1 /*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #include "VirtualDisplaySurface.h"
19 #include "HWComposer.h"
20
21 // ---------------------------------------------------------------------------
22 namespace android {
23 // ---------------------------------------------------------------------------
24
25 #if defined(FORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS)
26 static const bool sForceHwcCopy = true;
27 #else
28 static const bool sForceHwcCopy = false;
29 #endif
30
31 #define VDS_LOGE(msg, ...) ALOGE("[%s] " msg, \
32 mDisplayName.string(), ##__VA_ARGS__)
33 #define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] " msg, \
34 mDisplayName.string(), ##__VA_ARGS__)
35 #define VDS_LOGV(msg, ...) ALOGV("[%s] " msg, \
36 mDisplayName.string(), ##__VA_ARGS__)
37
dbgCompositionTypeStr(DisplaySurface::CompositionType type)38 static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) {
39 switch (type) {
40 case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN";
41 case DisplaySurface::COMPOSITION_GLES: return "GLES";
42 case DisplaySurface::COMPOSITION_HWC: return "HWC";
43 case DisplaySurface::COMPOSITION_MIXED: return "MIXED";
44 default: return "<INVALID>";
45 }
46 }
47
VirtualDisplaySurface(HWComposer & hwc,int32_t dispId,const sp<IGraphicBufferProducer> & sink,const sp<IGraphicBufferProducer> & bqProducer,const sp<IGraphicBufferConsumer> & bqConsumer,const String8 & name)48 VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
49 const sp<IGraphicBufferProducer>& sink,
50 const sp<IGraphicBufferProducer>& bqProducer,
51 const sp<IGraphicBufferConsumer>& bqConsumer,
52 const String8& name)
53 : ConsumerBase(bqConsumer),
54 mHwc(hwc),
55 mDisplayId(dispId),
56 mDisplayName(name),
57 mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
58 mProducerSlotSource(0),
59 mDbgState(DBG_STATE_IDLE),
60 mDbgLastCompositionType(COMPOSITION_UNKNOWN),
61 mMustRecompose(false)
62 {
63 mSource[SOURCE_SINK] = sink;
64 mSource[SOURCE_SCRATCH] = bqProducer;
65
66 resetPerFrameState();
67
68 int sinkWidth, sinkHeight;
69 sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
70 sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
71 mSinkBufferWidth = sinkWidth;
72 mSinkBufferHeight = sinkHeight;
73
74 // Pick the buffer format to request from the sink when not rendering to it
75 // with GLES. If the consumer needs CPU access, use the default format
76 // set by the consumer. Otherwise allow gralloc to decide the format based
77 // on usage bits.
78 int sinkUsage;
79 sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
80 if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
81 int sinkFormat;
82 sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
83 mDefaultOutputFormat = sinkFormat;
84 } else {
85 mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
86 }
87 mOutputFormat = mDefaultOutputFormat;
88
89 ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
90 mConsumer->setConsumerName(ConsumerBase::mName);
91 mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
92 mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
93 mConsumer->setDefaultMaxBufferCount(2);
94 }
95
~VirtualDisplaySurface()96 VirtualDisplaySurface::~VirtualDisplaySurface() {
97 }
98
beginFrame(bool mustRecompose)99 status_t VirtualDisplaySurface::beginFrame(bool mustRecompose) {
100 if (mDisplayId < 0)
101 return NO_ERROR;
102
103 mMustRecompose = mustRecompose;
104
105 VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE,
106 "Unexpected beginFrame() in %s state", dbgStateStr());
107 mDbgState = DBG_STATE_BEGUN;
108
109 return refreshOutputBuffer();
110 }
111
prepareFrame(CompositionType compositionType)112 status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
113 if (mDisplayId < 0)
114 return NO_ERROR;
115
116 VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
117 "Unexpected prepareFrame() in %s state", dbgStateStr());
118 mDbgState = DBG_STATE_PREPARED;
119
120 mCompositionType = compositionType;
121 if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
122 // Some hardware can do RGB->YUV conversion more efficiently in hardware
123 // controlled by HWC than in hardware controlled by the video encoder.
124 // Forcing GLES-composed frames to go through an extra copy by the HWC
125 // allows the format conversion to happen there, rather than passing RGB
126 // directly to the consumer.
127 //
128 // On the other hand, when the consumer prefers RGB or can consume RGB
129 // inexpensively, this forces an unnecessary copy.
