1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
21
22 #define MAX_ITERS_K_MEANS 6
23
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
27
SmoothSegmentMap(VP8Encoder * const enc)28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29 int n, x, y;
30 const int w = enc->mb_w_;
31 const int h = enc->mb_h_;
32 const int majority_cnt_3_x_3_grid = 5;
33 uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34 assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
35
36 if (tmp == NULL) return;
37 for (y = 1; y < h - 1; ++y) {
38 for (x = 1; x < w - 1; ++x) {
39 int cnt[NUM_MB_SEGMENTS] = { 0 };
40 const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41 int majority_seg = mb->segment_;
42 // Check the 8 neighbouring segment values.
43 cnt[mb[-w - 1].segment_]++; // top-left
44 cnt[mb[-w + 0].segment_]++; // top
45 cnt[mb[-w + 1].segment_]++; // top-right
46 cnt[mb[ - 1].segment_]++; // left
47 cnt[mb[ + 1].segment_]++; // right
48 cnt[mb[ w - 1].segment_]++; // bottom-left
49 cnt[mb[ w + 0].segment_]++; // bottom
50 cnt[mb[ w + 1].segment_]++; // bottom-right
51 for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52 if (cnt[n] >= majority_cnt_3_x_3_grid) {
53 majority_seg = n;
54 break;
55 }
56 }
57 tmp[x + y * w] = majority_seg;
58 }
59 }
60 for (y = 1; y < h - 1; ++y) {
61 for (x = 1; x < w - 1; ++x) {
62 VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63 mb->segment_ = tmp[x + y * w];
64 }
65 }
66 WebPSafeFree(tmp);
67 }
68
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
71
clip(int v,int m,int M)72 static WEBP_INLINE int clip(int v, int m, int M) {
73 return (v < m) ? m : (v > M) ? M : v;
74 }
75
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)76 static void SetSegmentAlphas(VP8Encoder* const enc,
77 const int centers[NUM_MB_SEGMENTS],
78 int mid) {
79 const int nb = enc->segment_hdr_.num_segments_;
80 int min = centers[0], max = centers[0];
81 int n;
82
83 if (nb > 1) {
84 for (n = 0; n < nb; ++n) {
85 if (min > centers[n]) min = centers[n];
86 if (max < centers[n]) max = centers[n];
87 }
88 }
89 if (max == min) max = min + 1;
90 assert(mid <= max && mid >= min);
91 for (n = 0; n < nb; ++n) {
92 const int alpha = 255 * (centers[n] - mid) / (max - min);
93 const int beta = 255 * (centers[n] - min) / (max - min);
94 enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95 enc->dqm_[n].beta_ = clip(beta, 0, 255);
96 }
97 }
98
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
102
103 #define MAX_ALPHA 255 // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107
FinalAlphaValue(int alpha)108 static int FinalAlphaValue(int alpha) {
109 alpha = MAX_ALPHA - alpha;
110 return clip(alpha, 0, MAX_ALPHA);
111 }
112
GetAlpha(const VP8Histogram * const histo)113 static int GetAlpha(const VP8Histogram* const histo) {
114 int max_value = 0, last_non_zero = 1;
115 int k;
116 int alpha;
117 for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
118 const int value = histo->distribution[k];
119 if (value > 0) {
120 if (value > max_value) max_value = value;
121 last_non_zero = k;
122 }
123 }
124 // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125 // values which happen to be mostly noise. This leaves the maximum precision
126 // for handling the useful small values which contribute most.
