• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jfdctint.c
4  *
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains a slow-but-accurate integer implementation of the
10  * forward DCT (Discrete Cosine Transform).
11  *
12  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
13  * on each column.  Direct algorithms are also available, but they are
14  * much more complex and seem not to be any faster when reduced to code.
15  *
16  * This implementation is based on an algorithm described in
17  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
18  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
19  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
20  * The primary algorithm described there uses 11 multiplies and 29 adds.
21  * We use their alternate method with 12 multiplies and 32 adds.
22  * The advantage of this method is that no data path contains more than one
23  * multiplication; this allows a very simple and accurate implementation in
24  * scaled fixed-point arithmetic, with a minimal number of shifts.
25  */
26 
27 #define JPEG_INTERNALS
28 #include "jinclude.h"
29 #include "jpeglib.h"
30 #include "jdct.h"		/* Private declarations for DCT subsystem */
31 
32 #ifdef DCT_ISLOW_SUPPORTED
33 
34 
35 /*
36  * This module is specialized to the case DCTSIZE = 8.
37  */
38 
39 #if DCTSIZE != 8
40   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
41 #endif
42 
43 
44 /*
45  * The poop on this scaling stuff is as follows:
46  *
47  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
48  * larger than the true DCT outputs.  The final outputs are therefore
49  * a factor of N larger than desired; since N=8 this can be cured by
50  * a simple right shift at the end of the algorithm.  The advantage of
51  * this arrangement is that we save two multiplications per 1-D DCT,
52  * because the y0 and y4 outputs need not be divided by sqrt(N).
53  * In the IJG code, this factor of 8 is removed by the quantization step
54  * (in jcdctmgr.c), NOT in this module.
55  *
56  * We have to do addition and subtraction of the integer inputs, which
57  * is no problem, and multiplication by fractional constants, which is
58  * a problem to do in integer arithmetic.  We multiply all the constants
59  * by CONST_SCALE and convert them to integer constants (thus retaining
60  * CONST_BITS bits of precision in the constants).  After doing a
61  * multiplication we have to divide the product by CONST_SCALE, with proper
62  * rounding, to produce the correct output.  This division can be done
63  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
64  * as long as possible so that partial sums can be added together with
65  * full fractional precision.
66  *
67  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
68  * they are represented to better-than-integral precision.  These outputs
69  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
70  * with the recommended scaling.  (For 12-bit sample data, the intermediate
71  * array is INT32 anyway.)
72  *
73  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
74  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
75  * shows that the values given below are the most effective.
76  */
77 
78 #if BITS_IN_JSAMPLE == 8
79 #define CONST_BITS  13
80 #define PASS1_BITS  2
81 #else
82 #define CONST_BITS  13
83 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
84 #endif
85 
86 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
87  * causing a lot of useless floating-point operations at run time.
88  * To get around this we use the following pre-calculated constants.
89  * If you change CONST_BITS you may want to add appropriate values.
90  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
91  */
92 
93 #if CONST_BITS == 13
94 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
95 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
96 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
97 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
98 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
99 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
100 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
101 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
102 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
103 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
104 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
105 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
106 #else
107 #define FIX_0_298631336  FIX(0.298631336)
108 #define FIX_0_390180644  FIX(0.390180644)
109 #define FIX_0_541196100  FIX(0.541196100)
110 #define FIX_0_765366865  FIX(0.765366865)
111 #define FIX_0_899976223  FIX(0.899976223)
112 #define FIX_1_175875602  FIX(1.175875602)
113 #define FIX_1_501321110  FIX(1.501321110)
114 #define FIX_1_847759065  FIX(1.847759065)
115 #define FIX_1_961570560  FIX(1.961570560)
116 #define FIX_2_053119869  FIX(2.053119869)
117 #define FIX_2_562915447  FIX(2.562915447)
118 #define FIX_3_072711026  FIX(3.072711026)
119 #endif
120 
121 
122 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
123  * For 8-bit samples with the recommended scaling, all the variable
124  * and constant values involved are no more than 16 bits wide, so a
125  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
126  * For 12-bit samples, a full 32-bit multiplication will be needed.
