• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7add unit test for quadratic horizontal intersection
8add unit test for cubic horizontal intersection with left/right
9add unit test for ActiveEdge::calcLeft (can currently loop forever)
10does ActiveEdge::isCoincidentWith need to support quad, cubic?
11figure out why variation in ActiveEdge::tooCloseToCall isn't better
12why does 'lastPtr - 2' in addIntersectingTs break testSimplifyTriangle22?
13add code to promote quad to cubic, or add quad/cubic intersection
14figure out why testSimplifySkinnyTriangle13 fails
15
16for quadratics and cubics, once various T values are added, see if consecutive
17Ts have ys that go up instead of down. If so, the edge needs to be broken.
18
19when splitting curves at inflection pts, should I retain the original curve
20data and note that the first/last T are no longer 0/1 ?
21I need to figure this out before I can proceed
22
23would it make sense to leave the InEdge alone, and add multiple copies of
24ActiveEdge, pointing to the same InEdge, where the copy has only the subset
25of Ts that need to be walked in reverse order?
26
27
28-- A Digression Which Shows Why Resolving Coincidence Does Not Make Sense --
29
30Consider the following fine ASCII art:
31
32  +------>-------+       +------>-------+
33  |              |       |              |
34  ^              V       ^              V
35  |              |       |              |
36  +------<-------+       +------<-------+
37  +------>-------+       +------<-------+
38  |              |       |              |
39  ^              V       V              ^
40  |              |       |              |
41  +------<-------+       +------>-------+
42
43(assume the bottom and top of the stacked rectangles are coincident)
44
45Simplifying said rectangles, regardless of rectangle direction, and regardless
46of winding or even/odd, eliminates the coincident edge, i.e., the result is
47always:
48
49  +------>-------+
50  |              |
51  |              |
52  |              |
53  ^              V
54  |              |
55  |              |
56  |              |
57  +------<-------+
58
59But when the rectangles are enclosed in a larger rectangle:
60
61+-------->---------+    +-------->---------+
62| +------>-------+ |    | +------>-------+ |
63| |              | |    | |              | |
64| ^              V |    | ^              V |
65| |              | |    | |              | |
66| +------<-------+ |    | +------<-------+ |
67| +------>-------+ |    | +------<-------+ |
68| |              | |    | |              | |
69| ^              V |    | V              ^ |
70| |              | |    | |              | |
71| +------<-------+ |    | +------>-------+ |
72+--------<---------+    +--------<---------+
73
74Simplifying them gives different results depending on the winding setting:
75
76winding:
77+-------->---------+    +-------->---------+
78|                  |    |                  |
79|                  |    |                  |
80|                  |    |                  |
81|                  |    |                  |
82|                  |    | +------<-------+ |
83|                  |    | |              | |
84|                  |    | V              ^ |
85|                  |    | |              | |
86|                  |    | +------>-------+ |
87+--------<---------+    +--------<---------+
88
89even odd:
90+-------->---------+    +-------->---------+
91| +------<-------+ |    | +------<-------+ |
92| |              | |    | |              | |
93| |              | |    | |              | |
94| |              | |    | |              | |
95| |              | |    | |              | |
96| V              ^ |    | V              ^ |
97| |              | |    | |              | |
98| |              | |    | |              | |
99| |              | |    | |              | |
100| +------>-------+ |    | +------>-------+ |
101+--------<---------+    +--------<---------+
102
103So, given the inner rectangles alone (e.g., given coincident pairs in some local
104context), we can't know whether to keep the coincident edges or not.
105
106
107-- Thoughts About Sortless Ops --
108
109I can't come up with anything truly sortless. It seems that the crossings need
110to be sorted to know which segment is next on the outside, although sometimes
111we can use that it is not coincident just to follow the direction.
112
113If it is coincident or if there's more than two crossing segments, sorting
114seems inevitable.
115
116Likewise, to resolve whether one contour is inside another, it seems that
117sorting is required. Given a pair of segments on different contours, to know
118if one is inside of the other, I need to know for each which side of the edge
119is the inside/filled side. When the outer contour is walked, it seems like I
120could record the inside info. I guess when the inner contour is found, its
121inside sense is reversed (inside is above the top). But how do I know if the
122next contour is inside another? Maybe shoot out a line and brute-force
123intersect it with all the segments in all the other contours? If every contour
124has an extra segment when the intersections are computed, this may not be as
125crazy as it seems.
126
127Suppose each contour has one extra segment shooting straight up from the top
128(or straight up from any point on the segment). This ray is not intersected
129with the home contour, but is intersected with all other contours as part of
130the normal intersection engine. If it is possible to get from the T values to
131the other segments to the other contours, it would be straightforward to
132count the contour crossings and determine if the home contour is in another
133contour or not (if the count is even, not, if odd, is inside). By itself that
134doesn't tell us about winding, but it's a start.
