• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2010 The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *      http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  #define LOG_TAG "OpenGLRenderer"
18  
19  #include <math.h>
20  #include <stdlib.h>
21  #include <string.h>
22  
23  #include <utils/Log.h>
24  
25  #include <SkMatrix.h>
26  
27  #include "Matrix.h"
28  
29  namespace android {
30  namespace uirenderer {
31  
32  ///////////////////////////////////////////////////////////////////////////////
33  // Defines
34  ///////////////////////////////////////////////////////////////////////////////
35  
36  static const float EPSILON = 0.0000001f;
37  
38  ///////////////////////////////////////////////////////////////////////////////
39  // Matrix
40  ///////////////////////////////////////////////////////////////////////////////
41  
identity()42  const Matrix4& Matrix4::identity() {
43      static Matrix4 sIdentity;
44      return sIdentity;
45  }
46  
loadIdentity()47  void Matrix4::loadIdentity() {
48      data[kScaleX]       = 1.0f;
49      data[kSkewY]        = 0.0f;
50      data[2]             = 0.0f;
51      data[kPerspective0] = 0.0f;
52  
53      data[kSkewX]        = 0.0f;
54      data[kScaleY]       = 1.0f;
55      data[6]             = 0.0f;
56      data[kPerspective1] = 0.0f;
57  
58      data[8]             = 0.0f;
59      data[9]             = 0.0f;
60      data[kScaleZ]       = 1.0f;
61      data[11]            = 0.0f;
62  
63      data[kTranslateX]   = 0.0f;
64      data[kTranslateY]   = 0.0f;
65      data[kTranslateZ]   = 0.0f;
66      data[kPerspective2] = 1.0f;
67  
68      mType = kTypeIdentity | kTypeRectToRect;
69  }
70  
isZero(float f)71  static bool isZero(float f) {
72      return fabs(f) <= EPSILON;
73  }
74  
getType() const75  uint8_t Matrix4::getType() const {
76      if (mType & kTypeUnknown) {
77          mType = kTypeIdentity;
78  
79          if (data[kPerspective0] != 0.0f || data[kPerspective1] != 0.0f ||
80                  data[kPerspective2] != 1.0f) {
81              mType |= kTypePerspective;
82          }
83  
84          if (data[kTranslateX] != 0.0f || data[kTranslateY] != 0.0f) {
85              mType |= kTypeTranslate;
86          }
87  
88          float m00 = data[kScaleX];
89          float m01 = data[kSkewX];
90          float m10 = data[kSkewY];
91          float m11 = data[kScaleY];
92          float m32 = data[kTranslateZ];
93  
94          if (m01 != 0.0f || m10 != 0.0f || m32 != 0.0f) {
95              mType |= kTypeAffine;
96          }
97  
98          if (m00 != 1.0f || m11 != 1.0f) {
99              mType |= kTypeScale;
100          }
101  
102          // The following section determines whether the matrix will preserve
103          // rectangles. For instance, a rectangle transformed by a pure
104          // translation matrix will result in a rectangle. A rectangle
105          // transformed by a 45 degrees rotation matrix is not a rectangle.
106          // If the matrix has a perspective component then we already know
107          // it doesn't preserve rectangles.
