1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 #include "thread.h"
20
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 #include <sstream>
33
34 #include "arch/context.h"
35 #include "art_field-inl.h"
36 #include "art_method-inl.h"
37 #include "base/bit_utils.h"
38 #include "base/mutex.h"
39 #include "base/timing_logger.h"
40 #include "base/to_str.h"
41 #include "class_linker-inl.h"
42 #include "debugger.h"
43 #include "dex_file-inl.h"
44 #include "entrypoints/entrypoint_utils.h"
45 #include "entrypoints/quick/quick_alloc_entrypoints.h"
46 #include "gc_map.h"
47 #include "gc/accounting/card_table-inl.h"
48 #include "gc/allocator/rosalloc.h"
49 #include "gc/heap.h"
50 #include "gc/space/space.h"
51 #include "handle_scope-inl.h"
52 #include "indirect_reference_table-inl.h"
53 #include "jni_internal.h"
54 #include "mirror/class_loader.h"
55 #include "mirror/class-inl.h"
56 #include "mirror/object_array-inl.h"
57 #include "mirror/stack_trace_element.h"
58 #include "monitor.h"
59 #include "object_lock.h"
60 #include "quick_exception_handler.h"
61 #include "quick/quick_method_frame_info.h"
62 #include "reflection.h"
63 #include "runtime.h"
64 #include "scoped_thread_state_change.h"
65 #include "ScopedLocalRef.h"
66 #include "ScopedUtfChars.h"
67 #include "stack.h"
68 #include "thread_list.h"
69 #include "thread-inl.h"
70 #include "utils.h"
71 #include "verifier/dex_gc_map.h"
72 #include "verifier/method_verifier.h"
73 #include "verify_object-inl.h"
74 #include "vmap_table.h"
75 #include "well_known_classes.h"
76
77 namespace art {
78
79 bool Thread::is_started_ = false;
80 pthread_key_t Thread::pthread_key_self_;
81 ConditionVariable* Thread::resume_cond_ = nullptr;
82 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
83
84 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
85
InitCardTable()86 void Thread::InitCardTable() {
87 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
88 }
89
UnimplementedEntryPoint()90 static void UnimplementedEntryPoint() {
91 UNIMPLEMENTED(FATAL);
92 }
93
94 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
95 QuickEntryPoints* qpoints);
96
InitTlsEntryPoints()97 void Thread::InitTlsEntryPoints() {
98 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
99 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
100 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
101 sizeof(tlsPtr_.quick_entrypoints));
102 for (uintptr_t* it = begin; it != end; ++it) {
103 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
104 }
105 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
106 &tlsPtr_.quick_entrypoints);
107 }
108
InitStringEntryPoints()109 void Thread::InitStringEntryPoints() {
110 ScopedObjectAccess soa(this);
111 QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
112 qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
113 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
114 qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
115 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
116 qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
117 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
118 qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
119 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
120 qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
121 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
122 qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
123 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
124 qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
125 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
126 qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
127 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
128 qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
129 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
130 qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
131 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
132 qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
133 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
134 qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
135 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
136 qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
137 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
138 qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
139 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
140 qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
141 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
142 qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
143 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
144 }
145
ResetQuickAllocEntryPointsForThread()146 void Thread::ResetQuickAllocEntryPointsForThread() {
147 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
148 }
149
150 class DeoptimizationReturnValueRecord {
151 public:
DeoptimizationReturnValueRecord(const JValue & ret_val,bool is_reference,DeoptimizationReturnValueRecord * link)152 DeoptimizationReturnValueRecord(const JValue& ret_val,
153 bool is_reference,
154 DeoptimizationReturnValueRecord* link)
155 : ret_val_(ret_val), is_reference_(is_reference), link_(link) {}
156
GetReturnValue() const157 JValue GetReturnValue() const { return ret_val_; }
IsReference() const158 bool IsReference() const { return is_reference_; }
GetLink() const159 DeoptimizationReturnValueRecord* GetLink() const { return link_; }
GetGCRoot()160 mirror::Object** GetGCRoot() {
161 DCHECK(is_reference_);
162 return ret_val_.GetGCRoot();
163 }
164
165 private:
166 JValue ret_val_;
167 const bool is_reference_;
168 DeoptimizationReturnValueRecord* const link_;
169