127  */
128 
129 #if BITS_IN_JSAMPLE == 8
130 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
131 #else
132 #define MULTIPLY(var,const)  ((var) * (const))
133 #endif
134 
135 
136 /*
137  * Perform the forward DCT on one block of samples.
138  */
139 
140 GLOBAL(void)
141 jpeg_fdct_islow (DCTELEM * data)
142 {
143   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
144   INT32 tmp10, tmp11, tmp12, tmp13;
145   INT32 z1, z2, z3, z4, z5;
146   DCTELEM *dataptr;
147   int ctr;
148   SHIFT_TEMPS
149 
150   /* Pass 1: process rows. */
151   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
152   /* furthermore, we scale the results by 2**PASS1_BITS. */
153 
154   dataptr = data;
155   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
156     tmp0 = dataptr[0] + dataptr[7];
157     tmp7 = dataptr[0] - dataptr[7];
158     tmp1 = dataptr[1] + dataptr[6];
159     tmp6 = dataptr[1] - dataptr[6];
160     tmp2 = dataptr[2] + dataptr[5];
161     tmp5 = dataptr[2] - dataptr[5];
162     tmp3 = dataptr[3] + dataptr[4];
163     tmp4 = dataptr[3] - dataptr[4];
164 
165     /* Even part per LL&M figure 1 --- note that published figure is faulty;
166      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
167      */
168 
169     tmp10 = tmp0 + tmp3;
170     tmp13 = tmp0 - tmp3;
171     tmp11 = tmp1 + tmp2;
172     tmp12 = tmp1 - tmp2;
173 
174     dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
175     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
176 
177     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
178     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
179 				   CONST_BITS-PASS1_BITS);
180     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
181 				   CONST_BITS-PASS1_BITS);
182 
183     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
184      * cK represents cos(K*pi/16).
185      * i0..i3 in the paper are tmp4..tmp7 here.
186      */
187 
188     z1 = tmp4 + tmp7;
189     z2 = tmp5 + tmp6;
190     z3 = tmp4 + tmp6;
191     z4 = tmp5 + tmp7;
192     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
193 
194     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
195     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
196     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
197     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
198     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
199     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
200     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
201     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
202 
203     z3 += z5;
204     z4 += z5;
205 
206     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
207     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
208     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
209     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
210 
211     dataptr += DCTSIZE;		/* advance pointer to next row */
212   }
213 
214   /* Pass 2: process columns.
215    * We remove the PASS1_BITS scaling, but leave the results scaled up
216    * by an overall factor of 8.
217    */
218 
219   dataptr = data;
220   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
221     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
222     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
223     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
224     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
225     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
226     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
227     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
228     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
229 
230     /* Even part per LL&M figure 1 --- note that published figure is faulty;
231      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
232      */
233 
234     tmp10 = tmp0 + tmp3;
235     tmp13 = tmp0 - tmp3;
236     tmp11 = tmp1 + tmp2;
237     tmp12 = tmp1 - tmp2;
238 
239     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
240     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
241 
242     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
243     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
244 					   CONST_BITS+PASS1_BITS);
245     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
246 					   CONST_BITS+PASS1_BITS);
247 
248     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
249      * cK represents cos(K*pi/16).
250      * i0..i3 in the paper are tmp4..tmp7 here.
251      */
252 
253     z1 = tmp4 + tmp7;
254     z2 = tmp5 + tmp6;
255     z3 = tmp4 + tmp6;
256     z4 = tmp5 + tmp7;
257     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
258 
259     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
260     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
261     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
262     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
263     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
264     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
265     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
266     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
267 
268     z3 += z5;
269     z4 += z5;
270 
271     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
272 					   CONST_BITS+PASS1_BITS);
273     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
274 					   CONST_BITS+PASS1_BITS);
275     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
276 					   CONST_BITS+PASS1_BITS);
277     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
278 					   CONST_BITS+PASS1_BITS);
279 
280     dataptr++;			/* advance pointer to next column */
281   }
282 }
283 
284 #endif /* DCT_ISLOW_SUPPORTED */
285 
286 #endif //_FX_JPEG_TURBO_
287