("mm0","mm1"); 503 my $tmp = "mm2"; 504 505 &xor ($nlo,$nlo); # avoid partial register stalls on PIII 506 &mov ($nhi,$Zll); 507 &mov (&LB($nlo),&LB($nhi)); 508 &mov ($cnt,14); 509 &shl (&LB($nlo),4); 510 &and ($nhi,0xf0); 511 &movq ($Zlo,&QWP(8,$Htbl,$nlo)); 512 &movq ($Zhi,&QWP(0,$Htbl,$nlo)); 513 &movd ($rem,$Zlo); 514 &jmp (&label("mmx_loop")); 515 516 &set_label("mmx_loop",16); 517 &psrlq ($Zlo,4); 518 &and ($rem,0xf); 519 &movq ($tmp,$Zhi); 520 &psrlq ($Zhi,4); 521 &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); 522 &mov (&LB($nlo),&BP(0,$inp,$cnt)); 523 &psllq ($tmp,60); 524 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); 525 &dec ($cnt); 526 &movd ($rem,$Zlo); 527 &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); 528 &mov ($nhi,$nlo); 529 &pxor ($Zlo,$tmp); 530 &js (&label("mmx_break")); 531 532 &shl (&LB($nlo),4); 533 &and ($rem,0xf); 534 &psrlq ($Zlo,4); 535 &and ($nhi,0xf0); 536 &movq ($tmp,$Zhi); 537 &psrlq ($Zhi,4); 538 &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); 539 &psllq ($tmp,60); 540 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); 541 &movd ($rem,$Zlo); 542 &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); 543 &pxor ($Zlo,$tmp); 544 &jmp (&label("mmx_loop")); 545 546 &set_label("mmx_break",16); 547 &shl (&LB($nlo),4); 548 &and ($rem,0xf); 549 &psrlq ($Zlo,4); 550 &and ($nhi,0xf0); 551 &movq ($tmp,$Zhi); 552 &psrlq ($Zhi,4); 553 &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); 554 &psllq ($tmp,60); 555 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); 556 &movd ($rem,$Zlo); 557 &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); 558 &pxor ($Zlo,$tmp); 559 560 &psrlq ($Zlo,4); 561 &and ($rem,0xf); 562 &movq ($tmp,$Zhi); 563 &psrlq ($Zhi,4); 564 &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); 565 &psllq ($tmp,60); 566 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); 567 &movd ($rem,$Zlo); 568 &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); 569 &pxor ($Zlo,$tmp); 570 571 &psrlq ($Zlo,32); # lower part of Zlo is already there 572 &movd ($Zhl,$Zhi); 573 &psrlq ($Zhi,32); 574 &movd ($Zlh,$Zlo); 575 &movd ($Zhh,$Zhi); 576 577 &bswap ($Zll); 578 &bswap ($Zhl); 579 &bswap ($Zlh); 580 &bswap ($Zhh); 581} 582 583&function_begin("gcm_gmult_4bit_mmx"); 584 &mov ($inp,&wparam(0)); # load Xi 585 &mov ($Htbl,&wparam(1)); # load Htable 586 587 &call (&label("pic_point")); 588 &set_label("pic_point"); 589 &blindpop("eax"); 590 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); 591 592 &movz ($Zll,&BP(15,$inp)); 593 594 &mmx_loop($inp,"eax"); 595 596 &emms (); 597 &mov (&DWP(12,$inp),$Zll); 598 &mov (&DWP(4,$inp),$Zhl); 599 &mov (&DWP(8,$inp),$Zlh); 600 &mov (&DWP(0,$inp),$Zhh); 601&function_end("gcm_gmult_4bit_mmx"); 602 603###################################################################### 604# Below subroutine is "528B" variant of "4-bit" GCM GHASH function 605# (see gcm128.c for details). It provides further 20-40% performance 606# improvement over above mentioned "May" version. 607 608&static_label("rem_8bit"); 609 610&function_begin("gcm_ghash_4bit_mmx"); 611{ my ($Zlo,$Zhi) = ("mm7","mm6"); 612 my $rem_8bit = "esi"; 613 my $Htbl = "ebx"; 614 615 # parameter block 616 &mov ("eax",&wparam(0)); # Xi 617 &mov ("ebx",&wparam(1)); # Htable 618 &mov ("ecx",&wparam(2)); # inp 619 &mov ("edx",&wparam(3)); # len 620 &mov ("ebp","esp"); # original %esp 621 &call (&label("pic_point")); 622 &set_label ("pic_point"); 623 &blindpop ($rem_8bit); 624 &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); 625 626 &sub ("esp",512+16+16); # allocate stack frame... 