1 /*
2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
3 */
4
5 /*
6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
7 Then for degree elevation, the equations are:
8
9 Q0 = P0
10 Q1 = 1/3 P0 + 2/3 P1
11 Q2 = 2/3 P1 + 1/3 P2
12 Q3 = P2
13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
14 the equations above:
15
16 P1 = 3/2 Q1 - 1/2 Q0
17 P1 = 3/2 Q2 - 1/2 Q3
18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
19 it's likely not, your best bet is to average them. So,
20
21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
22
23 SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
24 |x| is the euclidean norm of x
25 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
26 control point at C = (3·C2 - P2 + 3·C1 - P1)/4
27
28 Algorithm
29
30 pick an absolute precision (prec)
31 Compute the Tdiv as the root of (cubic) equation
32 sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
33 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
34 quadratic, with a defect less than prec, by the mid-point approximation.
35 Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
36 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
37 approximation
38 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
39
40 confirmed by (maybe stolen from)
41 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
42 // maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf
43 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
44
45 */
46
47 #include "SkPathOpsCubic.h"
48 #include "SkPathOpsLine.h"
49 #include "SkPathOpsQuad.h"
50 #include "SkReduceOrder.h"
51 #include "SkTArray.h"
52 #include "SkTSort.h"
53
54 #define USE_CUBIC_END_POINTS 1
55
calc_t_div(const SkDCubic & cubic,double precision,double start)56 static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
57 const double adjust = sqrt(3.) / 36;
58 SkDCubic sub;
59 const SkDCubic* cPtr;
60 if (start == 0) {
61 cPtr = &cubic;
62 } else {
63 // OPTIMIZE: special-case half-split ?
64 sub = cubic.subDivide(start, 1);
65 cPtr = ⊂
66 }
67 const SkDCubic& c = *cPtr;
68 double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
69 double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
70 double dist = sqrt(dx * dx + dy * dy);
71 double tDiv3 = precision / (adjust * dist);
72 double t = SkDCubeRoot(tDiv3);
73 if (start > 0) {
74 t = start + (1 - start) * t;
75 }
76 return t;
77 }
78
toQuad() const79 SkDQuad SkDCubic::toQuad() const {
80 SkDQuad quad;
81 quad[0] = fPts[0];
82 const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
83 const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
84 quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
85 quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
86 quad[2] = fPts[3];
87 return quad;
88 }
89
add_simple_ts(const SkDCubic & cubic,double precision,SkTArray<double,true> * ts)90 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
91 double tDiv = calc_t_div(cubic, precision, 0);
92 if (tDiv >= 1) {
93 return true;
94 }
95 if (tDiv >= 0.5) {
96 ts->push_back(0.5);
97 return true;
98 }
99 return false;
100 }
101
addTs(const SkDCubic & cubic,double precision,double start,double end,SkTArray<double,true> * ts)102 static void addTs(const SkDCubic& cubic, double precision, double start, double end,
103 SkTArray<double, true>* ts) {
104 double tDiv = calc_t_div(cubic, precision, 0);
105 double parts = ceil(1.0 / tDiv);
106 for (double index = 0; index < parts; ++index) {
107 double newT = start + (index / parts) * (end - start);
108 if (newT > 0 && newT < 1) {
109 ts->push_back(newT);
110 }
111 }
112 }
113
114 // flavor that returns T values only, deferring computing the quads until they are needed
115 // FIXME: when called from recursive intersect 2, this could take the original cubic
116 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
117 // it would still take the prechopped cubic for reduce order and find cubic inflections
toQuadraticTs(double precision,SkTArray<double,true> * ts) const118 void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const {
119 SkReduceOrder reducer;
120 int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics);
121 if (order < 3) {
122 return;
123 }
124 double inflectT[5];
125 int inflections = findInflections(inflectT);
126 SkASSERT(inflections <= 2);
127 if (!endsAreExtremaInXOrY()) {
128 inflections += findMaxCurvature(&inflectT[inflections]);
129 SkASSERT(inflections <= 5);
130 }
131 SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
132 // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
133 // own subroutine?
134 while (inflections && approximately_less_than_zero(inflectT[0])) {
135 memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
136 }
137 int start = 0;
138 int next = 1;
139 while (next < inflections) {
140 if (!approximately_equal(inflectT[start], inflectT[next])) {
141 ++start;
142 ++next;
143 continue;
144 }
145 memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
146 }
147
148 while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
149 --inflections;
150 }
151 SkDCubicPair pair;
152 if (inflections == 1) {
153 pair = chopAt(inflectT[0]);
154 int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
155 if (orderP1 < 2) {
156 --inflections;
157 } else {
158 int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
159 if (orderP2 < 2) {
160 --inflections;
161 }
162 }
163 }
164 if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
165 return;
166 }
167 if (inflections == 1) {
168 pair = chopAt(inflectT[0]);
169 addTs(pair.first(), precision, 0, inflectT[0], ts);
170 addTs(pair.second(), precision, inflectT[0], 1, ts);
171 return;
172 }
173 if (inflections > 1) {
174 SkDCubic part = subDivide(0, inflectT[0]);
175 addTs(part, precision, 0, inflectT[0], ts);
176 int last = inflections - 1;
177 for (int idx = 0; idx < last; ++idx) {
178 part = subDivide(inflectT[idx], inflectT[idx + 1]);
179 addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
180 }
181 part = subDivide(inflectT[last], 1);
182 addTs(part, precision, inflectT[last], 1, ts);
183 return;
184 }
185 addTs(*this, precision, 0, 1, ts);
186 }
187