170 DISALLOW_COPY_AND_ASSIGN(DeoptimizationReturnValueRecord);
171 };
172
173 class StackedShadowFrameRecord {
174 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)175 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
176 StackedShadowFrameType type,
177 StackedShadowFrameRecord* link)
178 : shadow_frame_(shadow_frame),
179 type_(type),
180 link_(link) {}
181
GetShadowFrame() const182 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const183 StackedShadowFrameType GetType() const { return type_; }
GetLink() const184 StackedShadowFrameRecord* GetLink() const { return link_; }
185
186 private:
187 ShadowFrame* const shadow_frame_;
188 const StackedShadowFrameType type_;
189 StackedShadowFrameRecord* const link_;
190
191 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
192 };
193
PushAndClearDeoptimizationReturnValue()194 void Thread::PushAndClearDeoptimizationReturnValue() {
195 DeoptimizationReturnValueRecord* record = new DeoptimizationReturnValueRecord(
196 tls64_.deoptimization_return_value,
197 tls32_.deoptimization_return_value_is_reference,
198 tlsPtr_.deoptimization_return_value_stack);
199 tlsPtr_.deoptimization_return_value_stack = record;
200 ClearDeoptimizationReturnValue();
201 }
202
PopDeoptimizationReturnValue()203 JValue Thread::PopDeoptimizationReturnValue() {
204 DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
205 DCHECK(record != nullptr);
206 tlsPtr_.deoptimization_return_value_stack = record->GetLink();
207 JValue ret_val(record->GetReturnValue());
208 delete record;
209 return ret_val;
210 }
211
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)212 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
213 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
214 sf, type, tlsPtr_.stacked_shadow_frame_record);
215 tlsPtr_.stacked_shadow_frame_record = record;
216 }
217
PopStackedShadowFrame(StackedShadowFrameType type)218 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type) {
219 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
220 DCHECK(record != nullptr);
221 DCHECK_EQ(record->GetType(), type);
222 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
223 ShadowFrame* shadow_frame = record->GetShadowFrame();
224 delete record;
225 return shadow_frame;
226 }
227
InitTid()228 void Thread::InitTid() {
229 tls32_.tid = ::art::GetTid();
230 }
231
InitAfterFork()232 void Thread::InitAfterFork() {
233 // One thread (us) survived the fork, but we have a new tid so we need to
234 // update the value stashed in this Thread*.
235 InitTid();
236 }
237
CreateCallback(void * arg)238 void* Thread::CreateCallback(void* arg) {
239 Thread* self = reinterpret_cast<Thread*>(arg);
240 Runtime* runtime = Runtime::Current();
241 if (runtime == nullptr) {
242 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
243 return nullptr;
244 }
245 {
246 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
247 // after self->Init().
248 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
249 // Check that if we got here we cannot be shutting down (as shutdown should never have started
250 // while threads are being born).
251 CHECK(!runtime->IsShuttingDownLocked());
252 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
253 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
254 // the runtime in such a case. In case this ever changes, we need to make sure here to
255 // delete the tmp_jni_env, as we own it at this point.
256 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
257 self->tlsPtr_.tmp_jni_env = nullptr;
258 Runtime::Current()->EndThreadBirth();
259 }
260 {
261 ScopedObjectAccess soa(self);
262 self->InitStringEntryPoints();
263
264 // Copy peer into self, deleting global reference when done.
265 CHECK(self->tlsPtr_.jpeer != nullptr);
266 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
267 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
268 self->tlsPtr_.jpeer = nullptr;
269 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
270
271 ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
272 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
273 Dbg::PostThreadStart(self);
274
275 // Invoke the 'run' method of our java.lang.Thread.
276 mirror::Object* receiver = self->tlsPtr_.opeer;
277 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
278 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
279 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
280 }
281 // Detach and delete self.
282 Runtime::Current()->GetThreadList()->Unregister(self);
283
284 return nullptr;
285 }
286
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)287 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
288 mirror::Object* thread_peer) {
289 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
290 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
291 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
292 // to stop it from going away.
293 if (kIsDebugBuild) {
294 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
295 if (result != nullptr && !result->IsSuspended()) {
296 Locks::thread_list_lock_->AssertHeld(soa.Self());
297 }
298 }
299 return result;
300 }
301
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)302 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
303 jobject java_thread) {
304 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
305 }
306
FixStackSize(size_t stack_size)307 static size_t FixStackSize(size_t stack_size) {
308 // A stack size of zero means "use the default".
309 if (stack_size == 0) {
310 stack_size = Runtime::Current()->GetDefaultStackSize();
311 }
312
313 // Dalvik used the bionic pthread default stack size for native threads,
314 // so include that here to support apps that expect large native stacks.
