• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17 
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
21 
22 #define MAX_ITERS_K_MEANS  6
23 
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
27 
SmoothSegmentMap(VP8Encoder * const enc)28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29   int n, x, y;
30   const int w = enc->mb_w_;
31   const int h = enc->mb_h_;
32   const int majority_cnt_3_x_3_grid = 5;
33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35 
36   if (tmp == NULL) return;
37   for (y = 1; y < h - 1; ++y) {
38     for (x = 1; x < w - 1; ++x) {
39       int cnt[NUM_MB_SEGMENTS] = { 0 };
40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41       int majority_seg = mb->segment_;
42       // Check the 8 neighbouring segment values.
43       cnt[mb[-w - 1].segment_]++;  // top-left
44       cnt[mb[-w + 0].segment_]++;  // top
45       cnt[mb[-w + 1].segment_]++;  // top-right
46       cnt[mb[   - 1].segment_]++;  // left
47       cnt[mb[   + 1].segment_]++;  // right
48       cnt[mb[ w - 1].segment_]++;  // bottom-left
49       cnt[mb[ w + 0].segment_]++;  // bottom
50       cnt[mb[ w + 1].segment_]++;  // bottom-right
51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
53           majority_seg = n;
54           break;
55         }
56       }
57       tmp[x + y * w] = majority_seg;
58     }
59   }
60   for (y = 1; y < h - 1; ++y) {
61     for (x = 1; x < w - 1; ++x) {
62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63       mb->segment_ = tmp[x + y * w];
64     }
65   }
66   WebPSafeFree(tmp);
67 }
68 
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
71 
clip(int v,int m,int M)72 static WEBP_INLINE int clip(int v, int m, int M) {
73   return (v < m) ? m : (v > M) ? M : v;
74 }
75 
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)76 static void SetSegmentAlphas(VP8Encoder* const enc,
77                              const int centers[NUM_MB_SEGMENTS],
78                              int mid) {
79   const int nb = enc->segment_hdr_.num_segments_;
80   int min = centers[0], max = centers[0];
81   int n;
82 
83   if (nb > 1) {
84     for (n = 0; n < nb; ++n) {
85       if (min > centers[n]) min = centers[n];
86       if (max < centers[n]) max = centers[n];
87     }
88   }
89   if (max == min) max = min + 1;
90   assert(mid <= max && mid >= min);
91   for (n = 0; n < nb; ++n) {
92     const int alpha = 255 * (centers[n] - mid) / (max - min);
93     const int beta = 255 * (centers[n] - min) / (max - min);
94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
96   }
97 }
98 
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
102 
103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107 
FinalAlphaValue(int alpha)108 static int FinalAlphaValue(int alpha) {
109   alpha = MAX_ALPHA - alpha;
110   return clip(alpha, 0, MAX_ALPHA);
111 }
112 
GetAlpha(const VP8Histogram * const histo)113 static int GetAlpha(const VP8Histogram* const histo) {
114   int max_value = 0, last_non_zero = 1;
115   int k;
116   int alpha;
117   for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
118     const int value = histo->distribution[k];
119     if (value > 0) {
120       if (value > max_value) max_value = value;
121       last_non_zero = k;
122     }
123   }
124   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125   // values which happen to be mostly noise. This leaves the maximum precision
126   // for handling the useful small values which contribute most.
