• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "./alphai.h"
18 #include "./vp8li.h"
19 #include "../dsp/dsp.h"
20 #include "../dsp/lossless.h"
21 #include "../dsp/yuv.h"
22 #include "../utils/huffman.h"
23 #include "../utils/utils.h"
24 
25 #define NUM_ARGB_CACHE_ROWS          16
26 
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31 
32 // -----------------------------------------------------------------------------
33 //  Five Huffman codes are used at each meta code:
34 //  1. green + length prefix codes + color cache codes,
35 //  2. alpha,
36 //  3. red,
37 //  4. blue, and,
38 //  5. distance prefix codes.
39 typedef enum {
40   GREEN = 0,
41   RED   = 1,
42   BLUE  = 2,
43   ALPHA = 3,
44   DIST  = 4
45 } HuffIndex;
46 
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50   NUM_DISTANCE_CODES
51 };
52 
53 
54 #define NUM_CODE_LENGTH_CODES       19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58 
59 #define CODE_TO_PLANE_CODES        120
60 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
61   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74 
75 static int DecodeImageStream(int xsize, int ysize,
76                              int is_level0,
77                              VP8LDecoder* const dec,
78                              uint32_t** const decoded_data);
79 
80 //------------------------------------------------------------------------------
81 
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83   return (size >= VP8L_FRAME_HEADER_SIZE &&
84           data[0] == VP8L_MAGIC_BYTE &&
85           (data[4] >> 5) == 0);  // version
86 }
87 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)88 static int ReadImageInfo(VP8LBitReader* const br,
89                          int* const width, int* const height,
90                          int* const has_alpha) {
91   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
92   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
93   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94   *has_alpha = VP8LReadBits(br, 1);
95   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
96   return 1;
97 }
98 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)99 int VP8LGetInfo(const uint8_t* data, size_t data_size,
100                 int* const width, int* const height, int* const has_alpha) {
101   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
102     return 0;         // not enough data
103   } else if (!VP8LCheckSignature(data, data_size)) {
104     return 0;         // bad signature
105   } else {
106     int w, h, a;
107     VP8LBitReader br;
108     VP8LInitBitReader(&br, data, data_size);
109     if (!ReadImageInfo(&br, &w, &h, &a)) {
110       return 0;
111     }
112     if (width != NULL) *width = w;
113     if (height != NULL) *height = h;
114     if (has_alpha != NULL) *has_alpha = a;
115     return 1;
116   }
117 }
118 
119 //------------------------------------------------------------------------------
120 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)121 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
122                                        VP8LBitReader* const br) {
123   int extra_bits, offset;
124   if (distance_symbol < 4) {
125     return distance_symbol + 1;
126   }
127   extra_bits = (distance_symbol - 2) >> 1;
128   offset = (2 + (distance_symbol & 1)) << extra_bits;
129   return offset + VP8LReadBits(br, extra_bits) + 1;
130 }
131 
GetCopyLength(int length_symbol,VP8LBitReader * const br)132 static WEBP_INLINE int GetCopyLength(int length_symbol,
133                                      VP8LBitReader* const br) {
134   // Length and distance prefixes are encoded the same way.
135   return GetCopyDistance(length_symbol, br);
136 }
137 
PlaneCodeToDistance(int xsize,int plane_code)138 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
139   if (plane_code > CODE_TO_PLANE_CODES) {
140     return plane_code - CODE_TO_PLANE_CODES;
141   } else {
142     const int dist_code = kCodeToPlane[plane_code - 1];
143     const int yoffset = dist_code >> 4;
144     const int xoffset = 8 - (dist_code & 0xf);
145     const int dist = yoffset * xsize + xoffset;
146     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
147   }
148 }
149 
150 //------------------------------------------------------------------------------
151 // Decodes the next Huffman code from bit-stream.
152 // FillBitWindow(br) needs to be called at minimum every second call
153 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)154 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
155                                   VP8LBitReader* const br) {
156   const HuffmanTreeNode* node = tree->root_;
157   uint32_t bits = VP8LPrefetchBits(br);
158   int bitpos = br->bit_pos_;
159   // Check if we find the bit combination from the Huffman lookup table.
160   const int lut_ix = bits & (HUFF_LUT - 1);
161   const int lut_bits = tree->lut_bits_[lut_ix];
162   if (lut_bits <= HUFF_LUT_BITS) {
163     VP8LSetBitPos(br, bitpos + lut_bits);
164     return tree->lut_symbol_[lut_ix];
165   }
166   node += tree->lut_jump_[lut_ix];
167   bitpos += HUFF_LUT_BITS;
168   bits >>= HUFF_LUT_BITS;
169 
170   // Decode the value from a binary tree.