130 mCompositionType = COMPOSITION_MIXED;
131 }
132
133 if (mCompositionType != mDbgLastCompositionType) {
134 VDS_LOGV("prepareFrame: composition type changed to %s",
135 dbgCompositionTypeStr(mCompositionType));
136 mDbgLastCompositionType = mCompositionType;
137 }
138
139 if (mCompositionType != COMPOSITION_GLES &&
140 (mOutputFormat != mDefaultOutputFormat ||
141 mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
142 // We must have just switched from GLES-only to MIXED or HWC
143 // composition. Stop using the format and usage requested by the GLES
144 // driver; they may be suboptimal when HWC is writing to the output
145 // buffer. For example, if the output is going to a video encoder, and
146 // HWC can write directly to YUV, some hardware can skip a
147 // memory-to-memory RGB-to-YUV conversion step.
148 //
149 // If we just switched *to* GLES-only mode, we'll change the
150 // format/usage and get a new buffer when the GLES driver calls
151 // dequeueBuffer().
152 mOutputFormat = mDefaultOutputFormat;
153 mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
154 refreshOutputBuffer();
155 }
156
157 return NO_ERROR;
158 }
159
compositionComplete()160 status_t VirtualDisplaySurface::compositionComplete() {
161 return NO_ERROR;
162 }
163
advanceFrame()164 status_t VirtualDisplaySurface::advanceFrame() {
165 if (mDisplayId < 0)
166 return NO_ERROR;
167
168 if (mCompositionType == COMPOSITION_HWC) {
169 VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
170 "Unexpected advanceFrame() in %s state on HWC frame",
171 dbgStateStr());
172 } else {
173 VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
174 "Unexpected advanceFrame() in %s state on GLES/MIXED frame",
175 dbgStateStr());
176 }
177 mDbgState = DBG_STATE_HWC;
178
179 if (mOutputProducerSlot < 0 ||
180 (mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
181 // Last chance bailout if something bad happened earlier. For example,
182 // in a GLES configuration, if the sink disappears then dequeueBuffer
183 // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
184 // will soldier on. So we end up here without a buffer. There should
185 // be lots of scary messages in the log just before this.
186 VDS_LOGE("advanceFrame: no buffer, bailing out");
187 return NO_MEMORY;
188 }
189
190 sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
191 mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
192 sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
193 VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
194 mFbProducerSlot, fbBuffer.get(),
195 mOutputProducerSlot, outBuffer.get());
196
197 // At this point we know the output buffer acquire fence,
198 // so update HWC state with it.
199 mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
200
201 status_t result = NO_ERROR;
202 if (fbBuffer != NULL) {
203 result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
204 }
205
206 return result;
207 }
208
onFrameCommitted()209 void VirtualDisplaySurface::onFrameCommitted() {
210 if (mDisplayId < 0)
211 return;
212
213 VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
214 "Unexpected onFrameCommitted() in %s state", dbgStateStr());
215 mDbgState = DBG_STATE_IDLE;
216
217 sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
218 if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
219 // release the scratch buffer back to the pool
220 Mutex::Autolock lock(mMutex);
221 int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
222 VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
223 addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
224 releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
225 EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
226 }
227
228 if (mOutputProducerSlot >= 0) {
229 int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
230 QueueBufferOutput qbo;
231 sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
232 VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
233 if (mMustRecompose) {
234 status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
235 QueueBufferInput(
236 systemTime(), false /* isAutoTimestamp */,
237 Rect(mSinkBufferWidth, mSinkBufferHeight),
238 NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
239 true /* async*/,
240 outFence),
241 &qbo);
242 if (result == NO_ERROR) {
243 updateQueueBufferOutput(qbo);
244 }
245 } else {
246 // If the surface hadn't actually been updated, then we only went
247 // through the motions of updating the display to keep our state
248 // machine happy. We cancel the buffer to avoid triggering another
249 // re-composition and causing an infinite loop.