127   alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
128   return alpha;
129 }
130 
MergeHistograms(const VP8Histogram * const in,VP8Histogram * const out)131 static void MergeHistograms(const VP8Histogram* const in,
132                             VP8Histogram* const out) {
133   int i;
134   for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
135     out->distribution[i] += in->distribution[i];
136   }
137 }
138 
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
141 
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])142 static void AssignSegments(VP8Encoder* const enc,
143                            const int alphas[MAX_ALPHA + 1]) {
144   const int nb = enc->segment_hdr_.num_segments_;
145   int centers[NUM_MB_SEGMENTS];
146   int weighted_average = 0;
147   int map[MAX_ALPHA + 1];
148   int a, n, k;
149   int min_a = 0, max_a = MAX_ALPHA, range_a;
150   // 'int' type is ok for histo, and won't overflow
151   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
152 
153   assert(nb >= 1);
154   assert(nb <= NUM_MB_SEGMENTS);
155 
156   // bracket the input
157   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
158   min_a = n;
159   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
160   max_a = n;
161   range_a = max_a - min_a;
162 
163   // Spread initial centers evenly
164   for (k = 0, n = 1; k < nb; ++k, n += 2) {
165     assert(n < 2 * nb);
166     centers[k] = min_a + (n * range_a) / (2 * nb);
167   }
168 
169   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
170     int total_weight;
171     int displaced;
172     // Reset stats
173     for (n = 0; n < nb; ++n) {
174       accum[n] = 0;
175       dist_accum[n] = 0;
176     }
177     // Assign nearest center for each 'a'
178     n = 0;    // track the nearest center for current 'a'
179     for (a = min_a; a <= max_a; ++a) {
180       if (alphas[a]) {
181         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
182           n++;
183         }
184         map[a] = n;
185         // accumulate contribution into best centroid
186         dist_accum[n] += a * alphas[a];
187         accum[n] += alphas[a];
188       }
189     }
190     // All point are classified. Move the centroids to the
191     // center of their respective cloud.
192     displaced = 0;
193     weighted_average = 0;
194     total_weight = 0;
195     for (n = 0; n < nb; ++n) {
196       if (accum[n]) {
197         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
198         displaced += abs(centers[n] - new_center);
199         centers[n] = new_center;
200         weighted_average += new_center * accum[n];
201         total_weight += accum[n];
202       }
203     }
204     weighted_average = (weighted_average + total_weight / 2) / total_weight;
205     if (displaced < 5) break;   // no need to keep on looping...
206   }
207 
208   // Map each original value to the closest centroid
209   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
210     VP8MBInfo* const mb = &enc->mb_info_[n];
211     const int alpha = mb->alpha_;
212     mb->segment_ = map[alpha];
213     mb->alpha_ = centers[map[alpha]];  // for the record.
214   }
215 
216   if (nb > 1) {
217     const int smooth = (enc->config_->preprocessing & 1);
218     if (smooth) SmoothSegmentMap(enc);
219   }
220 
221   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
222 }
223 
224 //------------------------------------------------------------------------------
225 // Macroblock analysis: collect histogram for each mode, deduce the maximal
226 // susceptibility and set best modes for this macroblock.
227 // Segment assignment is done later.
228 
229 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
230 // the possible modes during the analysis phase: we risk falling into a local
231 // optimum, or be subject to boundary effect
232 #define MAX_INTRA16_MODE 2
233 #define MAX_INTRA4_MODE  2
234 #define MAX_UV_MODE      2
235 
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237   const int max_mode = MAX_INTRA16_MODE;
238   int mode;
239   int best_alpha = DEFAULT_ALPHA;
240   int best_mode = 0;
241 
242   VP8MakeLuma16Preds(it);
243   for (mode = 0; mode < max_mode; ++mode) {
244     VP8Histogram histo = { { 0 } };
245     int alpha;
246 
247     VP8CollectHistogram(it->yuv_in_ + Y_OFF,
248                         it->yuv_p_ + VP8I16ModeOffsets[mode],
249                         0, 16, &histo);
250     alpha = GetAlpha(&histo);
251     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
252       best_alpha = alpha;
253       best_mode = mode;
254     }
255   }
256   VP8SetIntra16Mode(it, best_mode);
257   return best_alpha;
258 }
259 
MBAnalyzeBestIntra4Mode(VP8EncIterator * const it,int best_alpha)260 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
261                                    int best_alpha) {
262   uint8_t modes[16];
263   const int max_mode = MAX_INTRA4_MODE;
264   int i4_alpha;
265   VP8Histogram total_histo = { { 0 } };
266   int cur_histo = 0;
267 
268   VP8IteratorStartI4(it);
269   do {
270     int mode;
271     int best_mode_alpha = DEFAULT_ALPHA;
272     VP8Histogram histos[2];
273     const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
274 
275     VP8MakeIntra4Preds(it);
276     for (mode = 0; mode < max_mode; ++mode) {
277       int alpha;
278 
279       memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
280       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
281                           0, 1, &histos[cur_histo]);
282       alpha = GetAlpha(&histos[cur_histo]);
283       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
284         best_mode_alpha = alpha;
285         modes[it->i4_] = mode;
286         cur_histo ^= 1;   // keep track of best histo so far.