135
136
137Since intersecting these rays is unrelated to computing other intersections,
138it can be lazily done once the contour is found.
139
140So
141repeat the following
142find the top segment of all contours
143trace the outside, marking touching first and last segments as inside
144continue tracing the touched segments with reversed outside/inside sense
145once the edges are exhausted, remaining must be disjoint contours
146send a ray from a disjoint point through all other contours
147count the crossings, determine if disjoint is inside or outside, then continue
148
149===
150
151On Quadratic (and Cubic) Intersections
152
153Currently, if only the end points touch, QuadracticIntersections does a lot of
154work to figure that out. Can I test for that up front, then short circuit the
155recursive search for the end points?
156
157Or, is there something defective in the current approach that makes the end
158point recursion go so deep? I'm seeing 56 stack frames (about 28 divides, but
159thankfully, no splits) to find one matching endpoint.
160
161
162Bezier curve focus may allow more quickly determining that end points with
163identical tangents are practically coicident for some range of T, but I don't
164understand the math yet to know.
165
166Another approach is to determine how flat the curve is to make good guesses
167about how far to move away in T before doing the intersection for the remainder
168and/or to determine whether one curve is to the inside or outside of another.
169According to Mike/Rob, the flatness for quadratics increases by 4 for each
170subdivision, and a crude guess of the curvature can be had by comparing P1 to
171(P0+P2)/2. By looking at the ULPS of the numbers, I can guess what value of
172T may be far enough that the curves diverge but don't cross.
173
174====
175
176Code I May Not Need Any More
177
178    static bool CoincidentCandidate(const Angle* current) {
179        const Segment* segment = current->segment();
180        int min = SkMin32(current->start(), current->end());
181        do {
182            const Span& span = segment->fTs[min];
183            if (span.fCoincident == Span::kStart_Coincidence) {
184                return true;
185            }
186        } while (--min >= 0);
187        return false;
188    }
189
190    static bool CoincidentHalf(const Angle* current, const Angle* next) {
191        const Segment* other = next->segment();
192        const Segment* segment = current->segment();
193        int min = SkMin32(current->start(), current->end());
194        const Span& minSpan = segment->fTs[min];
195        if (minSpan.fOther == other) {
196            return minSpan.fCoincident == Span::kStart_Coincidence;
197        }
198        int index = min;
199        int spanCount = segment->fTs.count();
200        while (++index < spanCount) {
201            const Span& span = segment->fTs[index];
202            if (minSpan.fT != span.fT) {
203                break;
204            }
205            if (span.fOther != other) {
206                continue;
207            }
208            return span.fCoincident == Span::kStart_Coincidence;
209        }
210        index = min;
211        while (--index >= 0) {
212            const Span& span = segment->fTs[index];
213            if (span.fOther != other) {
214                continue;
215            }
216            return span.fCoincident == Span::kStart_Coincidence;
217        }
218        return false;
219    }
220
221    static bool Coincident(const Angle* current, const Angle* next) {
222        return CoincidentHalf(current, next) &&
223                CoincidentHalf(next, current);
224    }
225
226    // If three lines cancel in a - b - c order, a - b may or may not
227    // eliminate the edge that describes the b - c cancellation. Check done to
228    // determine this.