627 &and ("esp",-64); # ...and align it 628 &sub ("esp",16); # place for (u8)(H[]<<4) 629 630 &add ("edx","ecx"); # pointer to the end of input 631 &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi 632 &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len 633 &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp 634 635 { my @lo = ("mm0","mm1","mm2"); 636 my @hi = ("mm3","mm4","mm5"); 637 my @tmp = ("mm6","mm7"); 638 my ($off1,$off2,$i) = (0,0,); 639 640 &add ($Htbl,128); # optimize for size 641 &lea ("edi",&DWP(16+128,"esp")); 642 &lea ("ebp",&DWP(16+256+128,"esp")); 643 644 # decompose Htable (low and high parts are kept separately), 645 # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... 646 for ($i=0;$i<18;$i++) { 647 648 &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16); 649 &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16); 650 &psllq ($tmp[1],60) if ($i>1); 651 &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16); 652 &por ($lo[2],$tmp[1]) if ($i>1); 653 &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17); 654 &psrlq ($lo[1],4) if ($i>0 && $i<17); 655 &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17); 656 &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17); 657 &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1); 658 &psrlq ($hi[1],4) if ($i>0 && $i<17); 659 &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1); 660 &shl ("edx",4) if ($i<16); 661 &mov (&BP($i,"esp"),&LB("edx")) if ($i<16); 662 663 unshift (@lo,pop(@lo)); # "rotate" registers 664 unshift (@hi,pop(@hi)); 665 unshift (@tmp,pop(@tmp)); 666 $off1 += 8 if ($i>0); 667 $off2 += 8 if ($i>1); 668 } 669 } 670 671 &movq ($Zhi,&QWP(0,"eax")); 672 &mov ("ebx",&DWP(8,"eax")); 673 &mov ("edx",&DWP(12,"eax")); # load Xi 674 675&set_label("outer",16); 676 { my $nlo = "eax"; 677 my $dat = "edx"; 678 my @nhi = ("edi","ebp"); 679 my @rem = ("ebx","ecx"); 680 my @red = ("mm0","mm1","mm2"); 681 my $tmp = "mm3"; 682 683 &xor ($dat,&DWP(12,"ecx")); # merge input data 684 &xor ("ebx",&DWP(8,"ecx")); 685 &pxor ($Zhi,&QWP(0,"ecx")); 686 &lea ("ecx",&DWP(16,"ecx")); # inp+=16 687 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi 688 &mov (&DWP(528+8,"esp"),"ebx"); 689 &movq (&QWP(528+0,"esp"),$Zhi); 690 &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp 691 692 &xor ($nlo,$nlo); 693 &rol ($dat,8); 694 &mov (&LB($nlo),&LB($dat)); 695 &mov ($nhi[1],$nlo); 696 &and (&LB($nlo),0x0f); 697 &shr ($nhi[1],4); 698 &pxor ($red[0],$red[0]); 699 &rol ($dat,8); # next byte 700 &pxor ($red[1],$red[1]); 701 &pxor ($red[2],$red[2]); 702 703 # Just like in "May" verson modulo-schedule for critical path in 704 # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' 705 # is scheduled so late that rem_8bit[] has to be shifted *right* 706 # by 16, which is why last argument to pinsrw is 2, which 707 # corresponds to <<32=<<48>>16... 708 for ($j=11,$i=0;$i<15;$i++) { 709 710 if ($i>0) { 711 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] 712 &rol ($dat,8); # next byte 713 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); 714 715 &pxor ($Zlo,$tmp); 716 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); 717 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) 718 } else { 719 &movq ($Zlo,&QWP(16,"esp",$nlo,8)); 720 &movq ($Zhi,&QWP(16+128,"esp",$nlo,8)); 721 } 722 723 &mov (&LB($nlo),&LB($dat)); 724 &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0); 725 726 &movd ($rem[0],$Zlo); 727 &movz ($rem[1],&LB($rem[1])) if ($i>0); 728 &psrlq ($Zlo,8); # Z>>=8 729 730 &movq ($tmp,$Zhi); 731 &mov ($nhi[0],$nlo); 732 &psrlq ($Zhi,8); 733 734 &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4 735 &and (&LB($nlo),0x0f); 736 &psllq ($tmp,56); 737 738 &pxor ($Zhi,$red[1]) if ($i>1); 739 &shr ($nhi[0],4); 740 