• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkLazyPtr_DEFINED
9 #define SkLazyPtr_DEFINED
10 
11 /** Declare a lazily-chosen static pointer (or array of pointers) of type F.
12  *
13  *  Example usage:
14  *
15  *  Foo* GetSingletonFoo() {
16  *      SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton);  // Created with SkNEW, destroyed with SkDELETE.
17  *      return singleton.get();
18  *  }
19  *
20  *  These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the end.
21  *  If not given, we'll use SkNEW and SkDELETE.
22  *  These options are most useful when T doesn't have a public constructor or destructor.
23  *  Create comes first, so you may use a custom Create with a default Destroy, but not vice versa.
24  *
25  *  Foo* CustomCreate() { return ...; }
26  *  void CustomDestroy(Foo* ptr) { ... }
27  *  Foo* GetSingletonFooWithCustomCleanup() {
28  *      SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy);
29  *      return singleton.get();
30  *  }
31  *
32  *  If you have a bunch of related static pointers of the same type, you can
33  *  declare an array of lazy pointers together, and we'll pass the index to Create().
34  *
35  *  Foo* CreateFoo(int i) { return ...; }
36  *  Foo* GetCachedFoo(Foo::Enum enumVal) {
37  *      SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, CreateFoo);
38  *      return cachedFoos[enumVal];
39  *  }
40  *
41  *
42  *  You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of
43  *  SkOnce.  There is no mutex or extra storage used past the pointer itself.
44  *  In debug mode, each lazy pointer will be cleaned up at process exit so we
45  *  can check that we've not leaked or freed them early.
46  *
47  *  We may call Create more than once, but all threads will see the same pointer
48  *  returned from get().  Any extra calls to Create will be cleaned up.
49  *
50  *  These macros must be used in a global or function scope, not as a class member.
51  */
52 
53 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \
54     static Private::SkLazyPtr<T, ##__VA_ARGS__> name
55 
56 #define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \
57     static Private::SkLazyPtrArray<T, N, ##__VA_ARGS__> name
58 
59 
60 
61 // Everything below here is private implementation details.  Don't touch, don't even look.
62 
63 #include "SkDynamicAnnotations.h"
64 #include "SkThread.h"
65 #include "SkThreadPriv.h"
66 
67 // See FIXME below.
68 class SkFontConfigInterfaceDirect;
69 
70 namespace Private {
71 
72 // Set *dst to ptr if *dst is NULL.  Returns value of *dst, destroying ptr if not swapped in.
73 // Issues the same memory barriers as sk_atomic_cas: acquire on failure, release on success.
74 template <typename P, void (*Destroy)(P)>
try_cas(void ** dst,P ptr)75 static P try_cas(void** dst, P ptr) {
76     P prev = (P)sk_atomic_cas(dst, NULL, ptr);
77 
78     if (prev) {
79         // We need an acquire barrier before returning prev, which sk_atomic_cas provided.
80         Destroy(ptr);
81         return prev;
82     } else {
83         // We need a release barrier before returning ptr, which sk_atomic_cas provided.
84         return ptr;
85     }
86 }
87 
sk_new()88 template <typename T> T* sk_new() { return SkNEW(T); }
sk_delete(T * ptr)89 template <typename T> void sk_delete(T* ptr) { SkDELETE(ptr); }
90 
91 // This has no constructor and must be zero-initalized (the macro above does this).
92 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delete<T> >
93 class SkLazyPtr {
94 public:
get()95     T* get() {
96         // If fPtr has already been filled, we need an acquire barrier when loading it.
97         // If not, we need a release barrier when setting it.  try_cas will do that.
98         T* ptr = (T*)sk_acquire_load(&fPtr);
99         return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create());
100     }
101 
102 #ifdef SK_DEVELOPER
103     // FIXME: We know we leak refs on some classes.  For now, let them leak.
cleanup(SkFontConfigInterfaceDirect *)104     void cleanup(SkFontConfigInterfaceDirect*) {}
cleanup(U * ptr)105     template <typename U> void cleanup(U* ptr) { Destroy(ptr); }
106 
~SkLazyPtr()107     ~SkLazyPtr() {
108         this->cleanup((T*)fPtr);
109         fPtr = NULL;
110     }
111 #endif
112 
113 private:
114     void* fPtr;
115 };
116 
sk_new_arg(int i)117 template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); }
118 
119 // This has no constructor and must be zero-initalized (the macro above does this).
120 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(T*) = sk_delete<T> >
121 class SkLazyPtrArray {
122 public:
123     T* operator[](int i) {
124         SkASSERT(i >= 0 && i < N);
125         // If fPtr has already been filled, we need an acquire barrier when loading it.
126         // If not, we need a release barrier when setting it.  try_cas will do that.
127         T* ptr = (T*)sk_acquire_load(&fArray[i]);
128         return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i));
129     }
130 
131 #ifdef SK_DEVELOPER
~SkLazyPtrArray()132     ~SkLazyPtrArray() {
133         for (int i = 0; i < N; i++) {
134             Destroy((T*)fArray[i]);
135             fArray[i] = NULL;
136         }
137     }
138 #endif
139 
140 private:
141     void* fArray[N];
142 };
143 
144 }  // namespace Private
145 
146 #endif//SkLazyPtr_DEFINED
147