108          if (!(mType & kTypePerspective)) {
109              if ((isZero(m00) && isZero(m11) && !isZero(m01) && !isZero(m10)) ||
110                      (isZero(m01) && isZero(m10) && !isZero(m00) && !isZero(m11))) {
111                  mType |= kTypeRectToRect;
112              }
113          }
114      }
115      return mType;
116  }
117  
getGeometryType() const118  uint8_t Matrix4::getGeometryType() const {
119      return getType() & sGeometryMask;
120  }
121  
rectToRect() const122  bool Matrix4::rectToRect() const {
123      return getType() & kTypeRectToRect;
124  }
125  
positiveScale() const126  bool Matrix4::positiveScale() const {
127      return (data[kScaleX] > 0.0f && data[kScaleY] > 0.0f);
128  }
129  
changesBounds() const130  bool Matrix4::changesBounds() const {
131      return getType() & (kTypeScale | kTypeAffine | kTypePerspective);
132  }
133  
isPureTranslate() const134  bool Matrix4::isPureTranslate() const {
135      // NOTE: temporary hack to workaround ignoreTransform behavior with Z values
136      // TODO: separate this into isPure2dTranslate vs isPure3dTranslate
137      return getGeometryType() <= kTypeTranslate && (data[kTranslateZ] == 0.0f);
138  }
139  
isSimple() const140  bool Matrix4::isSimple() const {
141      return getGeometryType() <= (kTypeScale | kTypeTranslate) && (data[kTranslateZ] == 0.0f);
142  }
143  
isIdentity() const144  bool Matrix4::isIdentity() const {
145      return getGeometryType() == kTypeIdentity;
146  }
147  
isPerspective() const148  bool Matrix4::isPerspective() const {
149      return getType() & kTypePerspective;
150  }
151  
load(const float * v)152  void Matrix4::load(const float* v) {
153      memcpy(data, v, sizeof(data));
154      mType = kTypeUnknown;
155  }
156  
load(const Matrix4 & v)157  void Matrix4::load(const Matrix4& v) {
158      memcpy(data, v.data, sizeof(data));
159      mType = v.getType();
160  }
161  
load(const SkMatrix & v)162  void Matrix4::load(const SkMatrix& v) {
163      memset(data, 0, sizeof(data));
164  
165      data[kScaleX]     = v[SkMatrix::kMScaleX];
166      data[kSkewX]      = v[SkMatrix::kMSkewX];
167      data[kTranslateX] = v[SkMatrix::kMTransX];
168  
169      data[kSkewY]      = v[SkMatrix::kMSkewY];
170      data[kScaleY]     = v[SkMatrix::kMScaleY];
171      data[kTranslateY] = v[SkMatrix::kMTransY];
172  
173      data[kPerspective0]  = v[SkMatrix::kMPersp0];
174      data[kPerspective1]  = v[SkMatrix::kMPersp1];
175      data[kPerspective2]  = v[SkMatrix::kMPersp2];
176  
177      data[kScaleZ] = 1.0f;
178  
179      // NOTE: The flags are compatible between SkMatrix and this class.
180      //       However, SkMatrix::getType() does not return the flag
181      //       kRectStaysRect. The return value is masked with 0xF
182      //       so we need the extra rectStaysRect() check
183      mType = v.getType();
184      if (v.rectStaysRect()) {
185          mType |= kTypeRectToRect;
186      }
187  }
188  
copyTo(SkMatrix & v) const189  void Matrix4::copyTo(SkMatrix& v) const {
190      v.reset();
191  
192      v.set(SkMatrix::kMScaleX, data[kScaleX]);
193      v.set(SkMatrix::kMSkewX,  data[kSkewX]);
194      v.set(SkMatrix::kMTransX, data[kTranslateX]);
195  
196      v.set(SkMatrix::kMSkewY,  data[kSkewY]);
197      v.set(SkMatrix::kMScaleY, data[kScaleY]);
198      v.set(SkMatrix::kMTransY, data[kTranslateY]);
199  
200      v.set(SkMatrix::kMPersp0, data[kPerspective0]);
201      v.set(SkMatrix::kMPersp1, data[kPerspective1]);
202      v.set(SkMatrix::kMPersp2, data[kPerspective2]);
203  }
204  
loadInverse(const Matrix4 & v)205  void Matrix4::loadInverse(const Matrix4& v) {