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0); 741 742 unshift (@red,pop(@red)); # "rotate" registers 743 unshift (@rem,pop(@rem)); 744 unshift (@nhi,pop(@nhi)); 745 } 746 747 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] 748 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); 749 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) 750 751 &pxor ($Zlo,$tmp); 752 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); 753 &movz ($rem[1],&LB($rem[1])); 754 755 &pxor ($red[2],$red[2]); # clear 2nd word 756 &psllq ($red[1],4); 757 758 &movd ($rem[0],$Zlo); 759 &psrlq ($Zlo,4); # Z>>=4 760 761 &movq ($tmp,$Zhi); 762 &psrlq ($Zhi,4); 763 &shl ($rem[0],4); # rem<<4 764 765 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi] 766 &psllq ($tmp,60); 767 &movz ($rem[0],&LB($rem[0])); 768 769 &pxor ($Zlo,$tmp); 770 &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8)); 771 772 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2); 773 &pxor ($Zhi,$red[1]); 774 775 &movd ($dat,$Zlo); 776 &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48 777 778 &psllq ($red[0],12); # correct by <<16>>4 779 &pxor ($Zhi,$red[0]); 780 &psrlq ($Zlo,32); 781 &pxor ($Zhi,$red[2]); 782 783 &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp 784 &movd ("ebx",$Zlo); 785 &movq ($tmp,$Zhi); # 01234567 786 &psllw ($Zhi,8); # 1.3.5.7. 787 &psrlw ($tmp,8); # .0.2.4.6 788 &por ($Zhi,$tmp); # 10325476 789 &bswap ($dat); 790 &pshufw ($Zhi,$Zhi,0b00011011); # 76543210 791 &bswap ("ebx"); 792 793 &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done? 794 &jne (&label("outer")); 795 } 796 797 &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi 798 &mov (&DWP(12,"eax"),"edx"); 799 &mov (&DWP(8,"eax"),"ebx"); 800 &movq (&QWP(0,"eax"),$Zhi); 801 802 &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp 803 &emms (); 804} 805&function_end("gcm_ghash_4bit_mmx"); 806}} 807 808if ($sse2) {{ 809###################################################################### 810# PCLMULQDQ version. 811 812$Xip="eax"; 813$Htbl="edx"; 814$const="ecx"; 815$inp="esi"; 816$len="ebx"; 817 818($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2"; 819($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); 820($Xn,$Xhn)=("xmm6","xmm7"); 821 822&static_label("bswap"); 823 824sub clmul64x64_T2 { # minimal "register" pressure 825my ($Xhi,$Xi,$Hkey)=@_; 826 827 &movdqa ($Xhi,$Xi); # 828 &pshufd ($T1,$Xi,0b01001110); 829 &pshufd ($T2,$Hkey,0b01001110); 830 &pxor ($T1,$Xi); # 831 &pxor ($T2,$Hkey); 832 833 &pclmulqdq ($Xi,$Hkey,0x00); ####### 834 &pclmulqdq ($Xhi,$Hkey,0x11); ####### 835 &pclmulqdq ($T1,$T2,0x00); ####### 836 &xorps ($T1,$Xi); # 837 &xorps ($T1,$Xhi); # 838 839 &movdqa ($T2,$T1); # 840 &psrldq ($T1,8); 841 &pslldq ($T2,8); # 842 &pxor ($Xhi,$T1); 843 &pxor ($Xi,$T2); # 844} 845 846sub clmul64x64_T3 { 847# Even though this subroutine offers visually better ILP, it 848# was empirically found to be a tad slower than above version. 849# At least in gcm_ghash_clmul context. But it's just as well, 850# because loop modulo-scheduling is possible only thanks to 851# minimized "register" pressure... 852my ($Xhi,$Xi,$Hkey)=@_; 853 854 &movdqa ($T1,$Xi); # 855 &movdqa ($Xhi,$Xi); 856 &pclmulqdq ($Xi,$Hkey,0x00); ####### 857 &pclmulqdq ($Xhi,$Hkey,0x11); ####### 858 &pshufd ($T2,$T1,0b01001110); # 859 &pshufd ($T3,$Hkey,0b01001110); 860 &pxor ($T2,$T1); # 861 &pxor ($T3,$Hkey); 862 &pclmulqdq ($T2,$T3,0x00); ####### 863 &pxor ($T2,$Xi); # 864 &pxor ($T2,$Xhi); # 865 866 &movdqa ($T3,$T2); # 867 &psrldq ($T2,8); 868 &pslldq ($T3,8); # 869 &pxor ($Xhi,$T2); 870 &pxor ($Xi,$T3); # 871} 872 873if (1) { # Algorithm 9 with <<1 twist. 