171   assert(node != NULL);
172   do {
173     node = HuffmanTreeNextNode(node, bits & 1);
174     bits >>= 1;
175     ++bitpos;
176   } while (HuffmanTreeNodeIsNotLeaf(node));
177   VP8LSetBitPos(br, bitpos);
178   return node->symbol_;
179 }
180 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)181 static int ReadHuffmanCodeLengths(
182     VP8LDecoder* const dec, const int* const code_length_code_lengths,
183     int num_symbols, int* const code_lengths) {
184   int ok = 0;
185   VP8LBitReader* const br = &dec->br_;
186   int symbol;
187   int max_symbol;
188   int prev_code_len = DEFAULT_CODE_LENGTH;
189   HuffmanTree tree;
190   int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 };
191 
192   if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
193                                     huff_codes, NUM_CODE_LENGTH_CODES)) {
194     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
195     return 0;
196   }
197 
198   if (VP8LReadBits(br, 1)) {    // use length
199     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
200     max_symbol = 2 + VP8LReadBits(br, length_nbits);
201     if (max_symbol > num_symbols) {
202       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
203       goto End;
204     }
205   } else {
206     max_symbol = num_symbols;
207   }
208 
209   symbol = 0;
210   while (symbol < num_symbols) {
211     int code_len;
212     if (max_symbol-- == 0) break;
213     VP8LFillBitWindow(br);
214     code_len = ReadSymbol(&tree, br);
215     if (code_len < kCodeLengthLiterals) {
216       code_lengths[symbol++] = code_len;
217       if (code_len != 0) prev_code_len = code_len;
218     } else {
219       const int use_prev = (code_len == kCodeLengthRepeatCode);
220       const int slot = code_len - kCodeLengthLiterals;
221       const int extra_bits = kCodeLengthExtraBits[slot];
222       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
223       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
224       if (symbol + repeat > num_symbols) {
225         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
226         goto End;
227       } else {
228         const int length = use_prev ? prev_code_len : 0;
229         while (repeat-- > 0) code_lengths[symbol++] = length;
230       }
231     }
232   }
233   ok = 1;
234 
235  End:
236   VP8LHuffmanTreeFree(&tree);
237   return ok;
238 }
239 
240 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
241 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,int * const huff_codes,HuffmanTree * const tree)242 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
243                            int* const code_lengths, int* const huff_codes,
244                            HuffmanTree* const tree) {
245   int ok = 0;
246   VP8LBitReader* const br = &dec->br_;
247   const int simple_code = VP8LReadBits(br, 1);
248 
249   if (simple_code) {  // Read symbols, codes & code lengths directly.
250     int symbols[2];
251     int codes[2];
252     const int num_symbols = VP8LReadBits(br, 1) + 1;
253     const int first_symbol_len_code = VP8LReadBits(br, 1);
254     // The first code is either 1 bit or 8 bit code.
255     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
256     codes[0] = 0;
257     code_lengths[0] = num_symbols - 1;
258     // The second code (if present), is always 8 bit long.
259     if (num_symbols == 2) {
260       symbols[1] = VP8LReadBits(br, 8);
261       codes[1] = 1;
262       code_lengths[1] = num_symbols - 1;
263     }
264     ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
265                                       alphabet_size, num_symbols);
266   } else {  // Decode Huffman-coded code lengths.
267     int i;
268     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
269     const int num_codes = VP8LReadBits(br, 4) + 4;
270     if (num_codes > NUM_CODE_LENGTH_CODES) {
271       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
272       return 0;
273     }
274 
275     memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
276 
277     for (i = 0; i < num_codes; ++i) {
278       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
279     }
280     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
281                                 code_lengths);
282     ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes,
283                                             alphabet_size);
284   }
285   ok = ok && !br->error_;
286   if (!ok) {
287     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
288     return 0;
289   }
290   return 1;
291 }
292 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)293 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
294                             int color_cache_bits, int allow_recursion) {
295   int i, j;
296   VP8LBitReader* const br = &dec->br_;
297   VP8LMetadata* const hdr = &dec->hdr_;
298   uint32_t* huffman_image = NULL;
299   HTreeGroup* htree_groups = NULL;
300   int num_htree_groups = 1;
301   int max_alphabet_size = 0;
302   int* code_lengths = NULL;
303   int* huff_codes = NULL;
304 
305   if (allow_recursion && VP8LReadBits(br, 1)) {
306     // use meta Huffman codes.
307     const int huffman_precision = VP8LReadBits(br, 3) + 2;
308     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
309     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
310     const int huffman_pixs = huffman_xsize * huffman_ysize;
311     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
312                            &huffman_image)) {
313       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
314       goto Error;
315     }
316     hdr->huffman_subsample_bits_ = huffman_precision;
317     for (i = 0; i < huffman_pixs; ++i) {
318       // The huffman data is stored in red and green bytes.
319       const int group = (huffman_image[i] >> 8) & 0xffff;
320       huffman_image[i] = group;
321       if (group >= num_htree_groups) {
322         num_htree_groups = group + 1;
323       }
324     }
325   }
326 
327   if (br->error_) goto Error;
328 
329   // Find maximum alphabet size for the htree group.
330   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
331     int alphabet_size = kAlphabetSize[j];
332     if (j == 0 && color_cache_bits > 0) {
333       alphabet_size += 1 << color_cache_bits;
334     }
335     if (max_alphabet_size < alphabet_size) {
336       max_alphabet_size = alphabet_size;
337     }
338   }
339 
340   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
341   code_lengths =
342       (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths));
343   huff_codes =
344       (int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes));
345 
346   if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) {
347     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
348     goto Error;
349   }
350 
351   for (i = 0; i < num_htree_groups; ++i) {
352     HuffmanTree* const htrees = htree_groups[i].htrees_;
353     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
354       int alphabet_size = kAlphabetSize[j];
355       HuffmanTree* const htree = htrees + j;
356       if (j == 0 && color_cache_bits > 0) {
357         alphabet_size += 1 << color_cache_bits;
358       }
359       if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes,
360                            htree)) {
361         goto Error;
362       }
363     }
364   }
365   WebPSafeFree(huff_codes);
366   WebPSafeFree(code_lengths);
367 
368   // All OK. Finalize pointers and return.