206      double scale = 1.0 /
207              (v.data[kScaleX] * ((double) v.data[kScaleY]  * v.data[kPerspective2] -
208                      (double) v.data[kTranslateY] * v.data[kPerspective1]) +
209               v.data[kSkewX] * ((double) v.data[kTranslateY] * v.data[kPerspective0] -
210                       (double) v.data[kSkewY] * v.data[kPerspective2]) +
211               v.data[kTranslateX] * ((double) v.data[kSkewY] * v.data[kPerspective1] -
212                       (double) v.data[kScaleY] * v.data[kPerspective0]));
213  
214      data[kScaleX] = (v.data[kScaleY] * v.data[kPerspective2] -
215              v.data[kTranslateY] * v.data[kPerspective1])  * scale;
216      data[kSkewX] = (v.data[kTranslateX] * v.data[kPerspective1] -
217              v.data[kSkewX]  * v.data[kPerspective2]) * scale;
218      data[kTranslateX] = (v.data[kSkewX] * v.data[kTranslateY] -
219              v.data[kTranslateX] * v.data[kScaleY])  * scale;
220  
221      data[kSkewY] = (v.data[kTranslateY] * v.data[kPerspective0] -
222              v.data[kSkewY]  * v.data[kPerspective2]) * scale;
223      data[kScaleY] = (v.data[kScaleX] * v.data[kPerspective2] -
224              v.data[kTranslateX] * v.data[kPerspective0])  * scale;
225      data[kTranslateY] = (v.data[kTranslateX] * v.data[kSkewY] -
226              v.data[kScaleX]  * v.data[kTranslateY]) * scale;
227  
228      data[kPerspective0] = (v.data[kSkewY] * v.data[kPerspective1] -
229              v.data[kScaleY] * v.data[kPerspective0]) * scale;
230      data[kPerspective1] = (v.data[kSkewX] * v.data[kPerspective0] -
231              v.data[kScaleX] * v.data[kPerspective1]) * scale;
232      data[kPerspective2] = (v.data[kScaleX] * v.data[kScaleY] -
233              v.data[kSkewX] * v.data[kSkewY]) * scale;
234  
235      mType = kTypeUnknown;
236  }
237  
copyTo(float * v) const238  void Matrix4::copyTo(float* v) const {
239      memcpy(v, data, sizeof(data));
240  }
241  
getTranslateX() const242  float Matrix4::getTranslateX() const {
243      return data[kTranslateX];
244  }
245  
getTranslateY() const246  float Matrix4::getTranslateY() const {
247      return data[kTranslateY];
248  }
249  
multiply(float v)250  void Matrix4::multiply(float v) {
251      for (int i = 0; i < 16; i++) {
252          data[i] *= v;
253      }
254      mType = kTypeUnknown;
255  }
256  
loadTranslate(float x,float y,float z)257  void Matrix4::loadTranslate(float x, float y, float z) {
258      loadIdentity();
259  
260      data[kTranslateX] = x;
261      data[kTranslateY] = y;
262      data[kTranslateZ] = z;
263  
264      mType = kTypeTranslate | kTypeRectToRect;
265  }
266  
loadScale(float sx,float sy,float sz)267  void Matrix4::loadScale(float sx, float sy, float sz) {
268      loadIdentity();
269  
270      data[kScaleX] = sx;
271      data[kScaleY] = sy;
272      data[kScaleZ] = sz;
273  
274      mType = kTypeScale | kTypeRectToRect;
275  }
276  
loadSkew(float sx,float sy)277  void Matrix4::loadSkew(float sx, float sy) {
278      loadIdentity();
279  
280      data[kScaleX]       = 1.0f;
281      data[kSkewX]        = sx;
282      data[kTranslateX]   = 0.0f;
283  
284      data[kSkewY]        = sy;
285      data[kScaleY]       = 1.0f;
286      data[kTranslateY]   = 0.0f;
287  
288      data[kPerspective0] = 0.0f;
289      data[kPerspective1] = 0.0f;
290      data[kPerspective2] = 1.0f;
291  
292      mType = kTypeUnknown;
293  }
294  
loadRotate(float angle)295  void Matrix4::loadRotate(float angle) {
296      angle *= float(M_PI / 180.0f);
297      float c = cosf(angle);