874 # Reduction is shorter and uses only two 875 # temporary registers, which makes it better 876 # candidate for interleaving with 64x64 877 # multiplication. Pre-modulo-scheduled loop 878 # was found to be ~20% faster than Algorithm 5 879 # below. Algorithm 9 was therefore chosen for 880 # further optimization... 881 882sub reduction_alg9 { # 17/13 times faster than Intel version 883my ($Xhi,$Xi) = @_; 884 885 # 1st phase 886 &movdqa ($T1,$Xi); # 887 &psllq ($Xi,1); 888 &pxor ($Xi,$T1); # 889 &psllq ($Xi,5); # 890 &pxor ($Xi,$T1); # 891 &psllq ($Xi,57); # 892 &movdqa ($T2,$Xi); # 893 &pslldq ($Xi,8); 894 &psrldq ($T2,8); # 895 &pxor ($Xi,$T1); 896 &pxor ($Xhi,$T2); # 897 898 # 2nd phase 899 &movdqa ($T2,$Xi); 900 &psrlq ($Xi,5); 901 &pxor ($Xi,$T2); # 902 &psrlq ($Xi,1); # 903 &pxor ($Xi,$T2); # 904 &pxor ($T2,$Xhi); 905 &psrlq ($Xi,1); # 906 &pxor ($Xi,$T2); # 907} 908 909&function_begin_B("gcm_init_clmul"); 910 &mov ($Htbl,&wparam(0)); 911 &mov ($Xip,&wparam(1)); 912 913 &call (&label("pic")); 914&set_label("pic"); 915 &blindpop ($const); 916 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 917 918 &movdqu ($Hkey,&QWP(0,$Xip)); 919 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap 920 921 # <<1 twist 922 &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword 923 &movdqa ($T1,$Hkey); 924 &psllq ($Hkey,1); 925 &pxor ($T3,$T3); # 926 &psrlq ($T1,63); 927 &pcmpgtd ($T3,$T2); # broadcast carry bit 928 &pslldq ($T1,8); 929 &por ($Hkey,$T1); # H<<=1 930 931 # magic reduction 932 &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial 933 &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial 934 935 # calculate H^2 936 &movdqa ($Xi,$Hkey); 937 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 938 &reduction_alg9 ($Xhi,$Xi); 939 940 &movdqu (&QWP(0,$Htbl),$Hkey); # save H 941 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 942 943 &ret (); 944&function_end_B("gcm_init_clmul"); 945 946&function_begin_B("gcm_gmult_clmul"); 947 &mov ($Xip,&wparam(0)); 948 &mov ($Htbl,&wparam(1)); 949 950 &call (&label("pic")); 951&set_label("pic"); 952 &blindpop ($const); 953 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 954 955 &movdqu ($Xi,&QWP(0,$Xip)); 956 &movdqa ($T3,&QWP(0,$const)); 957 &movups ($Hkey,&QWP(0,$Htbl)); 958 &pshufb ($Xi,$T3); 959 960 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 961 &reduction_alg9 ($Xhi,$Xi); 962 963 &pshufb ($Xi,$T3); 964 &movdqu (&QWP(0,$Xip),$Xi); 965 966 &ret (); 967&function_end_B("gcm_gmult_clmul"); 968 969&function_begin("gcm_ghash_clmul"); 970 &mov ($Xip,&wparam(0)); 971 &mov ($Htbl,&wparam(1)); 972 &mov ($inp,&wparam(2)); 973 &mov ($len,&wparam(3)); 974 975 &call (&label("pic")); 976&set_label("pic"); 977 &blindpop ($const); 978 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 979 980 &movdqu ($Xi,&QWP(0,$Xip)); 981 &movdqa ($T3,&QWP(0,$const)); 982 &movdqu ($Hkey,&QWP(0,$Htbl)); 983 &pshufb ($Xi,$T3); 984 985 &sub ($len,0x10); 986 &jz (&label("odd_tail")); 987 988 ####### 989 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 990 # [(H*Ii+1) + (H*Xi+1)] mod P = 991 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 992 # 993 &movdqu ($T1,&QWP(0,$inp)); # Ii 994 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 995 &pshufb ($T1,$T3); 996 &pshufb ($Xn,$T3); 997 &pxor ($Xi,$T1); # Ii+Xi 998 999 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 1000 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 1001 1002 &lea ($inp,&DWP(32,$inp)); # i+=2 1003 &sub ($len,0x20); 1004 &jbe (&label("even_tail")); 1005 1006&set_label("mod_loop"); 1007 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) 1008 &movdqu ($T1,&QWP(0,$inp)); # Ii 1009 &movups ($Hkey,&QWP(0,$Htbl)); # load H 1010 1011 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) 