250 mSource[SOURCE_SINK]->cancelBuffer(sslot, outFence);
251 }
252 }
253
254 resetPerFrameState();
255 }
256
dump(String8 &) const257 void VirtualDisplaySurface::dump(String8& /* result */) const {
258 }
259
resizeBuffers(const uint32_t w,const uint32_t h)260 void VirtualDisplaySurface::resizeBuffers(const uint32_t w, const uint32_t h) {
261 uint32_t tmpW, tmpH, transformHint, numPendingBuffers;
262 mQueueBufferOutput.deflate(&tmpW, &tmpH, &transformHint, &numPendingBuffers);
263 mQueueBufferOutput.inflate(w, h, transformHint, numPendingBuffers);
264
265 mSinkBufferWidth = w;
266 mSinkBufferHeight = h;
267 }
268
requestBuffer(int pslot,sp<GraphicBuffer> * outBuf)269 status_t VirtualDisplaySurface::requestBuffer(int pslot,
270 sp<GraphicBuffer>* outBuf) {
271 if (mDisplayId < 0)
272 return mSource[SOURCE_SINK]->requestBuffer(pslot, outBuf);
273
274 VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
275 "Unexpected requestBuffer pslot=%d in %s state",
276 pslot, dbgStateStr());
277
278 *outBuf = mProducerBuffers[pslot];
279 return NO_ERROR;
280 }
281
setBufferCount(int bufferCount)282 status_t VirtualDisplaySurface::setBufferCount(int bufferCount) {
283 return mSource[SOURCE_SINK]->setBufferCount(bufferCount);
284 }
285
dequeueBuffer(Source source,uint32_t format,uint32_t usage,int * sslot,sp<Fence> * fence)286 status_t VirtualDisplaySurface::dequeueBuffer(Source source,
287 uint32_t format, uint32_t usage, int* sslot, sp<Fence>* fence) {
288 LOG_FATAL_IF(mDisplayId < 0, "mDisplayId=%d but should not be < 0.", mDisplayId);
289 // Don't let a slow consumer block us
290 bool async = (source == SOURCE_SINK);
291
292 status_t result = mSource[source]->dequeueBuffer(sslot, fence, async,
293 mSinkBufferWidth, mSinkBufferHeight, format, usage);
294 if (result < 0)
295 return result;
296 int pslot = mapSource2ProducerSlot(source, *sslot);
297 VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
298 dbgSourceStr(source), *sslot, pslot, result);
299 uint64_t sourceBit = static_cast<uint64_t>(source) << pslot;
300
301 if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) {
302 // This slot was previously dequeued from the other source; must
303 // re-request the buffer.
304 result |= BUFFER_NEEDS_REALLOCATION;
305 mProducerSlotSource &= ~(1ULL << pslot);
306 mProducerSlotSource |= sourceBit;
307 }
308
309 if (result & RELEASE_ALL_BUFFERS) {
310 for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
311 if ((mProducerSlotSource & (1ULL << i)) == sourceBit)
312 mProducerBuffers[i].clear();
313 }
314 }
315 if (result & BUFFER_NEEDS_REALLOCATION) {
316 result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
317 if (result < 0) {
318 mProducerBuffers[pslot].clear();
319 mSource[source]->cancelBuffer(*sslot, *fence);
320 return result;
321 }
322 VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
323 dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
324 mProducerBuffers[pslot]->getPixelFormat(),
325 mProducerBuffers[pslot]->getUsage());
326 }
327
328 return result;
329 }
330
dequeueBuffer(int * pslot,sp<Fence> * fence,bool async,uint32_t w,uint32_t h,uint32_t format,uint32_t usage)331 status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool async,
332 uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
333 if (mDisplayId < 0)
334 return mSource[SOURCE_SINK]->dequeueBuffer(pslot, fence, async, w, h, format, usage);
335
336 VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
337 "Unexpected dequeueBuffer() in %s state", dbgStateStr());
338 mDbgState = DBG_STATE_GLES;
339
340 VDS_LOGW_IF(!async, "EGL called dequeueBuffer with !async despite eglSwapInterval(0)");
341 VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
342
343 status_t result = NO_ERROR;
344 Source source = fbSourceForCompositionType(mCompositionType);
345
346 if (source == SOURCE_SINK) {
347
348 if (mOutputProducerSlot < 0) {
349 // Last chance bailout if something bad happened earlier. For example,
350 // in a GLES configuration, if the sink disappears then dequeueBuffer
351 // will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
352 // will soldier on. So we end up here without a buffer. There should
353 // be lots of scary messages in the log just before this.
354 VDS_LOGE("dequeueBuffer: no buffer, bailing out");
355 return NO_MEMORY;
356 }
357
358 // We already dequeued the output buffer. If the GLES driver wants
359 // something incompatible, we have to cancel and get a new one. This
360 // will mean that HWC will see a different output buffer between
361 // prepare and set, but since we're in GLES-only mode already it
362 // shouldn't matter.