369   hdr->huffman_image_ = huffman_image;
370   hdr->num_htree_groups_ = num_htree_groups;
371   hdr->htree_groups_ = htree_groups;
372   return 1;
373 
374  Error:
375   WebPSafeFree(huff_codes);
376   WebPSafeFree(code_lengths);
377   WebPSafeFree(huffman_image);
378   VP8LHtreeGroupsFree(htree_groups, num_htree_groups);
379   return 0;
380 }
381 
382 //------------------------------------------------------------------------------
383 // Scaling.
384 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)385 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
386   const int num_channels = 4;
387   const int in_width = io->mb_w;
388   const int out_width = io->scaled_width;
389   const int in_height = io->mb_h;
390   const int out_height = io->scaled_height;
391   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
392   int32_t* work;        // Rescaler work area.
393   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
394   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
395   const uint64_t memory_size = sizeof(*dec->rescaler) +
396                                work_size * sizeof(*work) +
397                                scaled_data_size * sizeof(*scaled_data);
398   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
399   if (memory == NULL) {
400     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
401     return 0;
402   }
403   assert(dec->rescaler_memory == NULL);
404   dec->rescaler_memory = memory;
405 
406   dec->rescaler = (WebPRescaler*)memory;
407   memory += sizeof(*dec->rescaler);
408   work = (int32_t*)memory;
409   memory += work_size * sizeof(*work);
410   scaled_data = (uint32_t*)memory;
411 
412   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
413                    out_width, out_height, 0, num_channels,
414                    in_width, out_width, in_height, out_height, work);
415   return 1;
416 }
417 
418 //------------------------------------------------------------------------------
419 // Export to ARGB
420 
421 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)422 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
423                   int rgba_stride, uint8_t* const rgba) {
424   uint32_t* const src = (uint32_t*)rescaler->dst;
425   const int dst_width = rescaler->dst_width;
426   int num_lines_out = 0;
427   while (WebPRescalerHasPendingOutput(rescaler)) {
428     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
429     WebPRescalerExportRow(rescaler, 0);
430     WebPMultARGBRow(src, dst_width, 1);
431     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
432     ++num_lines_out;
433   }
434   return num_lines_out;
435 }
436 
437 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)438 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
439                                 uint8_t* in, int in_stride, int mb_h,
440                                 uint8_t* const out, int out_stride) {
441   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
442   int num_lines_in = 0;
443   int num_lines_out = 0;
444   while (num_lines_in < mb_h) {
445     uint8_t* const row_in = in + num_lines_in * in_stride;
446     uint8_t* const row_out = out + num_lines_out * out_stride;
447     const int lines_left = mb_h - num_lines_in;
448     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
449     assert(needed_lines > 0 && needed_lines <= lines_left);
450     WebPMultARGBRows(row_in, in_stride,
451                      dec->rescaler->src_width, needed_lines, 0);
452     WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
453     num_lines_in += needed_lines;
454     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
455   }
456   return num_lines_out;
457 }
458 
459 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)460 static int EmitRows(WEBP_CSP_MODE colorspace,
461                     const uint8_t* row_in, int in_stride,
462                     int mb_w, int mb_h,
463                     uint8_t* const out, int out_stride) {
464   int lines = mb_h;
465   uint8_t* row_out = out;
466   while (lines-- > 0) {
467     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
468     row_in += in_stride;
469     row_out += out_stride;
470   }
471   return mb_h;  // Num rows out == num rows in.
472 }
473 
474 //------------------------------------------------------------------------------
475 // Export to YUVA
476 
477 // TODO(skal): should be in yuv.c
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)478 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
479                           const WebPDecBuffer* const output) {
480   const WebPYUVABuffer* const buf = &output->u.YUVA;
481   // first, the luma plane
482   {
483     int i;
484     uint8_t* const y = buf->y + y_pos * buf->y_stride;
485     for (i = 0; i < width; ++i) {
486       const uint32_t p = src[i];
487       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff,
488                        YUV_HALF);
489     }
490   }
491 
492   // then U/V planes
493   {
494     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
495     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
496     const int uv_width = width >> 1;
497     int i;
498     for (i = 0; i < uv_width; ++i) {
499       const uint32_t v0 = src[2 * i + 0];
500       const uint32_t v1 = src[2 * i + 1];
501       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
502       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
503       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
504       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
505       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
506       if (!(y_pos & 1)) {  // even lines: store values
507         u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2);
508         v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2);
509       } else {             // odd lines: average with previous values
510         const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
511         const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
512         // Approximated average-of-four. But it's an acceptable diff.
513         u[i] = (u[i] + tmp_u + 1) >> 1;
514         v[i] = (v[i] + tmp_v + 1) >> 1;
515       }
516     }
517     if (width & 1) {       // last pixel
518       const uint32_t v0 = src[2 * i + 0];
519       const int r = (v0 >> 14) & 0x3fc;
520       const int g = (v0 >>  6) & 0x3fc;
521       const int b = (v0 <<  2) & 0x3fc;
522       if (!(y_pos & 1)) {  // even lines
523         u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2);
524         v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2);
525       } else {             // odd lines (note: we could just skip this)
526         const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
527         const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
528         u[i] = (u[i] + tmp_u + 1) >> 1;
529         v[i] = (v[i] + tmp_v + 1) >> 1;
530       }
531     }
532   }
533   // Lastly, store alpha if needed.