1012 &pxor ($Xhi,$Xhn); 1013 1014 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 1015 &pshufb ($T1,$T3); 1016 &pshufb ($Xn,$T3); 1017 1018 &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1 1019 &movdqa ($Xhn,$Xn); 1020 &pxor ($Xhi,$T1); # "Ii+Xi", consume early 1021 1022 &movdqa ($T1,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase 1023 &psllq ($Xi,1); 1024 &pxor ($Xi,$T1); # 1025 &psllq ($Xi,5); # 1026 &pxor ($Xi,$T1); # 1027 &pclmulqdq ($Xn,$Hkey,0x00); ####### 1028 &psllq ($Xi,57); # 1029 &movdqa ($T2,$Xi); # 1030 &pslldq ($Xi,8); 1031 &psrldq ($T2,8); # 1032 &pxor ($Xi,$T1); 1033 &pshufd ($T1,$T3,0b01001110); 1034 &pxor ($Xhi,$T2); # 1035 &pxor ($T1,$T3); 1036 &pshufd ($T3,$Hkey,0b01001110); 1037 &pxor ($T3,$Hkey); # 1038 1039 &pclmulqdq ($Xhn,$Hkey,0x11); ####### 1040 &movdqa ($T2,$Xi); # 2nd phase 1041 &psrlq ($Xi,5); 1042 &pxor ($Xi,$T2); # 1043 &psrlq ($Xi,1); # 1044 &pxor ($Xi,$T2); # 1045 &pxor ($T2,$Xhi); 1046 &psrlq ($Xi,1); # 1047 &pxor ($Xi,$T2); # 1048 1049 &pclmulqdq ($T1,$T3,0x00); ####### 1050 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 1051 &xorps ($T1,$Xn); # 1052 &xorps ($T1,$Xhn); # 1053 1054 &movdqa ($T3,$T1); # 1055 &psrldq ($T1,8); 1056 &pslldq ($T3,8); # 1057 &pxor ($Xhn,$T1); 1058 &pxor ($Xn,$T3); # 1059 &movdqa ($T3,&QWP(0,$const)); 1060 1061 &lea ($inp,&DWP(32,$inp)); 1062 &sub ($len,0x20); 1063 &ja (&label("mod_loop")); 1064 1065&set_label("even_tail"); 1066 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) 1067 1068 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) 1069 &pxor ($Xhi,$Xhn); 1070 1071 &reduction_alg9 ($Xhi,$Xi); 1072 1073 &test ($len,$len); 1074 &jnz (&label("done")); 1075 1076 &movups ($Hkey,&QWP(0,$Htbl)); # load H 1077&set_label("odd_tail"); 1078 &movdqu ($T1,&QWP(0,$inp)); # Ii 1079 &pshufb ($T1,$T3); 1080 &pxor ($Xi,$T1); # Ii+Xi 1081 1082 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) 1083 &reduction_alg9 ($Xhi,$Xi); 1084 1085&set_label("done"); 1086 &pshufb ($Xi,$T3); 1087 &movdqu (&QWP(0,$Xip),$Xi); 1088&function_end("gcm_ghash_clmul"); 1089 1090} else { # Algorith 5. Kept for reference purposes. 1091 1092sub reduction_alg5 { # 19/16 times faster than Intel version 1093my ($Xhi,$Xi)=@_; 1094 1095 # <<1 1096 &movdqa ($T1,$Xi); # 1097 &movdqa ($T2,$Xhi); 1098 &pslld ($Xi,1); 1099 &pslld ($Xhi,1); # 1100 &psrld ($T1,31); 1101 &psrld ($T2,31); # 1102 &movdqa ($T3,$T1); 1103 &pslldq ($T1,4); 1104 &psrldq ($T3,12); # 1105 &pslldq ($T2,4); 1106 &por ($Xhi,$T3); # 1107 &por ($Xi,$T1); 1108 &por ($Xhi,$T2); # 1109 1110 # 1st phase 1111 &movdqa ($T1,$Xi); 1112 &movdqa ($T2,$Xi); 1113 &movdqa ($T3,$Xi); # 1114 &pslld ($T1,31); 1115 &pslld ($T2,30); 1116 &pslld ($Xi,25); # 1117 &pxor ($T1,$T2); 1118 &pxor ($T1,$Xi); # 1119 &movdqa ($T2,$T1); # 1120 &pslldq ($T1,12); 1121 &psrldq ($T2,4); # 1122 &pxor ($T3,$T1); 1123 1124 # 2nd phase 1125 &pxor ($Xhi,$T3); # 1126 &movdqa ($Xi,$T3); 1127 &movdqa ($T1,$T3); 1128 &psrld ($Xi,1); # 1129 &psrld ($T1,2); 1130 &psrld ($T3,7); # 1131 &pxor ($Xi,$T1); 1132 &pxor ($Xhi,$T2); 1133 &pxor ($Xi,$T3); # 1134 &pxor ($Xi,$Xhi); # 1135} 1136 1137&function_begin_B("gcm_init_clmul"); 1138 &mov ($Htbl,&wparam(0)); 1139 &mov ($Xip,&wparam(1)); 1140 1141 &call (&label("pic")); 1142&set_label("pic"); 1143 &blindpop ($const); 1144 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 1145 1146 &movdqu ($Hkey,&QWP(0,$Xip)); 1147 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap 1148 1149 # calculate H^2 1150 &movdqa ($Xi,$Hkey); 1151 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); 1152 &reduction_alg5 ($Xhi,$Xi); 1153 1154 &movdqu (&QWP(0,$Htbl),$Hkey); # save H 1155 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 