• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
3 */
4 
5 /*
6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
7 Then for degree elevation, the equations are:
8 
9 Q0 = P0
10 Q1 = 1/3 P0 + 2/3 P1
11 Q2 = 2/3 P1 + 1/3 P2
12 Q3 = P2
13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
14  the equations above:
15 
16 P1 = 3/2 Q1 - 1/2 Q0
17 P1 = 3/2 Q2 - 1/2 Q3
18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
19  it's likely not, your best bet is to average them. So,
20 
21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
22 
23 SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
24 |x| is the euclidean norm of x
25 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
26  control point at C = (3·C2 - P2 + 3·C1 - P1)/4
27 
28 Algorithm
29 
30 pick an absolute precision (prec)
31 Compute the Tdiv as the root of (cubic) equation
32 sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
33 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
34  quadratic, with a defect less than prec, by the mid-point approximation.
35  Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
36 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
37  approximation
38 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
39 
40 confirmed by (maybe stolen from)
41 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
42 // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
43 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
44 
45 */
46 
47 #include "SkPathOpsCubic.h"
48 #include "SkPathOpsLine.h"
49 #include "SkPathOpsQuad.h"
50 #include "SkReduceOrder.h"
51 #include "SkTArray.h"
52 #include "SkTSort.h"
53 
54 #define USE_CUBIC_END_POINTS 1
55 
calc_t_div(const SkDCubic & cubic,double precision,double start)56 static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
57     const double adjust = sqrt(3.) / 36;
58     SkDCubic sub;
59     const SkDCubic* cPtr;
60     if (start == 0) {
61         cPtr = &cubic;
62     } else {
63         // OPTIMIZE: special-case half-split ?
64         sub = cubic.subDivide(start, 1);
65         cPtr = &sub;
66     }
67     const SkDCubic& c = *cPtr;
68     double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
69     double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
70     double dist = sqrt(dx * dx + dy * dy);
71     double tDiv3 = precision / (adjust * dist);
72     double t = SkDCubeRoot(tDiv3);
73     if (start > 0) {
74         t = start + (1 - start) * t;
75     }
76     return t;
77 }
78 
toQuad() const79 SkDQuad SkDCubic::toQuad() const {
80     SkDQuad quad;
81     quad[0] = fPts[0];
82     const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
83     const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
84     quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
85     quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
86     quad[2] = fPts[3];
87     return quad;
88 }
89 
add_simple_ts(const SkDCubic & cubic,double precision,SkTArray<double,true> * ts)90 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
91     double tDiv = calc_t_div(cubic, precision, 0);
92     if (tDiv >= 1) {
93         return true;
94     }
95     if (tDiv >= 0.5) {
96         ts->push_back(0.5);
97         return true;
98     }
99     return false;
100 }
101 
addTs(const SkDCubic & cubic,double precision,double start,double end,SkTArray<double,true> * ts)102 static void addTs(const SkDCubic& cubic, double precision, double start, double end,
103         SkTArray<double, true>* ts) {
104     double tDiv = calc_t_div(cubic, precision, 0);
105     double parts = ceil(1.0 / tDiv);
106     for (double index = 0; index < parts; ++index) {
107         double newT = start + (index / parts) * (end - start);
108         if (newT > 0 && newT < 1) {
109             ts->push_back(newT);
110         }
111     }
112 }
113 
114 // flavor that returns T values only, deferring computing the quads until they are needed
115 // FIXME: when called from recursive intersect 2, this could take the original cubic
116 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
117 // it would still take the prechopped cubic for reduce order and find cubic inflections
toQuadraticTs(double precision,SkTArray<double,true> * ts) const118 void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const {
119     SkReduceOrder reducer;
120     int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics);
121     if (order < 3) {
122         return;
123     }
124     double inflectT[5];
125     int inflections = findInflections(inflectT);
126     SkASSERT(inflections <= 2);
127     if (!endsAreExtremaInXOrY()) {
128         inflections += findMaxCurvature(&inflectT[inflections]);
129         SkASSERT(inflections <= 5);
130     }
131     SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
132     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
133     // own subroutine?
134     while (inflections && approximately_less_than_zero(inflectT[0])) {
135         memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
136     }
137     int start = 0;
138     int next = 1;
139     while (next < inflections) {
140         if (!approximately_equal(inflectT[start], inflectT[next])) {
141             ++start;
142         ++next;
143             continue;
144         }
145         memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
146     }
147 
148     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
149         --inflections;
150     }
151     SkDCubicPair pair;
152     if (inflections == 1) {
153         pair = chopAt(inflectT[0]);
154         int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
155         if (orderP1 < 2) {
156             --inflections;
157         } else {
158             int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
159             if (orderP2 < 2) {
160                 --inflections;
161             }
162         }
163     }
164     if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
165         return;
166     }
167     if (inflections == 1) {
168         pair = chopAt(inflectT[0]);
169         addTs(pair.first(), precision, 0, inflectT[0], ts);
170         addTs(pair.second(), precision, inflectT[0], 1, ts);
171         return;
172     }
173     if (inflections > 1) {
174         SkDCubic part = subDivide(0, inflectT[0]);
175         addTs(part, precision, 0, inflectT[0], ts);
176         int last = inflections - 1;
177         for (int idx = 0; idx < last; ++idx) {
178             part = subDivide(inflectT[idx], inflectT[idx + 1]);
179             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
180         }
181         part = subDivide(inflectT[last], 1);
182         addTs(part, precision, inflectT[last], 1, ts);
183         return;
184     }
185     addTs(*this, precision, 0, 1, ts);
186 }
187