• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "szipinf"
19 #include <utils/Log.h>
20 
21 #include <androidfw/StreamingZipInflater.h>
22 #include <utils/FileMap.h>
23 #include <string.h>
24 #include <stddef.h>
25 #include <assert.h>
26 #include <unistd.h>
27 #include <errno.h>
28 
29 /*
30  * TEMP_FAILURE_RETRY is defined by some, but not all, versions of
31  * <unistd.h>. (Alas, it is not as standard as we'd hoped!) So, if it's
32  * not already defined, then define it here.
33  */
34 #ifndef TEMP_FAILURE_RETRY
35 /* Used to retry syscalls that can return EINTR. */
36 #define TEMP_FAILURE_RETRY(exp) ({         \
37     typeof (exp) _rc;                      \
38     do {                                   \
39         _rc = (exp);                       \
40     } while (_rc == -1 && errno == EINTR); \
41     _rc; })
42 #endif
43 
min_of(size_t a,size_t b)44 static inline size_t min_of(size_t a, size_t b) { return (a < b) ? a : b; }
45 
46 using namespace android;
47 
48 /*
49  * Streaming access to compressed asset data in an open fd
50  */
StreamingZipInflater(int fd,off64_t compDataStart,size_t uncompSize,size_t compSize)51 StreamingZipInflater::StreamingZipInflater(int fd, off64_t compDataStart,
52         size_t uncompSize, size_t compSize) {
53     mFd = fd;
54     mDataMap = NULL;
55     mInFileStart = compDataStart;
56     mOutTotalSize = uncompSize;
57     mInTotalSize = compSize;
58 
59     mInBufSize = StreamingZipInflater::INPUT_CHUNK_SIZE;
60     mInBuf = new uint8_t[mInBufSize];
61 
62     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
63     mOutBuf = new uint8_t[mOutBufSize];
64 
65     initInflateState();
66 }
67 
68 /*
69  * Streaming access to compressed data held in an mmapped region of memory
70  */
StreamingZipInflater(FileMap * dataMap,size_t uncompSize)71 StreamingZipInflater::StreamingZipInflater(FileMap* dataMap, size_t uncompSize) {
72     mFd = -1;
73     mDataMap = dataMap;
74     mOutTotalSize = uncompSize;
75     mInTotalSize = dataMap->getDataLength();
76 
77     mInBuf = (uint8_t*) dataMap->getDataPtr();
78     mInBufSize = mInTotalSize;
79 
80     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
81     mOutBuf = new uint8_t[mOutBufSize];
82 
83     initInflateState();
84 }
85 
~StreamingZipInflater()86 StreamingZipInflater::~StreamingZipInflater() {
87     // tear down the in-flight zip state just in case
88     ::inflateEnd(&mInflateState);
89 
90     if (mDataMap == NULL) {
91         delete [] mInBuf;
92     }
93     delete [] mOutBuf;
94 }
95 
initInflateState()96 void StreamingZipInflater::initInflateState() {
97     ALOGV("Initializing inflate state");
98 
99     memset(&mInflateState, 0, sizeof(mInflateState));
100     mInflateState.zalloc = Z_NULL;
101     mInflateState.zfree = Z_NULL;
102     mInflateState.opaque = Z_NULL;
103     mInflateState.next_in = (Bytef*)mInBuf;
104     mInflateState.next_out = (Bytef*) mOutBuf;
105     mInflateState.avail_out = mOutBufSize;
106     mInflateState.data_type = Z_UNKNOWN;
107 
108     mOutLastDecoded = mOutDeliverable = mOutCurPosition = 0;
109     mInNextChunkOffset = 0;
110     mStreamNeedsInit = true;
111 
112     if (mDataMap == NULL) {
113         ::lseek(mFd, mInFileStart, SEEK_SET);
114         mInflateState.avail_in = 0; // set when a chunk is read in
115     } else {
116         mInflateState.avail_in = mInBufSize;
117     }
118 }
119 
120 /*
121  * Basic approach:
122  *
123  * 1. If we have undelivered uncompressed data, send it.  At this point
124  *    either we've satisfied the request, or we've exhausted the available
125  *    output data in mOutBuf.
126  *
127  * 2. While we haven't sent enough data to satisfy the request:
128  *    0. if the request is for more data than exists, bail.