298      float s = sinf(angle);
299  
300      loadIdentity();
301  
302      data[kScaleX]     = c;
303      data[kSkewX]      = -s;
304  
305      data[kSkewY]      = s;
306      data[kScaleY]     = c;
307  
308      mType = kTypeUnknown;
309  }
310  
loadRotate(float angle,float x,float y,float z)311  void Matrix4::loadRotate(float angle, float x, float y, float z) {
312      data[kPerspective0]  = 0.0f;
313      data[kPerspective1]  = 0.0f;
314      data[11]             = 0.0f;
315      data[kTranslateX]    = 0.0f;
316      data[kTranslateY]    = 0.0f;
317      data[kTranslateZ]    = 0.0f;
318      data[kPerspective2]  = 1.0f;
319  
320      angle *= float(M_PI / 180.0f);
321      float c = cosf(angle);
322      float s = sinf(angle);
323  
324      const float length = sqrtf(x * x + y * y + z * z);
325      float recipLen = 1.0f / length;
326      x *= recipLen;
327      y *= recipLen;
328      z *= recipLen;
329  
330      const float nc = 1.0f - c;
331      const float xy = x * y;
332      const float yz = y * z;
333      const float zx = z * x;
334      const float xs = x * s;
335      const float ys = y * s;
336      const float zs = z * s;
337  
338      data[kScaleX] = x * x * nc +  c;
339      data[kSkewX]  =    xy * nc - zs;
340      data[8]       =    zx * nc + ys;
341      data[kSkewY]  =    xy * nc + zs;
342      data[kScaleY] = y * y * nc +  c;
343      data[9]       =    yz * nc - xs;
344      data[2]       =    zx * nc - ys;
345      data[6]       =    yz * nc + xs;
346      data[kScaleZ] = z * z * nc +  c;
347  
348      mType = kTypeUnknown;
349  }
350  
loadMultiply(const Matrix4 & u,const Matrix4 & v)351  void Matrix4::loadMultiply(const Matrix4& u, const Matrix4& v) {
352      for (int i = 0 ; i < 4 ; i++) {
353          float x = 0;
354          float y = 0;
355          float z = 0;
356          float w = 0;
357  
358          for (int j = 0 ; j < 4 ; j++) {
359              const float e = v.get(i, j);
360              x += u.get(j, 0) * e;
361              y += u.get(j, 1) * e;
362              z += u.get(j, 2) * e;
363              w += u.get(j, 3) * e;
364          }
365  
366          set(i, 0, x);
367          set(i, 1, y);
368          set(i, 2, z);
369          set(i, 3, w);
370      }
371  
372      mType = kTypeUnknown;
373  }
374  
loadOrtho(float left,float right,float bottom,float top,float near,float far)375  void Matrix4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
376      loadIdentity();
377  
378      data[kScaleX] = 2.0f / (right - left);
379      data[kScaleY] = 2.0f / (top - bottom);
380      data[kScaleZ] = -2.0f / (far - near);
381      data[kTranslateX] = -(right + left) / (right - left);
382      data[kTranslateY] = -(top + bottom) / (top - bottom);
383      data[kTranslateZ] = -(far + near) / (far - near);
384  
385      mType = kTypeTranslate | kTypeScale | kTypeRectToRect;
386  }
387  
mapZ(const Vector3 & orig) const388  float Matrix4::mapZ(const Vector3& orig) const {
389      // duplicates logic for mapPoint3d's z coordinate
390      return orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
391  }
392  
mapPoint3d(Vector3 & vec) const393  void Matrix4::mapPoint3d(Vector3& vec) const {
394      //TODO: optimize simple case
395      const Vector3 orig(vec);
396      vec.x = orig.x * data[kScaleX] + orig.y * data[kSkewX] + orig.z * data[8] + data[kTranslateX];
397      vec.y = orig.x * data[kSkewY] + orig.y * data[kScaleY] + orig.z * data[9] + data[kTranslateY];
398      vec.z = orig.x * data[2] + orig.y * data[6] + orig.z * data[kScaleZ] + data[kTranslateZ];
399  }
400  
401  #define MUL_ADD_STORE(a, b, c) a = (a) * (b) + (c)