229    static bool CoincidentCancels(const Angle* current, const Angle* next) {
230        int curMin = SkMin32(current->start(), current->end());
231        if (current->segment()->fTs[curMin].fDone) {
232            return false;
233        }
234        int nextMin = SkMin32(next->start(), next->end());
235        if (next->segment()->fTs[nextMin].fDone) {
236            return false;
237        }
238        return SkSign32(current->start() - current->end())
239                != SkSign32(next->start() - next->end());
240    }
241
242    // FIXME: at this point, just have two functions for the different steps
243    int coincidentEnd(int from, int step) const {
244        double fromT = fTs[from].fT;
245        int count = fTs.count();
246        int to = from;
247        while (step > 0 ? ++to < count : --to >= 0) {
248            const Span& span = fTs[to];
249            if ((step > 0 ? span.fT - fromT : fromT - span.fT) >= FLT_EPSILON ) {
250                // FIXME: we assume that if the T changes, we don't care about
251                // coincident -- but in nextSpan, we require that both the T
252                // and actual loc change to represent a span. This asymettry may
253                // be OK or may be trouble -- if trouble, probably will need to
254                // detect coincidence earlier or sort differently
255                break;
256            }
257#if 01
258            if (span.fCoincident == (step < 0 ? Span::kStart_Coincidence :
259                    Span::kEnd_Coincidence)) {
260                from = to;
261            }
262#else
263            from = to;
264#endif
265        }
266        return from;
267    }
268
269    // once past current span, if step>0, look for coicident==1
270    // if step<0, look for coincident==-1
271    int nextSpanEnd(int from, int step) const {
272        int result = nextSpan(from, step);
273        if (result < 0) {
274            return result;
275        }
276        return coincidentEnd(result, step);
277    }
278
279
280    void adjustFirst(const SkTDArray<Angle*>& sorted, int& first, int& winding,
281            bool outside) {
282        int firstIndex = first;
283        int angleCount = sorted.count();
284        if (true || outside) {
285            const Angle* angle = sorted[firstIndex];
286            int prior = firstIndex;
287            do {
288                if (--prior < 0) {
289                    prior = angleCount - 1;
290                }
291                if (prior == firstIndex) { // all are coincident with each other
292                    return;
293                }
294                if (!Coincident(sorted[prior], sorted[first])) {
295                    return;
296                }
297                winding += angle->sign();
298                first = prior;
299                angle = sorted[prior];
300                winding -= angle->sign();
301            } while (true);
302        }
303        do {
304            int next = first + 1;
305            if (next == angleCount) {
306                next = 0;
307            }
308            if (next == firstIndex) { // all are coincident with each other
309                return;
310            }
311            if (!Coincident(sorted[first], sorted[next])) {
312                return;
313            }
314            first = next;
315        } while (true);
316    }
317
318            bool nextIsCoincident = CoincidentCandidate(nextAngle);
319            bool finalOrNoCoincident = true;
320            bool pairCoincides = false;
321            bool pairCancels = false;
322            if (nextIsCoincident) {
323                int followIndex = nextIndex + 1;
324                if (followIndex == angleCount) {
325                    followIndex = 0;
326                }
327                const Angle* followAngle = sorted[followIndex];
328                finalOrNoCoincident = !Coincident(nextAngle, followAngle);
329                if ((pairCoincides = Coincident(angle, nextAngle))) {
330                    pairCancels = CoincidentCancels(angle, nextAngle);
331                }
332            }
333            if (pairCancels && !foundAngle && !nextSegment->done()) {
334                Segment* aSeg = angle->segment();
335      //          alreadyMarked |= aSeg == sorted[firstIndex]->segment();
336                aSeg->markAndChaseCoincident(angle->start(), angle->end(),
337                        nextSegment);
338                if (firstEdge) {
339                    return NULL;
340                }
341            }
342            if (pairCoincides) {
343                if (pairCancels) {
344                    goto doNext;
345                }
346                int minT = SkMin32(nextAngle->start(), nextAngle->end());
347                bool markNext = abs(maxWinding) < abs(winding);
348                if (markNext) {
349                    nextSegment->markDone(minT, winding);
350                }
351                int oldMinT = SkMin32(angle->start(), angle->end());
352                if (true || !foundAngle) {
353                 //   SkASSERT(0); // do we ever get here?
354                    Segment* aSeg = angle->segment();
355        //            alreadyMarked |= aSeg == sorted[firstIndex]->segment();
356                    aSeg->markDone(oldMinT, maxWinding);
357                }
358            }
359
360    // OPTIMIZATION: uses tail recursion. Unwise?
361    void innerCoincidentChase(int step, Segment* other) {
362        // find other at index
363   //     SkASSERT(!done());
364        const Span* start = NULL;
365        const Span* end = NULL;
366        int index, startIndex, endIndex;
367        int count = fTs.count();
368        for (index = 0; index < count; ++index) {
369            const Span& span = fTs[index];
370            if (!span.fCoincident || span.fOther != other) {
371                continue;
372            }
373            if (!start) {
374                startIndex = index;
375                start = &span;
376            } else {