534   if (buf->a != NULL) {
535     int i;
536     uint8_t* const a = buf->a + y_pos * buf->a_stride;
537     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
538   }
539 }
540 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)541 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
542   WebPRescaler* const rescaler = dec->rescaler;
543   uint32_t* const src = (uint32_t*)rescaler->dst;
544   const int dst_width = rescaler->dst_width;
545   int num_lines_out = 0;
546   while (WebPRescalerHasPendingOutput(rescaler)) {
547     WebPRescalerExportRow(rescaler, 0);
548     WebPMultARGBRow(src, dst_width, 1);
549     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
550     ++y_pos;
551     ++num_lines_out;
552   }
553   return num_lines_out;
554 }
555 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)556 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
557                                 uint8_t* in, int in_stride, int mb_h) {
558   int num_lines_in = 0;
559   int y_pos = dec->last_out_row_;
560   while (num_lines_in < mb_h) {
561     const int lines_left = mb_h - num_lines_in;
562     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
563     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
564     WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
565     num_lines_in += needed_lines;
566     in += needed_lines * in_stride;
567     y_pos += ExportYUVA(dec, y_pos);
568   }
569   return y_pos;
570 }
571 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)572 static int EmitRowsYUVA(const VP8LDecoder* const dec,
573                         const uint8_t* in, int in_stride,
574                         int mb_w, int num_rows) {
575   int y_pos = dec->last_out_row_;
576   while (num_rows-- > 0) {
577     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
578     in += in_stride;
579     ++y_pos;
580   }
581   return y_pos;
582 }
583 
584 //------------------------------------------------------------------------------
585 // Cropping.
586 
587 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
588 // crop options. Also updates the input data pointer, so that it points to the
589 // start of the cropped window. Note that pixels are in ARGB format even if
590 // 'in_data' is uint8_t*.
591 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)592 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
593                          uint8_t** const in_data, int pixel_stride) {
594   assert(y_start < y_end);
595   assert(io->crop_left < io->crop_right);
596   if (y_end > io->crop_bottom) {
597     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
598   }
599   if (y_start < io->crop_top) {
600     const int delta = io->crop_top - y_start;
601     y_start = io->crop_top;
602     *in_data += delta * pixel_stride;
603   }
604   if (y_start >= y_end) return 0;  // Crop window is empty.
605 
606   *in_data += io->crop_left * sizeof(uint32_t);
607 
608   io->mb_y = y_start - io->crop_top;
609   io->mb_w = io->crop_right - io->crop_left;
610   io->mb_h = y_end - y_start;
611   return 1;  // Non-empty crop window.
612 }
613 
614 //------------------------------------------------------------------------------
615 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)616 static WEBP_INLINE int GetMetaIndex(
617     const uint32_t* const image, int xsize, int bits, int x, int y) {
618   if (bits == 0) return 0;
619   return image[xsize * (y >> bits) + (x >> bits)];
620 }
621 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)622 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
623                                                    int x, int y) {
624   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
625                                       hdr->huffman_subsample_bits_, x, y);
626   assert(meta_index < hdr->num_htree_groups_);
627   return hdr->htree_groups_ + meta_index;
628 }
629 
630 //------------------------------------------------------------------------------
631 // Main loop, with custom row-processing function
632 
633 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
634 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)635 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
636                                    const uint32_t* const rows) {
637   int n = dec->next_transform_;
638   const int cache_pixs = dec->width_ * num_rows;
639   const int start_row = dec->last_row_;
640   const int end_row = start_row + num_rows;
641   const uint32_t* rows_in = rows;
642   uint32_t* const rows_out = dec->argb_cache_;
643 
644   // Inverse transforms.
645   // TODO: most transforms only need to operate on the cropped region only.
646   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
647   while (n-- > 0) {
648     VP8LTransform* const transform = &dec->transforms_[n];
649     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
650     rows_in = rows_out;
651   }
652 }
653 
654 // Special method for paletted alpha data.
ApplyInverseTransformsAlpha(VP8LDecoder * const dec,int num_rows,const uint8_t * const rows)655 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
656                                         const uint8_t* const rows) {
657   const int start_row = dec->last_row_;
658   const int end_row = start_row + num_rows;
659   const uint8_t* rows_in = rows;
660   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
661   VP8LTransform* const transform = &dec->transforms_[0];
662   assert(dec->next_transform_ == 1);
663   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
664   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
665                                       rows_out);
666 }
667 
668 // Processes (transforms, scales & color-converts) the rows decoded after the
669 // last call.
ProcessRows(VP8LDecoder * const dec,int row)670 static void ProcessRows(VP8LDecoder* const dec, int row) {
671   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
672   const int num_rows = row - dec->last_row_;
673 
674   if (num_rows <= 0) return;  // Nothing to be done.
675   ApplyInverseTransforms(dec, num_rows, rows);
676 
677   // Emit output.
678   {
679     VP8Io* const io = dec->io_;
680     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
681     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
682     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
683       // Nothing to output (this time).
684     } else {
685       const WebPDecBuffer* const output = dec->output_;
686       if (output->colorspace < MODE_YUV) {  // convert to RGBA
687         const WebPRGBABuffer* const buf = &output->u.RGBA;
688         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
689         const int num_rows_out = io->use_scaling ?
690             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
691                                  rgba, buf->stride) :
692             EmitRows(output->colorspace, rows_data, in_stride,
693                      io->mb_w, io->mb_h, rgba, buf->stride);
694         // Update 'last_out_row_'.
695         dec->last_out_row_ += num_rows_out;
696       } else {                              // convert to YUVA
697         dec->last_out_row_ = io->use_scaling ?
698             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
699             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
700       }
701       assert(dec->last_out_row_ <= output->height);
702     }
703   }
704 
705   // Update 'last_row_'.