129  *    a. if there is no input data to decode, read some into the input buffer
130  *       and readjust the z_stream input pointers
131  *    b. point the output to the start of the output buffer and decode what we can
132  *    c. deliver whatever output data we can
133  */
read(void * outBuf,size_t count)134 ssize_t StreamingZipInflater::read(void* outBuf, size_t count) {
135     uint8_t* dest = (uint8_t*) outBuf;
136     size_t bytesRead = 0;
137     size_t toRead = min_of(count, size_t(mOutTotalSize - mOutCurPosition));
138     while (toRead > 0) {
139         // First, write from whatever we already have decoded and ready to go
140         size_t deliverable = min_of(toRead, mOutLastDecoded - mOutDeliverable);
141         if (deliverable > 0) {
142             if (outBuf != NULL) memcpy(dest, mOutBuf + mOutDeliverable, deliverable);
143             mOutDeliverable += deliverable;
144             mOutCurPosition += deliverable;
145             dest += deliverable;
146             bytesRead += deliverable;
147             toRead -= deliverable;
148         }
149 
150         // need more data?  time to decode some.
151         if (toRead > 0) {
152             // if we don't have any data to decode, read some in.  If we're working
153             // from mmapped data this won't happen, because the clipping to total size
154             // will prevent reading off the end of the mapped input chunk.
155             if ((mInflateState.avail_in == 0) && (mDataMap == NULL)) {
156                 int err = readNextChunk();
157                 if (err < 0) {
158                     ALOGE("Unable to access asset data: %d", err);
159                     if (!mStreamNeedsInit) {
160                         ::inflateEnd(&mInflateState);
161                         initInflateState();
162                     }
163                     return -1;
164                 }
165             }
166             // we know we've drained whatever is in the out buffer now, so just
167             // start from scratch there, reading all the input we have at present.
168             mInflateState.next_out = (Bytef*) mOutBuf;
169             mInflateState.avail_out = mOutBufSize;
170 
171             /*
172             ALOGV("Inflating to outbuf: avail_in=%u avail_out=%u next_in=%p next_out=%p",
173                     mInflateState.avail_in, mInflateState.avail_out,
174                     mInflateState.next_in, mInflateState.next_out);
175             */
176             int result = Z_OK;
177             if (mStreamNeedsInit) {
178                 ALOGV("Initializing zlib to inflate");
179                 result = inflateInit2(&mInflateState, -MAX_WBITS);
180                 mStreamNeedsInit = false;
181             }
182             if (result == Z_OK) result = ::inflate(&mInflateState, Z_SYNC_FLUSH);
183             if (result < 0) {
184                 // Whoops, inflation failed
185                 ALOGE("Error inflating asset: %d", result);
186                 ::inflateEnd(&mInflateState);
187                 initInflateState();
188                 return -1;
189             } else {
190                 if (result == Z_STREAM_END) {
191                     // we know we have to have reached the target size here and will
192                     // not try to read any further, so just wind things up.
193                     ::inflateEnd(&mInflateState);
194                 }
195 
196                 // Note how much data we got, and off we go
197                 mOutDeliverable = 0;
198                 mOutLastDecoded = mOutBufSize - mInflateState.avail_out;
199             }
200         }
201     }
202     return bytesRead;
203 }
204 
readNextChunk()205 int StreamingZipInflater::readNextChunk() {
206     assert(mDataMap == NULL);
207 
208     if (mInNextChunkOffset < mInTotalSize) {
209         size_t toRead = min_of(mInBufSize, mInTotalSize - mInNextChunkOffset);
210         if (toRead > 0) {
211             ssize_t didRead = TEMP_FAILURE_RETRY(::read(mFd, mInBuf, toRead));
212             //ALOGV("Reading input chunk, size %08x didread %08x", toRead, didRead);
213             if (didRead < 0) {
214                 ALOGE("Error reading asset data: %s", strerror(errno));
215                 return didRead;
216             } else {
217                 mInNextChunkOffset += didRead;
218                 mInflateState.next_in = (Bytef*) mInBuf;
219                 mInflateState.avail_in = didRead;
220             }
221         }
222     }
223     return 0;
224 }
225 
226 // seeking backwards requires uncompressing fom the beginning, so is very
227 // expensive.  seeking forwards only requires uncompressing from the current
228 // position to the destination.
seekAbsolute(off64_t absoluteInputPosition)229 off64_t StreamingZipInflater::seekAbsolute(off64_t absoluteInputPosition) {
230     if (absoluteInputPosition < mOutCurPosition) {
231         // rewind and reprocess the data from the beginning
232         if (!mStreamNeedsInit) {
233             ::inflateEnd(&mInflateState);
234         }
235         initInflateState();
236         read(NULL, absoluteInputPosition);
237     } else if (absoluteInputPosition > mOutCurPosition) {
238         read(NULL, absoluteInputPosition - mOutCurPosition);
239     }
240     // else if the target position *is* our current position, do nothing
241     return absoluteInputPosition;
242 }
243