377                SkASSERT(!end);
378                endIndex = index;
379                end = &span;
380            }
381        }
382        if (!end) {
383            return;
384        }
385        bool thisDone = fTs[SkMin32(startIndex, endIndex)].fDone;
386        bool otherDone = other->fTs[SkMin32(start->fOtherIndex,
387                end->fOtherIndex)].fDone;
388        if (thisDone && otherDone) {
389            return;
390        }
391        Segment* next;
392        Segment* nextOther;
393        if (step < 0) {
394            next = start->fT == 0 ? NULL : this;
395            nextOther = other->fTs[start->fOtherIndex].fT > 1 - FLT_EPSILON ? NULL : other;
396        } else {
397            next = end->fT == 1 ? NULL : this;
398            nextOther = other->fTs[end->fOtherIndex].fT < FLT_EPSILON ? NULL : other;
399        }
400        SkASSERT(!next || !nextOther);
401        for (index = 0; index < count; ++index) {
402            const Span& span = fTs[index];
403            if (span.fCoincident || span.fOther == other) {
404                continue;
405            }
406            bool checkNext = !next && (step < 0 ? span.fT < FLT_EPSILON
407                && span.fOtherT > 1 - FLT_EPSILON : span.fT > 1 - FLT_EPSILON
408                && span.fOtherT < FLT_EPSILON);
409            bool checkOther = !nextOther && (step < 0 ? fabs(span.fT - start->fT) < FLT_EPSILON
410                && span.fOtherT < FLT_EPSILON : fabs(span.fT - end->fT) < FLT_EPSILON
411                && span.fOtherT > 1 - FLT_EPSILON);
412            if (!checkNext && !checkOther) {
413                continue;
414            }
415            Segment* oSegment = span.fOther;
416            if (oSegment->done()) {
417                continue;
418            }
419            int oCount = oSegment->fTs.count();
420            for (int oIndex = 0; oIndex < oCount; ++oIndex) {
421                const Span& oSpan = oSegment->fTs[oIndex];
422                if (oSpan.fT >= FLT_EPSILON && oSpan.fT <= 1 - FLT_EPSILON) {
423                    continue;
424                }
425                if (!oSpan.fCoincident) {
426                    continue;
427                }
428                if (checkNext && (oSpan.fT < FLT_EPSILON ^ step < 0)) {
429                    next = oSegment;
430                    checkNext = false;
431                }
432                if (checkOther && (oSpan.fT > 1 - FLT_EPSILON ^ step < 0)) {
433                    nextOther = oSegment;
434                    checkOther = false;
435                }
436            }
437        }
438        // this needs to walk both spans in lock step, skipping edges that
439        // are already marked done on one or the other
440        markCanceled(startIndex, endIndex);
441        if (next && nextOther) {
442            next->innerCoincidentChase(step, nextOther);
443        }
444    }
445
446    // cancel coincident edges in lock step
447    void markCanceled(int start, int end) {
448        if (done()) {
449            return;
450        }
451        Segment* other = fTs[start].fOther;
452        if (other->done()) {
453            return;
454        }
455        if (start > end) {
456            SkTSwap<int>(start, end);
457        }
458        double maxT = fTs[end].fT - FLT_EPSILON;
459        int spanCount = fTs.count();
460        // since these cancel, this walks up and other walks down
461        int oStart = fTs[start].fOtherIndex;
462        double oStartT = other->fTs[oStart].fT;
463        while (oStartT - other->fTs[--oStart].fT < FLT_EPSILON)
464            ;
465        double startT = fTs[start].fT;
466        while (start > 0 && startT - fTs[start - 1].fT < FLT_EPSILON) {
467            --start;
468        }
469        do {
470            Span* span = &fTs[start];
471            Span* oSpan = &other->fTs[oStart];
472            // find start of each, and see if both are not done
473            bool markDone = !span->fDone && !oSpan->fDone;
474            double spanT = span->fT;
475            do {
476                if (markDone) {
477                    span->fCanceled = true;
478                #if DEBUG_MARK_DONE
479                    const SkPoint& pt = xyAtT(span);
480                    SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g)\n",
481                            __FUNCTION__, fID, start, span->fT, pt.fX, pt.fY);
482                #endif
483                    SkASSERT(!span->fDone);
484                    span->fDone = true;
485                    span->fWinding = 0;
486                    fDoneSpans++;
487                }
488                if (++start == spanCount) {
489                    break;
490                }
491                span = &fTs[start];
492            } while (span->fT - spanT < FLT_EPSILON);
493            double oSpanT = oSpan->fT;
494            do {
495                if (markDone) {
496                    oSpan->fCanceled = true;
497                #if DEBUG_MARK_DONE
498                    const SkPoint& oPt = xyAtT(oSpan);
499                    SkDebugf("%s segment=%d index=%d t=%1.9g pt=(%1.9g,%1.9g)\n",
500                            __FUNCTION__, other->fID, oStart, oSpan->fT,
501                            oPt.fX, oPt.fY);
502                #endif
503                    SkASSERT(!oSpan->fDone);
504                    oSpan->fDone = true;
505                    oSpan->fWinding = 0;
506                    other->fDoneSpans++;
507                }
508                if (--oStart < 0) {
509                    break;
510                }
511                oSpan = &other->fTs[oStart];
512            } while (oSpanT - oSpan->fT < FLT_EPSILON);
513        } while (fTs[start].fT <= maxT);
514    }
515
516    bool canceled(int start, int end) const {
517        int min = SkMin32(start, end);
518        return fTs[min].fCanceled;
519    }
520
521    void markAndChaseCoincident(int index, int endIndex, Segment* other) {
522        int step = SkSign32(endIndex - index);
523        innerCoincidentChase(step, other);
524    }
525
526