706   dec->last_row_ = row;
707   assert(dec->last_row_ <= dec->height_);
708 }
709 
710 // Row-processing for the special case when alpha data contains only one
711 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)712 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
713   int i;
714   if (hdr->color_cache_size_ > 0) return 0;
715   // When the Huffman tree contains only one symbol, we can skip the
716   // call to ReadSymbol() for red/blue/alpha channels.
717   for (i = 0; i < hdr->num_htree_groups_; ++i) {
718     const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_;
719     if (htrees[RED].num_nodes_ > 1) return 0;
720     if (htrees[BLUE].num_nodes_ > 1) return 0;
721     if (htrees[ALPHA].num_nodes_ > 1) return 0;
722   }
723   return 1;
724 }
725 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int row)726 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
727   const int num_rows = row - dec->last_row_;
728   const uint8_t* const in =
729       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
730   if (num_rows > 0) {
731     ApplyInverseTransformsAlpha(dec, num_rows, in);
732   }
733   dec->last_row_ = dec->last_out_row_ = row;
734 }
735 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)736 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
737                            int width, int height, int last_row) {
738   int ok = 1;
739   int row = dec->last_pixel_ / width;
740   int col = dec->last_pixel_ % width;
741   VP8LBitReader* const br = &dec->br_;
742   VP8LMetadata* const hdr = &dec->hdr_;
743   const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
744   int pos = dec->last_pixel_;         // current position
745   const int end = width * height;     // End of data
746   const int last = width * last_row;  // Last pixel to decode
747   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
748   const int mask = hdr->huffman_mask_;
749   assert(htree_group != NULL);
750   assert(pos < end);
751   assert(last_row <= height);
752   assert(Is8bOptimizable(hdr));
753 
754   while (!br->eos_ && pos < last) {
755     int code;
756     // Only update when changing tile.
757     if ((col & mask) == 0) {
758       htree_group = GetHtreeGroupForPos(hdr, col, row);
759     }
760     VP8LFillBitWindow(br);
761     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
762     if (code < NUM_LITERAL_CODES) {  // Literal
763       data[pos] = code;
764       ++pos;
765       ++col;
766       if (col >= width) {
767         col = 0;
768         ++row;
769         if (row % NUM_ARGB_CACHE_ROWS == 0) {
770           ExtractPalettedAlphaRows(dec, row);
771         }
772       }
773     } else if (code < len_code_limit) {  // Backward reference
774       int dist_code, dist;
775       const int length_sym = code - NUM_LITERAL_CODES;
776       const int length = GetCopyLength(length_sym, br);
777       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
778       VP8LFillBitWindow(br);
779       dist_code = GetCopyDistance(dist_symbol, br);
780       dist = PlaneCodeToDistance(width, dist_code);
781       if (pos >= dist && end - pos >= length) {
782         int i;
783         for (i = 0; i < length; ++i) data[pos + i] = data[pos + i - dist];
784       } else {
785         ok = 0;
786         goto End;
787       }
788       pos += length;
789       col += length;
790       while (col >= width) {
791         col -= width;
792         ++row;
793         if (row % NUM_ARGB_CACHE_ROWS == 0) {
794           ExtractPalettedAlphaRows(dec, row);
795         }
796       }
797       if (pos < last && (col & mask)) {
798         htree_group = GetHtreeGroupForPos(hdr, col, row);
799       }
800     } else {  // Not reached
801       ok = 0;
802       goto End;
803     }
804     ok = !br->error_;
805     if (!ok) goto End;
806   }
807   // Process the remaining rows corresponding to last row-block.
808   ExtractPalettedAlphaRows(dec, row);
809 
810  End:
811   if (br->error_ || !ok || (br->eos_ && pos < end)) {
812     ok = 0;
813     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
814                             : VP8_STATUS_BITSTREAM_ERROR;
815   } else {
816     dec->last_pixel_ = (int)pos;
817     if (pos == end) dec->state_ = READ_DATA;
818   }
819   return ok;
820 }
821 
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)822 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
823                            int width, int height, int last_row,
824                            ProcessRowsFunc process_func) {
825   int ok = 1;
826   int row = dec->last_pixel_ / width;
827   int col = dec->last_pixel_ % width;
828   VP8LBitReader* const br = &dec->br_;
829   VP8LMetadata* const hdr = &dec->hdr_;
830   HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
831   uint32_t* src = data + dec->last_pixel_;
832   uint32_t* last_cached = src;
833   uint32_t* const src_end = data + width * height;     // End of data
834   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
835   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
836   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
837   VP8LColorCache* const color_cache =
838       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
839   const int mask = hdr->huffman_mask_;
840   assert(htree_group != NULL);
841   assert(src < src_end);
842   assert(src_last <= src_end);
843 
844   while (!br->eos_ && src < src_last) {
845     int code;
846     // Only update when changing tile. Note we could use this test:
847     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
848     // but that's actually slower and needs storing the previous col/row.