402  
mapPoint(float & x,float & y) const403  void Matrix4::mapPoint(float& x, float& y) const {
404      if (isSimple()) {
405          MUL_ADD_STORE(x, data[kScaleX], data[kTranslateX]);
406          MUL_ADD_STORE(y, data[kScaleY], data[kTranslateY]);
407          return;
408      }
409  
410      float dx = x * data[kScaleX] + y * data[kSkewX] + data[kTranslateX];
411      float dy = x * data[kSkewY] + y * data[kScaleY] + data[kTranslateY];
412      float dz = x * data[kPerspective0] + y * data[kPerspective1] + data[kPerspective2];
413      if (dz) dz = 1.0f / dz;
414  
415      x = dx * dz;
416      y = dy * dz;
417  }
418  
mapRect(Rect & r) const419  void Matrix4::mapRect(Rect& r) const {
420      if (isIdentity()) return;
421  
422      if (isSimple()) {
423          MUL_ADD_STORE(r.left, data[kScaleX], data[kTranslateX]);
424          MUL_ADD_STORE(r.right, data[kScaleX], data[kTranslateX]);
425          MUL_ADD_STORE(r.top, data[kScaleY], data[kTranslateY]);
426          MUL_ADD_STORE(r.bottom, data[kScaleY], data[kTranslateY]);
427  
428          if (r.left > r.right) {
429              float x = r.left;
430              r.left = r.right;
431              r.right = x;
432          }
433  
434          if (r.top > r.bottom) {
435              float y = r.top;
436              r.top = r.bottom;
437              r.bottom = y;
438          }
439  
440          return;
441      }
442  
443      float vertices[] = {
444          r.left, r.top,
445          r.right, r.top,
446          r.right, r.bottom,
447          r.left, r.bottom
448      };
449  
450      float x, y, z;
451  
452      for (int i = 0; i < 8; i+= 2) {
453          float px = vertices[i];
454          float py = vertices[i + 1];
455  
456          x = px * data[kScaleX] + py * data[kSkewX] + data[kTranslateX];
457          y = px * data[kSkewY] + py * data[kScaleY] + data[kTranslateY];
458          z = px * data[kPerspective0] + py * data[kPerspective1] + data[kPerspective2];
459          if (z) z = 1.0f / z;
460  
461          vertices[i] = x * z;
462          vertices[i + 1] = y * z;
463      }
464  
465      r.left = r.right = vertices[0];
466      r.top = r.bottom = vertices[1];
467  
468      for (int i = 2; i < 8; i += 2) {
469          x = vertices[i];
470          y = vertices[i + 1];
471  
472          if (x < r.left) r.left = x;
473          else if (x > r.right) r.right = x;
474          if (y < r.top) r.top = y;
475          else if (y > r.bottom) r.bottom = y;
476      }
477  }
478  
decomposeScale(float & sx,float & sy) const479  void Matrix4::decomposeScale(float& sx, float& sy) const {
480      float len;
481      len = data[mat4::kScaleX] * data[mat4::kScaleX] + data[mat4::kSkewX] * data[mat4::kSkewX];
482      sx = copysignf(sqrtf(len), data[mat4::kScaleX]);
483      len = data[mat4::kScaleY] * data[mat4::kScaleY] + data[mat4::kSkewY] * data[mat4::kSkewY];
484      sy = copysignf(sqrtf(len), data[mat4::kScaleY]);
485  }
486  
dump(const char * label) const487  void Matrix4::dump(const char* label) const {
488      ALOGD("%s[simple=%d, type=0x%x", label ? label : "Matrix4", isSimple(), getType());
489      ALOGD("  %f %f %f %f", data[kScaleX], data[kSkewX], data[8], data[kTranslateX]);
490      ALOGD("  %f %f %f %f", data[kSkewY], data[kScaleY], data[9], data[kTranslateY]);
491      ALOGD("  %f %f %f %f", data[2], data[6], data[kScaleZ], data[kTranslateZ]);
492      ALOGD("  %f %f %f %f", data[kPerspective0], data[kPerspective1], data[11], data[kPerspective2]);
493      ALOGD("]");
494  }
495  
496  }; // namespace uirenderer
497  }; // namespace android
498