1156 1157 &ret (); 1158&function_end_B("gcm_init_clmul"); 1159 1160&function_begin_B("gcm_gmult_clmul"); 1161 &mov ($Xip,&wparam(0)); 1162 &mov ($Htbl,&wparam(1)); 1163 1164 &call (&label("pic")); 1165&set_label("pic"); 1166 &blindpop ($const); 1167 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 1168 1169 &movdqu ($Xi,&QWP(0,$Xip)); 1170 &movdqa ($Xn,&QWP(0,$const)); 1171 &movdqu ($Hkey,&QWP(0,$Htbl)); 1172 &pshufb ($Xi,$Xn); 1173 1174 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); 1175 &reduction_alg5 ($Xhi,$Xi); 1176 1177 &pshufb ($Xi,$Xn); 1178 &movdqu (&QWP(0,$Xip),$Xi); 1179 1180 &ret (); 1181&function_end_B("gcm_gmult_clmul"); 1182 1183&function_begin("gcm_ghash_clmul"); 1184 &mov ($Xip,&wparam(0)); 1185 &mov ($Htbl,&wparam(1)); 1186 &mov ($inp,&wparam(2)); 1187 &mov ($len,&wparam(3)); 1188 1189 &call (&label("pic")); 1190&set_label("pic"); 1191 &blindpop ($const); 1192 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); 1193 1194 &movdqu ($Xi,&QWP(0,$Xip)); 1195 &movdqa ($T3,&QWP(0,$const)); 1196 &movdqu ($Hkey,&QWP(0,$Htbl)); 1197 &pshufb ($Xi,$T3); 1198 1199 &sub ($len,0x10); 1200 &jz (&label("odd_tail")); 1201 1202 ####### 1203 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 1204 # [(H*Ii+1) + (H*Xi+1)] mod P = 1205 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 1206 # 1207 &movdqu ($T1,&QWP(0,$inp)); # Ii 1208 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 1209 &pshufb ($T1,$T3); 1210 &pshufb ($Xn,$T3); 1211 &pxor ($Xi,$T1); # Ii+Xi 1212 1213 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 1214 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 1215 1216 &sub ($len,0x20); 1217 &lea ($inp,&DWP(32,$inp)); # i+=2 1218 &jbe (&label("even_tail")); 1219 1220&set_label("mod_loop"); 1221 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) 1222 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H 1223 1224 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) 1225 &pxor ($Xhi,$Xhn); 1226 1227 &reduction_alg5 ($Xhi,$Xi); 1228 1229 ####### 1230 &movdqa ($T3,&QWP(0,$const)); 1231 &movdqu ($T1,&QWP(0,$inp)); # Ii 1232 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 1233 &pshufb ($T1,$T3); 1234 &pshufb ($Xn,$T3); 1235 &pxor ($Xi,$T1); # Ii+Xi 1236 1237 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 1238 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 1239 1240 &sub ($len,0x20); 1241 &lea ($inp,&DWP(32,$inp)); 1242 &ja (&label("mod_loop")); 1243 1244&set_label("even_tail"); 1245 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) 1246 1247 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) 1248 &pxor ($Xhi,$Xhn); 1249 1250 &reduction_alg5 ($Xhi,$Xi); 1251 1252 &movdqa ($T3,&QWP(0,$const)); 1253 &test ($len,$len); 1254 &jnz (&label("done")); 1255 1256 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H 1257&set_label("odd_tail"); 1258 &movdqu ($T1,&QWP(0,$inp)); # Ii 1259 &pshufb ($T1,$T3); 1260 &pxor ($Xi,$T1); # Ii+Xi 1261 1262 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) 1263 &reduction_alg5 ($Xhi,$Xi); 1264 1265 &movdqa ($T3,&QWP(0,$const)); 1266&set_label("done"); 1267 &pshufb ($Xi,$T3); 1268 &movdqu (&QWP(0,$Xip),$Xi); 1269&function_end("gcm_ghash_clmul"); 1270 1271} 1272 1273&set_label("bswap",64); 1274 &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); 1275 &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial 1276}} # $sse2 1277 1278&set_label("rem_4bit",64); 1279 &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); 1280 &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); 1281 &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); 1282 &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); 