849     if ((col & mask) == 0) {
850       htree_group = GetHtreeGroupForPos(hdr, col, row);
851     }
852     VP8LFillBitWindow(br);
853     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
854     if (code < NUM_LITERAL_CODES) {  // Literal
855       int red, green, blue, alpha;
856       red = ReadSymbol(&htree_group->htrees_[RED], br);
857       green = code;
858       VP8LFillBitWindow(br);
859       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
860       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
861       *src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue;
862     AdvanceByOne:
863       ++src;
864       ++col;
865       if (col >= width) {
866         col = 0;
867         ++row;
868         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
869           process_func(dec, row);
870         }
871         if (color_cache != NULL) {
872           while (last_cached < src) {
873             VP8LColorCacheInsert(color_cache, *last_cached++);
874           }
875         }
876       }
877     } else if (code < len_code_limit) {  // Backward reference
878       int dist_code, dist;
879       const int length_sym = code - NUM_LITERAL_CODES;
880       const int length = GetCopyLength(length_sym, br);
881       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
882       VP8LFillBitWindow(br);
883       dist_code = GetCopyDistance(dist_symbol, br);
884       dist = PlaneCodeToDistance(width, dist_code);
885       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
886         ok = 0;
887         goto End;
888       } else {
889         int i;
890         for (i = 0; i < length; ++i) src[i] = src[i - dist];
891         src += length;
892       }
893       col += length;
894       while (col >= width) {
895         col -= width;
896         ++row;
897         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
898           process_func(dec, row);
899         }
900       }
901       if (src < src_last) {
902         if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
903         if (color_cache != NULL) {
904           while (last_cached < src) {
905             VP8LColorCacheInsert(color_cache, *last_cached++);
906           }
907         }
908       }
909     } else if (code < color_cache_limit) {  // Color cache
910       const int key = code - len_code_limit;
911       assert(color_cache != NULL);
912       while (last_cached < src) {
913         VP8LColorCacheInsert(color_cache, *last_cached++);
914       }
915       *src = VP8LColorCacheLookup(color_cache, key);
916       goto AdvanceByOne;
917     } else {  // Not reached
918       ok = 0;
919       goto End;
920     }
921     ok = !br->error_;
922     if (!ok) goto End;
923   }
924   // Process the remaining rows corresponding to last row-block.
925   if (process_func != NULL) process_func(dec, row);
926 
927  End:
928   if (br->error_ || !ok || (br->eos_ && src < src_end)) {
929     ok = 0;
930     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
931                             : VP8_STATUS_BITSTREAM_ERROR;
932   } else {
933     dec->last_pixel_ = (int)(src - data);
934     if (src == src_end) dec->state_ = READ_DATA;
935   }
936   return ok;
937 }
938 
939 // -----------------------------------------------------------------------------
940 // VP8LTransform
941 
ClearTransform(VP8LTransform * const transform)942 static void ClearTransform(VP8LTransform* const transform) {
943   WebPSafeFree(transform->data_);
944   transform->data_ = NULL;
945 }
946 
947 // For security reason, we need to remap the color map to span
948 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)949 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
950   int i;
951   const int final_num_colors = 1 << (8 >> transform->bits_);
952   uint32_t* const new_color_map =
953       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
954                                 sizeof(*new_color_map));
955   if (new_color_map == NULL) {
956     return 0;
957   } else {
958     uint8_t* const data = (uint8_t*)transform->data_;
959     uint8_t* const new_data = (uint8_t*)new_color_map;
960     new_color_map[0] = transform->data_[0];
961     for (i = 4; i < 4 * num_colors; ++i) {
962       // Equivalent to AddPixelEq(), on a byte-basis.
963       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
964     }
965     for (; i < 4 * final_num_colors; ++i)
966       new_data[i] = 0;  // black tail.
967     WebPSafeFree(transform->data_);
968     transform->data_ = new_color_map;
969   }
970   return 1;
971 }
972 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)973 static int ReadTransform(int* const xsize, int const* ysize,
974                          VP8LDecoder* const dec) {
975   int ok = 1;
976   VP8LBitReader* const br = &dec->br_;
977   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
978   const VP8LImageTransformType type =
979       (VP8LImageTransformType)VP8LReadBits(br, 2);
980 
981   // Each transform type can only be present once in the stream.
982   if (dec->transforms_seen_ & (1U << type)) {
983     return 0;  // Already there, let's not accept the second same transform.
984   }
985   dec->transforms_seen_ |= (1U << type);
986 
987   transform->type_ = type;
988   transform->xsize_ = *xsize;
989   transform->ysize_ = *ysize;
990   transform->data_ = NULL;
991   ++dec->next_transform_;
992   assert(dec->next_transform_ <= NUM_TRANSFORMS);
993 
994   switch (type) {
995     case PREDICTOR_TRANSFORM:
996     case CROSS_COLOR_TRANSFORM:
997       transform->bits_ = VP8LReadBits(br, 3) + 2;
998       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
999                                                transform->bits_),
1000                              VP8LSubSampleSize(transform->ysize_,
1001                                                transform->bits_),
1002                              0, dec, &transform->data_);
1003       break;
1004     case COLOR_INDEXING_TRANSFORM: {
1005        const int num_colors = VP8LReadBits(br, 8) + 1;
1006        const int bits = (num_colors > 16) ? 0
1007                       : (num_colors > 4) ? 1
1008                       : (num_colors > 2) ? 2
1009                       : 3;
1010        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1011        transform->bits_ = bits;
1012        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1013        ok = ok && ExpandColorMap(num_colors, transform);
1014       break;
1015     }
1016     case SUBTRACT_GREEN:
1017       break;
1018     default:
1019       assert(0);    // can't happen
1020       break;
1021   }
1022 
1023   return ok;
1024 }
1025 
1026 // -----------------------------------------------------------------------------
1027 // VP8LMetadata
1028 
InitMetadata(VP8LMetadata * const hdr)1029 static void InitMetadata(VP8LMetadata* const hdr) {
1030   assert(hdr);
1031   memset(hdr, 0, sizeof(*hdr));
1032 }
1033 
ClearMetadata(VP8LMetadata * const hdr)1034 static void ClearMetadata(VP8LMetadata* const hdr) {
1035   assert(hdr);
1036 
1037   WebPSafeFree(hdr->huffman_image_);
1038   VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_);
1039   VP8LColorCacheClear(&hdr->color_cache_);
1040   InitMetadata(hdr);
1041 }
1042 
1043 // -----------------------------------------------------------------------------
1044 // VP8LDecoder
1045 
VP8LNew(void)1046 VP8LDecoder* VP8LNew(void) {
1047   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1048   if (dec == NULL) return NULL;
1049   dec->status_ = VP8_STATUS_OK;
1050   dec->action_ = READ_DIM;
1051   dec->state_ = READ_DIM;