287       }
288     }
289     // accumulate best histogram
290     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
291     // Note: we reuse the original samples for predictors
292   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
293 
294   i4_alpha = GetAlpha(&total_histo);
295   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
296     VP8SetIntra4Mode(it, modes);
297     best_alpha = i4_alpha;
298   }
299   return best_alpha;
300 }
301 
MBAnalyzeBestUVMode(VP8EncIterator * const it)302 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
303   int best_alpha = DEFAULT_ALPHA;
304   int best_mode = 0;
305   const int max_mode = MAX_UV_MODE;
306   int mode;
307 
308   VP8MakeChroma8Preds(it);
309   for (mode = 0; mode < max_mode; ++mode) {
310     VP8Histogram histo = { { 0 } };
311     int alpha;
312     VP8CollectHistogram(it->yuv_in_ + U_OFF,
313                         it->yuv_p_ + VP8UVModeOffsets[mode],
314                         16, 16 + 4 + 4, &histo);
315     alpha = GetAlpha(&histo);
316     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
317       best_alpha = alpha;
318       best_mode = mode;
319     }
320   }
321   VP8SetIntraUVMode(it, best_mode);
322   return best_alpha;
323 }
324 
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)325 static void MBAnalyze(VP8EncIterator* const it,
326                       int alphas[MAX_ALPHA + 1],
327                       int* const alpha, int* const uv_alpha) {
328   const VP8Encoder* const enc = it->enc_;
329   int best_alpha, best_uv_alpha;
330 
331   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
332   VP8SetSkip(it, 0);         // not skipped
333   VP8SetSegment(it, 0);      // default segment, spec-wise.
334 
335   best_alpha = MBAnalyzeBestIntra16Mode(it);
336   if (enc->method_ >= 5) {
337     // We go and make a fast decision for intra4/intra16.
338     // It's usually not a good and definitive pick, but helps seeding the stats
339     // about level bit-cost.
340     // TODO(skal): improve criterion.
341     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
342   }
343   best_uv_alpha = MBAnalyzeBestUVMode(it);
344 
345   // Final susceptibility mix
346   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
347   best_alpha = FinalAlphaValue(best_alpha);
348   alphas[best_alpha]++;
349   it->mb_->alpha_ = best_alpha;   // for later remapping.
350 
351   // Accumulate for later complexity analysis.
352   *alpha += best_alpha;   // mixed susceptibility (not just luma)
353   *uv_alpha += best_uv_alpha;
354 }
355 
DefaultMBInfo(VP8MBInfo * const mb)356 static void DefaultMBInfo(VP8MBInfo* const mb) {
357   mb->type_ = 1;     // I16x16
358   mb->uv_mode_ = 0;
359   mb->skip_ = 0;     // not skipped
360   mb->segment_ = 0;  // default segment
361   mb->alpha_ = 0;
362 }
363 
364 //------------------------------------------------------------------------------
365 // Main analysis loop:
366 // Collect all susceptibilities for each macroblock and record their
367 // distribution in alphas[]. Segments is assigned a-posteriori, based on
368 // this histogram.
369 // We also pick an intra16 prediction mode, which shouldn't be considered
370 // final except for fast-encode settings. We can also pick some intra4 modes
371 // and decide intra4/intra16, but that's usually almost always a bad choice at
372 // this stage.
373 
ResetAllMBInfo(VP8Encoder * const enc)374 static void ResetAllMBInfo(VP8Encoder* const enc) {
375   int n;
376   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
377     DefaultMBInfo(&enc->mb_info_[n]);
378   }
379   // Default susceptibilities.