127 alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
128 return alpha;
129 }
130
MergeHistograms(const VP8Histogram * const in,VP8Histogram * const out)131 static void MergeHistograms(const VP8Histogram* const in,
132 VP8Histogram* const out) {
133 int i;
134 for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
135 out->distribution[i] += in->distribution[i];
136 }
137 }
138
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
141
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])142 static void AssignSegments(VP8Encoder* const enc,
143 const int alphas[MAX_ALPHA + 1]) {
144 const int nb = enc->segment_hdr_.num_segments_;
145 int centers[NUM_MB_SEGMENTS];
146 int weighted_average = 0;
147 int map[MAX_ALPHA + 1];
148 int a, n, k;
149 int min_a = 0, max_a = MAX_ALPHA, range_a;
150 // 'int' type is ok for histo, and won't overflow
151 int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
152
153 assert(nb >= 1);
154 assert(nb <= NUM_MB_SEGMENTS);
155
156 // bracket the input
157 for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
158 min_a = n;
159 for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
160 max_a = n;
161 range_a = max_a - min_a;
162
163 // Spread initial centers evenly
164 for (k = 0, n = 1; k < nb; ++k, n += 2) {
165 assert(n < 2 * nb);
166 centers[k] = min_a + (n * range_a) / (2 * nb);
167 }
168
169 for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
170 int total_weight;
171 int displaced;
172 // Reset stats
173 for (n = 0; n < nb; ++n) {
174 accum[n] = 0;
175 dist_accum[n] = 0;
176 }
177 // Assign nearest center for each 'a'
178 n = 0; // track the nearest center for current 'a'
179 for (a = min_a; a <= max_a; ++a) {
180 if (alphas[a]) {
181 while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
182 n++;
183 }
184 map[a] = n;
185 // accumulate contribution into best centroid
186 dist_accum[n] += a * alphas[a];
187 accum[n] += alphas[a];
188 }
189 }
190 // All point are classified. Move the centroids to the
191 // center of their respective cloud.
192 displaced = 0;
193 weighted_average = 0;
194 total_weight = 0;
195 for (n = 0; n < nb; ++n) {
196 if (accum[n]) {
197 const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
198 displaced += abs(centers[n] - new_center);
199 centers[n] = new_center;
200 weighted_average += new_center * accum[n];
201 total_weight += accum[n];
202 }
203 }
204 weighted_average = (weighted_average + total_weight / 2) / total_weight;
205 if (displaced < 5) break; // no need to keep on looping...
206 }
207
208 // Map each original value to the closest centroid
209 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
210 VP8MBInfo* const mb = &enc->mb_info_[n];
211 const int alpha = mb->alpha_;
212 mb->segment_ = map[alpha];
213 mb->alpha_ = centers[map[alpha]]; // for the record.
214 }
215
216 if (nb > 1) {
217 const int smooth = (enc->config_->preprocessing & 1);
218 if (smooth) SmoothSegmentMap(enc);
219 }
220
221 SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
222 }
223
224 //------------------------------------------------------------------------------
225 // Macroblock analysis: collect histogram for each mode, deduce the maximal
226 // susceptibility and set best modes for this macroblock.
227 // Segment assignment is done later.
228
229 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
230 // the possible modes during the analysis phase: we risk falling into a local
231 // optimum, or be subject to boundary effect
232 #define MAX_INTRA16_MODE 2
233 #define MAX_INTRA4_MODE 2
234 #define MAX_UV_MODE 2
235
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237 const int max_mode = MAX_INTRA16_MODE;
238 int mode;
239 int best_alpha = DEFAULT_ALPHA;
240 int best_mode = 0;
241
242 VP8MakeLuma16Preds(it);
243 for (mode = 0; mode < max_mode; ++mode) {
244 VP8Histogram histo = { { 0 } };
245 int alpha;
246
247 VP8CollectHistogram(it->yuv_in_ + Y_OFF,
248 it->yuv_p_ + VP8I16ModeOffsets[mode],
249 0, 16, &histo);
250 alpha = GetAlpha(&histo);
251 if (IS_BETTER_ALPHA(alpha, best_alpha)) {
252 best_alpha = alpha;
253 best_mode = mode;
254 }
255 }
256 VP8SetIntra16Mode(it, best_mode);
257 return best_alpha;
258 }
259
MBAnalyzeBestIntra4Mode(VP8EncIterator * const it,int best_alpha)260 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
261 int best_alpha) {
262 uint8_t modes[16];
263 const int max_mode = MAX_INTRA4_MODE;
264 int i4_alpha;
265 VP8Histogram total_histo = { { 0 } };
266 int cur_histo = 0;
267
268 VP8IteratorStartI4(it);
269 do {
270 int mode;
271 int best_mode_alpha = DEFAULT_ALPHA;
272 VP8Histogram histos[2];
273 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
274
275 VP8MakeIntra4Preds(it);
276 for (mode = 0; mode < max_mode; ++mode) {
277 int alpha;
278
279 memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
280 VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
281 0, 1, &histos[cur_histo]);
282 alpha = GetAlpha(&histos[cur_histo]);
283 if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
284 best_mode_alpha = alpha;
285 modes[it->i4_] = mode;
286 cur_histo ^= 1; // keep track of best histo so far.