1052 
1053   VP8LDspInit();  // Init critical function pointers.
1054 
1055   return dec;
1056 }
1057 
VP8LClear(VP8LDecoder * const dec)1058 void VP8LClear(VP8LDecoder* const dec) {
1059   int i;
1060   if (dec == NULL) return;
1061   ClearMetadata(&dec->hdr_);
1062 
1063   WebPSafeFree(dec->pixels_);
1064   dec->pixels_ = NULL;
1065   for (i = 0; i < dec->next_transform_; ++i) {
1066     ClearTransform(&dec->transforms_[i]);
1067   }
1068   dec->next_transform_ = 0;
1069   dec->transforms_seen_ = 0;
1070 
1071   WebPSafeFree(dec->rescaler_memory);
1072   dec->rescaler_memory = NULL;
1073 
1074   dec->output_ = NULL;   // leave no trace behind
1075 }
1076 
VP8LDelete(VP8LDecoder * const dec)1077 void VP8LDelete(VP8LDecoder* const dec) {
1078   if (dec != NULL) {
1079     VP8LClear(dec);
1080     WebPSafeFree(dec);
1081   }
1082 }
1083 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1084 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1085   VP8LMetadata* const hdr = &dec->hdr_;
1086   const int num_bits = hdr->huffman_subsample_bits_;
1087   dec->width_ = width;
1088   dec->height_ = height;
1089 
1090   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1091   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1092 }
1093 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1094 static int DecodeImageStream(int xsize, int ysize,
1095                              int is_level0,
1096                              VP8LDecoder* const dec,
1097                              uint32_t** const decoded_data) {
1098   int ok = 1;
1099   int transform_xsize = xsize;
1100   int transform_ysize = ysize;
1101   VP8LBitReader* const br = &dec->br_;
1102   VP8LMetadata* const hdr = &dec->hdr_;
1103   uint32_t* data = NULL;
1104   int color_cache_bits = 0;
1105 
1106   // Read the transforms (may recurse).
1107   if (is_level0) {
1108     while (ok && VP8LReadBits(br, 1)) {
1109       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1110     }
1111   }
1112 
1113   // Color cache
1114   if (ok && VP8LReadBits(br, 1)) {
1115     color_cache_bits = VP8LReadBits(br, 4);
1116     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1117     if (!ok) {
1118       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1119       goto End;
1120     }
1121   }
1122 
1123   // Read the Huffman codes (may recurse).
1124   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1125                               color_cache_bits, is_level0);
1126   if (!ok) {
1127     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1128     goto End;
1129   }
1130 
1131   // Finish setting up the color-cache
1132   if (color_cache_bits > 0) {
1133     hdr->color_cache_size_ = 1 << color_cache_bits;
1134     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1135       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1136       ok = 0;
1137       goto End;
1138     }
1139   } else {
1140     hdr->color_cache_size_ = 0;
1141   }
1142   UpdateDecoder(dec, transform_xsize, transform_ysize);
1143 
1144   if (is_level0) {   // level 0 complete
1145     dec->state_ = READ_HDR;
1146     goto End;
1147   }
1148 
1149   {
1150     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1151     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1152     if (data == NULL) {
1153       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1154       ok = 0;
1155       goto End;
1156     }
1157   }
1158 
1159   // Use the Huffman trees to decode the LZ77 encoded data.
1160   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1161                        transform_ysize, NULL);
1162   ok = ok && !br->error_;
1163 
1164  End:
1165 
1166   if (!ok) {
1167     WebPSafeFree(data);
1168     ClearMetadata(hdr);
1169     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1170     // status appropriately.
1171     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1172       dec->status_ = VP8_STATUS_SUSPENDED;
1173     }
1174   } else {
1175     if (decoded_data != NULL) {
1176       *decoded_data = data;
1177     } else {
1178       // We allocate image data in this function only for transforms. At level 0
1179       // (that is: not the transforms), we shouldn't have allocated anything.
1180       assert(data == NULL);
1181       assert(is_level0);
1182     }
1183     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1184     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1185   }
1186   return ok;
1187 }
1188 
1189 //------------------------------------------------------------------------------
1190 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1191 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1192   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1193   // Scratch buffer corresponding to top-prediction row for transforming the
1194   // first row in the row-blocks. Not needed for paletted alpha.
1195   const uint64_t cache_top_pixels = (uint16_t)final_width;
1196   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1197   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1198   const uint64_t total_num_pixels =
1199       num_pixels + cache_top_pixels + cache_pixels;
1200 
1201   assert(dec->width_ <= final_width);
1202   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1203   if (dec->pixels_ == NULL) {
1204     dec->argb_cache_ = NULL;    // for sanity check
1205     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1206     return 0;
1207   }
1208   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1209   return 1;
1210 }
1211 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1212 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1213   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1214   dec->argb_cache_ = NULL;    // for sanity check
1215   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1216   if (dec->pixels_ == NULL) {
1217     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1218     return 0;
1219   }
1220   return 1;
1221 }
1222 
1223 //------------------------------------------------------------------------------
1224 
1225 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int row)1226 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1227   const int num_rows = row - dec->last_row_;
1228   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
1229 
1230   if (num_rows <= 0) return;  // Nothing to be done.