363
364 usage |= GRALLOC_USAGE_HW_COMPOSER;
365 const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
366 if ((usage & ~buf->getUsage()) != 0 ||
367 (format != 0 && format != (uint32_t)buf->getPixelFormat()) ||
368 (w != 0 && w != mSinkBufferWidth) ||
369 (h != 0 && h != mSinkBufferHeight)) {
370 VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
371 "want %dx%d fmt=%d use=%#x, "
372 "have %dx%d fmt=%d use=%#x",
373 w, h, format, usage,
374 mSinkBufferWidth, mSinkBufferHeight,
375 buf->getPixelFormat(), buf->getUsage());
376 mOutputFormat = format;
377 mOutputUsage = usage;
378 result = refreshOutputBuffer();
379 if (result < 0)
380 return result;
381 }
382 }
383
384 if (source == SOURCE_SINK) {
385 *pslot = mOutputProducerSlot;
386 *fence = mOutputFence;
387 } else {
388 int sslot;
389 result = dequeueBuffer(source, format, usage, &sslot, fence);
390 if (result >= 0) {
391 *pslot = mapSource2ProducerSlot(source, sslot);
392 }
393 }
394 return result;
395 }
396
detachBuffer(int)397 status_t VirtualDisplaySurface::detachBuffer(int /* slot */) {
398 VDS_LOGE("detachBuffer is not available for VirtualDisplaySurface");
399 return INVALID_OPERATION;
400 }
401
detachNextBuffer(sp<GraphicBuffer> *,sp<Fence> *)402 status_t VirtualDisplaySurface::detachNextBuffer(
403 sp<GraphicBuffer>* /* outBuffer */, sp<Fence>* /* outFence */) {
404 VDS_LOGE("detachNextBuffer is not available for VirtualDisplaySurface");
405 return INVALID_OPERATION;
406 }
407
attachBuffer(int *,const sp<GraphicBuffer> &)408 status_t VirtualDisplaySurface::attachBuffer(int* /* outSlot */,
409 const sp<GraphicBuffer>& /* buffer */) {
410 VDS_LOGE("attachBuffer is not available for VirtualDisplaySurface");
411 return INVALID_OPERATION;
412 }
413
queueBuffer(int pslot,const QueueBufferInput & input,QueueBufferOutput * output)414 status_t VirtualDisplaySurface::queueBuffer(int pslot,
415 const QueueBufferInput& input, QueueBufferOutput* output) {
416 if (mDisplayId < 0)
417 return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output);
418
419 VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
420 "Unexpected queueBuffer(pslot=%d) in %s state", pslot,
421 dbgStateStr());
422 mDbgState = DBG_STATE_GLES_DONE;
423
424 VDS_LOGV("queueBuffer pslot=%d", pslot);
425
426 status_t result;
427 if (mCompositionType == COMPOSITION_MIXED) {
428 // Queue the buffer back into the scratch pool
429 QueueBufferOutput scratchQBO;
430 int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
431 result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
432 if (result != NO_ERROR)
433 return result;
434
435 // Now acquire the buffer from the scratch pool -- should be the same
436 // slot and fence as we just queued.
437 Mutex::Autolock lock(mMutex);
438 BufferQueue::BufferItem item;
439 result = acquireBufferLocked(&item, 0);
440 if (result != NO_ERROR)
441 return result;
442 VDS_LOGW_IF(item.mBuf != sslot,
443 "queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
444 item.mBuf, sslot);
445 mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mBuf);
446 mFbFence = mSlots[item.mBuf].mFence;
447
448 } else {
449 LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
450 "Unexpected queueBuffer in state %s for compositionType %s",
451 dbgStateStr(), dbgCompositionTypeStr(mCompositionType));
452
453 // Extract the GLES release fence for HWC to acquire
454 int64_t timestamp;
455 bool isAutoTimestamp;
456 Rect crop;
457 int scalingMode;
458 uint32_t transform;
459 bool async;
460 input.deflate(×tamp, &isAutoTimestamp, &crop, &scalingMode,
461 &transform, &async, &mFbFence);
462
463 mFbProducerSlot = pslot;
464 mOutputFence = mFbFence;
465 }
466
467 *output = mQueueBufferOutput;
468 return NO_ERROR;
469 }
470
cancelBuffer(int pslot,const sp<Fence> & fence)471 void VirtualDisplaySurface::cancelBuffer(int pslot, const sp<Fence>& fence) {
472 if (mDisplayId < 0)
473 return mSource[SOURCE_SINK]->cancelBuffer(mapProducer2SourceSlot(SOURCE_SINK, pslot), fence);
474
475 VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
476 "Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
477 dbgStateStr());
478 VDS_LOGV("cancelBuffer pslot=%d", pslot);
479 Source source = fbSourceForCompositionType(mCompositionType);
480 return mSource[source]->cancelBuffer(
481 mapProducer2SourceSlot(source, pslot), fence);
482 }
483
query(int what,int * value)484 int VirtualDisplaySurface::query(int what, int* value) {
485 switch (what) {
486 case NATIVE_WINDOW_WIDTH:
487 *value = mSinkBufferWidth;
488 break;
489 case NATIVE_WINDOW_HEIGHT:
490 *value = mSinkBufferHeight;
491 break;
492 default:
493 return mSource[SOURCE_SINK]->query(what, value);
494 }
495 return NO_ERROR;
496 }
497
connect(const sp<IProducerListener> & listener,int api,bool producerControlledByApp,QueueBufferOutput * output)498 status_t VirtualDisplaySurface::connect(const sp<IProducerListener>& listener,
499 int api, bool producerControlledByApp,
500 QueueBufferOutput* output) {
501 QueueBufferOutput qbo;
502 status_t result = mSource[SOURCE_SINK]->connect(listener, api,
503 producerControlledByApp, &qbo);
504 if (result == NO_ERROR) {
505 updateQueueBufferOutput(qbo);
506 *output = mQueueBufferOutput;
507 }
508 return result;
509 }
510
disconnect(int api)511 status_t VirtualDisplaySurface::disconnect(int api) {
512 return mSource[SOURCE_SINK]->disconnect(api);
513 }
514
setSidebandStream(const sp<NativeHandle> &)515 status_t VirtualDisplaySurface::setSidebandStream(const sp<NativeHandle>& /*stream*/) {
516 return INVALID_OPERATION;
517 }
518
allocateBuffers(bool,uint32_t,uint32_t,uint32_t,uint32_t)519 void VirtualDisplaySurface::allocateBuffers(bool /* async */,
520 uint32_t /* width */, uint32_t /* height */, uint32_t /* format */,
521 uint32_t /* usage */) {
522 // TODO: Should we actually allocate buffers for a virtual display?
523 }
524
updateQueueBufferOutput(const QueueBufferOutput & qbo)525 void VirtualDisplaySurface::updateQueueBufferOutput(
526 const QueueBufferOutput& qbo) {
527 uint32_t w, h, transformHint, numPendingBuffers;
528 qbo.deflate(&w, &h, &transformHint, &numPendingBuffers);
529 mQueueBufferOutput.inflate(w, h, 0, numPendingBuffers);
530 }
531
resetPerFrameState()532 void VirtualDisplaySurface::resetPerFrameState() {
533 mCompositionType = COMPOSITION_UNKNOWN;
534 mFbFence = Fence::NO_FENCE;
535 mOutputFence = Fence::NO_FENCE;
536 mOutputProducerSlot = -1;
537 mFbProducerSlot = -1;
538 }
539
refreshOutputBuffer()540 status_t VirtualDisplaySurface::refreshOutputBuffer() {
541 if (mOutputProducerSlot >= 0) {
542 mSource[SOURCE_SINK]->cancelBuffer(
543 mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
544 mOutputFence);
545 }
546
547 int sslot;
548 status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
549 &sslot, &mOutputFence);
550 if (result < 0)
551 return result;
552 mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
553
554 // On GLES-only frames, we don't have the right output buffer acquire fence
555 // until after GLES calls queueBuffer(). So here we just set the buffer
556 // (for use in HWC prepare) but not the fence; we'll call this again with
557 // the proper fence once we have it.
558 result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE,
559 mProducerBuffers[mOutputProducerSlot]);
560
561 return result;
562 }
563
564 // This slot mapping function is its own inverse, so two copies are unnecessary.
565 // Both are kept to make the intent clear where the function is called, and for
566 // the (unlikely) chance that we switch to a different mapping function.
mapSource2ProducerSlot(Source source,int sslot)567 int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
568 if (source == SOURCE_SCRATCH) {
569 return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
570 } else {
571 return sslot;
572 }
573 }
mapProducer2SourceSlot(Source source,int pslot)574 int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
575 return mapSource2ProducerSlot(source, pslot);
576 }
577
578 VirtualDisplaySurface::Source
fbSourceForCompositionType(CompositionType type)579 VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) {
580 return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK;
581 }
582
dbgStateStr() const583 const char* VirtualDisplaySurface::dbgStateStr() const {
584 switch (mDbgState) {
585 case DBG_STATE_IDLE: return "IDLE";
586 case DBG_STATE_PREPARED: return "PREPARED";
587 case DBG_STATE_GLES: return "GLES";
588 case DBG_STATE_GLES_DONE: return "GLES_DONE";
589 case DBG_STATE_HWC: return "HWC";
590 default: return "INVALID";
591 }
592 }
593
dbgSourceStr(Source s)594 const char* VirtualDisplaySurface::dbgSourceStr(Source s) {
595 switch (s) {
596 case SOURCE_SINK: return "SINK";
597 case SOURCE_SCRATCH: return "SCRATCH";
598 default: return "INVALID";
599 }
600 }
601
602 // ---------------------------------------------------------------------------
603 } // namespace android
604 // ---------------------------------------------------------------------------
605