287 }
288 }
289 // accumulate best histogram
290 MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
291 // Note: we reuse the original samples for predictors
292 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
293
294 i4_alpha = GetAlpha(&total_histo);
295 if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
296 VP8SetIntra4Mode(it, modes);
297 best_alpha = i4_alpha;
298 }
299 return best_alpha;
300 }
301
MBAnalyzeBestUVMode(VP8EncIterator * const it)302 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
303 int best_alpha = DEFAULT_ALPHA;
304 int best_mode = 0;
305 const int max_mode = MAX_UV_MODE;
306 int mode;
307
308 VP8MakeChroma8Preds(it);
309 for (mode = 0; mode < max_mode; ++mode) {
310 VP8Histogram histo = { { 0 } };
311 int alpha;
312 VP8CollectHistogram(it->yuv_in_ + U_OFF,
313 it->yuv_p_ + VP8UVModeOffsets[mode],
314 16, 16 + 4 + 4, &histo);
315 alpha = GetAlpha(&histo);
316 if (IS_BETTER_ALPHA(alpha, best_alpha)) {
317 best_alpha = alpha;
318 best_mode = mode;
319 }
320 }
321 VP8SetIntraUVMode(it, best_mode);
322 return best_alpha;
323 }
324
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)325 static void MBAnalyze(VP8EncIterator* const it,
326 int alphas[MAX_ALPHA + 1],
327 int* const alpha, int* const uv_alpha) {
328 const VP8Encoder* const enc = it->enc_;
329 int best_alpha, best_uv_alpha;
330
331 VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
332 VP8SetSkip(it, 0); // not skipped
333 VP8SetSegment(it, 0); // default segment, spec-wise.
334
335 best_alpha = MBAnalyzeBestIntra16Mode(it);
336 if (enc->method_ >= 5) {
337 // We go and make a fast decision for intra4/intra16.
338 // It's usually not a good and definitive pick, but helps seeding the stats
339 // about level bit-cost.
340 // TODO(skal): improve criterion.
341 best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
342 }
343 best_uv_alpha = MBAnalyzeBestUVMode(it);
344
345 // Final susceptibility mix
346 best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
347 best_alpha = FinalAlphaValue(best_alpha);
348 alphas[best_alpha]++;
349 it->mb_->alpha_ = best_alpha; // for later remapping.
350
351 // Accumulate for later complexity analysis.
352 *alpha += best_alpha; // mixed susceptibility (not just luma)
353 *uv_alpha += best_uv_alpha;
354 }
355
DefaultMBInfo(VP8MBInfo * const mb)356 static void DefaultMBInfo(VP8MBInfo* const mb) {
357 mb->type_ = 1; // I16x16
358 mb->uv_mode_ = 0;
359 mb->skip_ = 0; // not skipped
360 mb->segment_ = 0; // default segment
361 mb->alpha_ = 0;
362 }
363
364 //------------------------------------------------------------------------------
365 // Main analysis loop:
366 // Collect all susceptibilities for each macroblock and record their
367 // distribution in alphas[]. Segments is assigned a-posteriori, based on
368 // this histogram.
369 // We also pick an intra16 prediction mode, which shouldn't be considered
370 // final except for fast-encode settings. We can also pick some intra4 modes
371 // and decide intra4/intra16, but that's usually almost always a bad choice at
372 // this stage.
373
ResetAllMBInfo(VP8Encoder * const enc)374 static void ResetAllMBInfo(VP8Encoder* const enc) {
375 int n;
376 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
377 DefaultMBInfo(&enc->mb_info_[n]);
378 }
379 // Default susceptibilities.