1231   ApplyInverseTransforms(dec, num_rows, in);
1232 
1233   // Extract alpha (which is stored in the green plane).
1234   {
1235     const int width = dec->io_->width;      // the final width (!= dec->width_)
1236     const int cache_pixs = width * num_rows;
1237     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1238     const uint32_t* const src = dec->argb_cache_;
1239     int i;
1240     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1241   }
1242   dec->last_row_ = dec->last_out_row_ = row;
1243 }
1244 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size,uint8_t * const output)1245 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1246                           const uint8_t* const data, size_t data_size,
1247                           uint8_t* const output) {
1248   int ok = 0;
1249   VP8LDecoder* dec;
1250   VP8Io* io;
1251   assert(alph_dec != NULL);
1252   alph_dec->vp8l_dec_ = VP8LNew();
1253   if (alph_dec->vp8l_dec_ == NULL) return 0;
1254   dec = alph_dec->vp8l_dec_;
1255 
1256   dec->width_ = alph_dec->width_;
1257   dec->height_ = alph_dec->height_;
1258   dec->io_ = &alph_dec->io_;
1259   io = dec->io_;
1260 
1261   VP8InitIo(io);
1262   WebPInitCustomIo(NULL, io);  // Just a sanity Init. io won't be used.
1263   io->opaque = output;
1264   io->width = alph_dec->width_;
1265   io->height = alph_dec->height_;
1266 
1267   dec->status_ = VP8_STATUS_OK;
1268   VP8LInitBitReader(&dec->br_, data, data_size);
1269 
1270   dec->action_ = READ_HDR;
1271   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1272     goto Err;
1273   }
1274 
1275   // Special case: if alpha data uses only the color indexing transform and
1276   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1277   // method that only needs allocation of 1 byte per pixel (alpha channel).
1278   if (dec->next_transform_ == 1 &&
1279       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1280       Is8bOptimizable(&dec->hdr_)) {
1281     alph_dec->use_8b_decode = 1;
1282     ok = AllocateInternalBuffers8b(dec);
1283   } else {
1284     // Allocate internal buffers (note that dec->width_ may have changed here).
1285     alph_dec->use_8b_decode = 0;
1286     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1287   }
1288 
1289   if (!ok) goto Err;
1290 
1291   dec->action_ = READ_DATA;
1292   return 1;
1293 
1294  Err:
1295   VP8LDelete(alph_dec->vp8l_dec_);
1296   alph_dec->vp8l_dec_ = NULL;
1297   return 0;
1298 }
1299 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1300 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1301   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1302   assert(dec != NULL);
1303   assert(dec->action_ == READ_DATA);
1304   assert(last_row <= dec->height_);
1305 
1306   if (dec->last_pixel_ == dec->width_ * dec->height_) {
1307     return 1;  // done
1308   }
1309 
1310   // Decode (with special row processing).
1311   return alph_dec->use_8b_decode ?
1312       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1313                       last_row) :
1314       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1315                       last_row, ExtractAlphaRows);
1316 }
1317 
1318 //------------------------------------------------------------------------------
1319 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1320 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1321   int width, height, has_alpha;
1322 
1323   if (dec == NULL) return 0;
1324   if (io == NULL) {
1325     dec->status_ = VP8_STATUS_INVALID_PARAM;
1326     return 0;
1327   }
1328 
1329   dec->io_ = io;
1330   dec->status_ = VP8_STATUS_OK;
1331   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1332   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1333     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1334     goto Error;
1335   }
1336   dec->state_ = READ_DIM;
1337   io->width = width;
1338   io->height = height;
1339 
1340   dec->action_ = READ_HDR;
1341   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1342   return 1;
1343 
1344  Error:
1345   VP8LClear(dec);
1346   assert(dec->status_ != VP8_STATUS_OK);
1347   return 0;
1348 }
1349 
VP8LDecodeImage(VP8LDecoder * const dec)1350 int VP8LDecodeImage(VP8LDecoder* const dec) {
1351   VP8Io* io = NULL;
1352   WebPDecParams* params = NULL;
1353 
1354   // Sanity checks.
1355   if (dec == NULL) return 0;
1356 
1357   io = dec->io_;
1358   assert(io != NULL);
1359   params = (WebPDecParams*)io->opaque;
1360   assert(params != NULL);
1361   dec->output_ = params->output;
1362   assert(dec->output_ != NULL);
1363 
1364   // Initialization.
1365   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1366     dec->status_ = VP8_STATUS_INVALID_PARAM;
1367     goto Err;
1368   }
1369 
1370   if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1371 
1372   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1373 
1374   if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1375     // need the alpha-multiply functions for premultiplied output or rescaling
1376     WebPInitAlphaProcessing();
1377   }
1378 
1379   // Decode.
1380   dec->action_ = READ_DATA;
1381   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1382                        dec->height_, ProcessRows)) {
1383     goto Err;
1384   }
1385 
1386   // Cleanup.
1387   params->last_y = dec->last_out_row_;
1388   VP8LClear(dec);
1389   return 1;
1390 
1391  Err:
1392   VP8LClear(dec);
1393   assert(dec->status_ != VP8_STATUS_OK);
1394   return 0;
1395 }
1396 
1397 //------------------------------------------------------------------------------
1398