380   enc->dqm_[0].alpha_ = 0;
381   enc->dqm_[0].beta_ = 0;
382   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
383   enc->alpha_ = 0;
384   enc->uv_alpha_ = 0;
385   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
386 }
387 
388 // struct used to collect job result
389 typedef struct {
390   WebPWorker worker;
391   int alphas[MAX_ALPHA + 1];
392   int alpha, uv_alpha;
393   VP8EncIterator it;
394   int delta_progress;
395 } SegmentJob;
396 
397 // main work call
DoSegmentsJob(SegmentJob * const job,VP8EncIterator * const it)398 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
399   int ok = 1;
400   if (!VP8IteratorIsDone(it)) {
401     uint8_t tmp[32 + ALIGN_CST];
402     uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
403     do {
404       // Let's pretend we have perfect lossless reconstruction.
405       VP8IteratorImport(it, scratch);
406       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
407       ok = VP8IteratorProgress(it, job->delta_progress);
408     } while (ok && VP8IteratorNext(it));
409   }
410   return ok;
411 }
412 
MergeJobs(const SegmentJob * const src,SegmentJob * const dst)413 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
414   int i;
415   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
416   dst->alpha += src->alpha;
417   dst->uv_alpha += src->uv_alpha;
418 }
419 
420 // initialize the job struct with some TODOs
InitSegmentJob(VP8Encoder * const enc,SegmentJob * const job,int start_row,int end_row)421 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
422                            int start_row, int end_row) {
423   WebPGetWorkerInterface()->Init(&job->worker);
424   job->worker.data1 = job;
425   job->worker.data2 = &job->it;
426   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
427   VP8IteratorInit(enc, &job->it);
428   VP8IteratorSetRow(&job->it, start_row);
429   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
430   memset(job->alphas, 0, sizeof(job->alphas));
431   job->alpha = 0;
432   job->uv_alpha = 0;
433   // only one of both jobs can record the progress, since we don't
434   // expect the user's hook to be multi-thread safe
435   job->delta_progress = (start_row == 0) ? 20 : 0;
436 }
437 
438 // main entry point
VP8EncAnalyze(VP8Encoder * const enc)439 int VP8EncAnalyze(VP8Encoder* const enc) {
440   int ok = 1;
441   const int do_segments =
442       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
443       (enc->segment_hdr_.num_segments_ > 1) ||
444       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
445   if (do_segments) {
446     const int last_row = enc->mb_h_;
447     // We give a little more than a half work to the main thread.
448     const int split_row = (9 * last_row + 15) >> 4;
449     const int total_mb = last_row * enc->mb_w_;
450 #ifdef WEBP_USE_THREAD
451     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
452     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
453 #else
454     const int do_mt = 0;
455 #endif
456     const WebPWorkerInterface* const worker_interface =
457         WebPGetWorkerInterface();
458     SegmentJob main_job;
459     if (do_mt) {
460       SegmentJob side_job;
461       // Note the use of '&' instead of '&&' because we must call the functions
462       // no matter what.
463       InitSegmentJob(enc, &main_job, 0, split_row);
464       InitSegmentJob(enc, &side_job, split_row, last_row);
465       // we don't need to call Reset() on main_job.worker, since we're calling
466       // WebPWorkerExecute() on it
467       ok &= worker_interface->Reset(&side_job.worker);
468       // launch the two jobs in parallel
469       if (ok) {
470         worker_interface->Launch(&side_job.worker);
471         worker_interface->Execute(&main_job.worker);
472         ok &= worker_interface->Sync(&side_job.worker);
473         ok &= worker_interface->Sync(&main_job.worker);
474       }
475       worker_interface->End(&side_job.worker);
476       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
477     } else {
478       // Even for single-thread case, we use the generic Worker tools.
479       InitSegmentJob(enc, &main_job, 0, last_row);
480       worker_interface->Execute(&main_job.worker);
481       ok &= worker_interface->Sync(&main_job.worker);
482     }
483     worker_interface->End(&main_job.worker);
484     if (ok) {
485       enc->alpha_ = main_job.alpha / total_mb;
486       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
487       AssignSegments(enc, main_job.alphas);
488     }
489   } else {   // Use only one default segment.
490     ResetAllMBInfo(enc);
491   }
492   return ok;
493 }
494 
495