380 enc->dqm_[0].alpha_ = 0;
381 enc->dqm_[0].beta_ = 0;
382 // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
383 enc->alpha_ = 0;
384 enc->uv_alpha_ = 0;
385 WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
386 }
387
388 // struct used to collect job result
389 typedef struct {
390 WebPWorker worker;
391 int alphas[MAX_ALPHA + 1];
392 int alpha, uv_alpha;
393 VP8EncIterator it;
394 int delta_progress;
395 } SegmentJob;
396
397 // main work call
DoSegmentsJob(SegmentJob * const job,VP8EncIterator * const it)398 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
399 int ok = 1;
400 if (!VP8IteratorIsDone(it)) {
401 uint8_t tmp[32 + ALIGN_CST];
402 uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
403 do {
404 // Let's pretend we have perfect lossless reconstruction.
405 VP8IteratorImport(it, scratch);
406 MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
407 ok = VP8IteratorProgress(it, job->delta_progress);
408 } while (ok && VP8IteratorNext(it));
409 }
410 return ok;
411 }
412
MergeJobs(const SegmentJob * const src,SegmentJob * const dst)413 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
414 int i;
415 for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
416 dst->alpha += src->alpha;
417 dst->uv_alpha += src->uv_alpha;
418 }
419
420 // initialize the job struct with some TODOs
InitSegmentJob(VP8Encoder * const enc,SegmentJob * const job,int start_row,int end_row)421 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
422 int start_row, int end_row) {
423 WebPGetWorkerInterface()->Init(&job->worker);
424 job->worker.data1 = job;
425 job->worker.data2 = &job->it;
426 job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
427 VP8IteratorInit(enc, &job->it);
428 VP8IteratorSetRow(&job->it, start_row);
429 VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
430 memset(job->alphas, 0, sizeof(job->alphas));
431 job->alpha = 0;
432 job->uv_alpha = 0;
433 // only one of both jobs can record the progress, since we don't
434 // expect the user's hook to be multi-thread safe
435 job->delta_progress = (start_row == 0) ? 20 : 0;
436 }
437
438 // main entry point
VP8EncAnalyze(VP8Encoder * const enc)439 int VP8EncAnalyze(VP8Encoder* const enc) {
440 int ok = 1;
441 const int do_segments =
442 enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
443 (enc->segment_hdr_.num_segments_ > 1) ||
444 (enc->method_ == 0); // for method 0, we need preds_[] to be filled.
445 if (do_segments) {
446 const int last_row = enc->mb_h_;
447 // We give a little more than a half work to the main thread.
448 const int split_row = (9 * last_row + 15) >> 4;
449 const int total_mb = last_row * enc->mb_w_;
450 #ifdef WEBP_USE_THREAD
451 const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it
452 const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
453 #else
454 const int do_mt = 0;
455 #endif
456 const WebPWorkerInterface* const worker_interface =
457 WebPGetWorkerInterface();
458 SegmentJob main_job;
459 if (do_mt) {
460 SegmentJob side_job;
461 // Note the use of '&' instead of '&&' because we must call the functions
462 // no matter what.
463 InitSegmentJob(enc, &main_job, 0, split_row);
464 InitSegmentJob(enc, &side_job, split_row, last_row);
465 // we don't need to call Reset() on main_job.worker, since we're calling
466 // WebPWorkerExecute() on it
467 ok &= worker_interface->Reset(&side_job.worker);
468 // launch the two jobs in parallel
469 if (ok) {
470 worker_interface->Launch(&side_job.worker);
471 worker_interface->Execute(&main_job.worker);
472 ok &= worker_interface->Sync(&side_job.worker);
473 ok &= worker_interface->Sync(&main_job.worker);
474 }
475 worker_interface->End(&side_job.worker);
476 if (ok) MergeJobs(&side_job, &main_job); // merge results together
477 } else {
478 // Even for single-thread case, we use the generic Worker tools.
479 InitSegmentJob(enc, &main_job, 0, last_row);
480 worker_interface->Execute(&main_job.worker);
481 ok &= worker_interface->Sync(&main_job.worker);
482 }
483 worker_interface->End(&main_job.worker);
484 if (ok) {
485 enc->alpha_ = main_job.alpha / total_mb;
486 enc->uv_alpha_ = main_job.uv_alpha / total_mb;
487 AssignSegments(enc, main_job.alphas);
488 }
489 } else { // Use only one default segment.
490 ResetAllMBInfo(enc);
491 }
492 return ok;
493 }
494
495