1283&set_label("rem_8bit",64); 1284 &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); 1285 &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); 1286 &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); 1287 &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); 1288 &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); 1289 &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); 1290 &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); 1291 &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); 1292 &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); 1293 &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); 1294 &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); 1295 &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); 1296 &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); 1297 &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); 1298 &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); 1299 &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); 1300 &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); 1301 &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); 1302 &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); 1303 &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); 1304 &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); 1305 &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); 1306 &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); 1307 &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); 1308 &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); 1309 &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); 1310 &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); 1311 &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); 1312 &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); 1313 &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); 1314 &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); 1315 &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); 1316}}} # !$x86only 1317 1318&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>"); 1319&asm_finish(); 1320 1321# A question was risen about choice of vanilla MMX. Or rather why wasn't 1322# SSE2 chosen instead? In addition to the fact that MMX runs on legacy 1323# CPUs such as PIII, "4-bit" MMX version was observed to provide better 1324# performance than *corresponding* SSE2 one even on contemporary CPUs. 1325# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 1326# implementation featuring full range of lookup-table sizes, but with 1327# per-invocation lookup table setup. Latter means that table size is 1328# chosen depending on how much data is to be hashed in every given call, 1329# more data - larger table. Best reported result for Core2 is ~4 cycles 1330# per processed byte out of 64KB block. This number accounts even for 1331# 64KB table setup overhead. As discussed in gcm128.c we choose to be 1332# more conservative in respect to lookup table sizes, but how do the 1333# results compare? Minimalistic "256B" MMX version delivers ~11 cycles 1334# on same platform. As also discussed in gcm128.c, next in line "8-bit 1335# Shoup's" or "4KB" method should deliver twice the performance of 1336# "256B" one, in other words not worse than ~6 cycles per byte. It 1337# should be also be noted that in SSE2 case improvement can be "super- 1338# linear," i.e. more than twice, mostly because >>8 maps to single 1339# instruction on SSE2 register. This is unlike "4-bit" case when >>4 1340# maps to same amount of instructions in both MMX and SSE2 cases. 1341# Bottom line is that switch to SSE2 is considered to be justifiable 1342# only in case we choose to implement "8-bit" method... 1343