315 stack_size += 1 * MB;
316
317 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
318 if (stack_size < PTHREAD_STACK_MIN) {
319 stack_size = PTHREAD_STACK_MIN;
320 }
321
322 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
323 // It's likely that callers are trying to ensure they have at least a certain amount of
324 // stack space, so we should add our reserved space on top of what they requested, rather
325 // than implicitly take it away from them.
326 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
327 } else {
328 // If we are going to use implicit stack checks, allocate space for the protected
329 // region at the bottom of the stack.
330 stack_size += Thread::kStackOverflowImplicitCheckSize +
331 GetStackOverflowReservedBytes(kRuntimeISA);
332 }
333
334 // Some systems require the stack size to be a multiple of the system page size, so round up.
335 stack_size = RoundUp(stack_size, kPageSize);
336
337 return stack_size;
338 }
339
340 // Global variable to prevent the compiler optimizing away the page reads for the stack.
341 uint8_t dont_optimize_this;
342
343 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
344 // overflow is detected. It is located right below the stack_begin_.
345 //
346 // There is a little complexity here that deserves a special mention. On some
347 // architectures, the stack created using a VM_GROWSDOWN flag
348 // to prevent memory being allocated when it's not needed. This flag makes the
349 // kernel only allocate memory for the stack by growing down in memory. Because we
350 // want to put an mprotected region far away from that at the stack top, we need
351 // to make sure the pages for the stack are mapped in before we call mprotect. We do
352 // this by reading every page from the stack bottom (highest address) to the stack top.
353 // We then madvise this away.
InstallImplicitProtection()354 void Thread::InstallImplicitProtection() {
355 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
356 uint8_t* stack_himem = tlsPtr_.stack_end;
357 uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
358 ~(kPageSize - 1)); // Page containing current top of stack.
359
360 // First remove the protection on the protected region as will want to read and
361 // write it. This may fail (on the first attempt when the stack is not mapped)
362 // but we ignore that.
363 UnprotectStack();
364
365 // Map in the stack. This must be done by reading from the
366 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
367 // in the kernel. Any access more than a page below the current SP might cause
368 // a segv.
369
370 // Read every page from the high address to the low.
371 for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
372 dont_optimize_this = *p;
373 }
374
375 VLOG(threads) << "installing stack protected region at " << std::hex <<
376 static_cast<void*>(pregion) << " to " <<
377 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
378
379 // Protect the bottom of the stack to prevent read/write to it.
380 ProtectStack();
381
382 // Tell the kernel that we won't be needing these pages any more.
383 // NB. madvise will probably write zeroes into the memory (on linux it does).
384 uint32_t unwanted_size = stack_top - pregion - kPageSize;
385 madvise(pregion, unwanted_size, MADV_DONTNEED);
386 }
387
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)388 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
389 CHECK(java_peer != nullptr);
390 Thread* self = static_cast<JNIEnvExt*>(env)->self;
391 Runtime* runtime = Runtime::Current();
392
393 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
394 bool thread_start_during_shutdown = false;
395 {
396 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
397 if (runtime->IsShuttingDownLocked()) {
398 thread_start_during_shutdown = true;
399 } else {
400 runtime->StartThreadBirth();
401 }
402 }
403 if (thread_start_during_shutdown) {
404 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
405 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
406 return;
407 }
408
409 Thread* child_thread = new Thread(is_daemon);
410 // Use global JNI ref to hold peer live while child thread starts.
411 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
412 stack_size = FixStackSize(stack_size);
413
414 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
415 // assign it.
416 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
417 reinterpret_cast<jlong>(child_thread));
418
419 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
420 // do not have a good way to report this on the child's side.
421 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
422 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
423
424 int pthread_create_result = 0;
425 if (child_jni_env_ext.get() != nullptr) {
426 pthread_t new_pthread;
427 pthread_attr_t attr;
428 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
429 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
430 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
431 "PTHREAD_CREATE_DETACHED");
432 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
433 pthread_create_result = pthread_create(&new_pthread,
434 &attr,
435 Thread::CreateCallback,
436 child_thread);
437 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
438
439 if (pthread_create_result == 0) {
440 // pthread_create started the new thread. The child is now responsible for managing the
441 // JNIEnvExt we created.
442 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
443 // between the threads.
444 child_jni_env_ext.release();
445 return;
446 }
447 }
448
449 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
450 {
451 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
452 runtime->EndThreadBirth();
453 }
454 // Manually delete the global reference since Thread::Init will not have been run.
455 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
456 child_thread->tlsPtr_.jpeer = nullptr;
457 delete child_thread;
458 child_thread = nullptr;
459 // TODO: remove from thread group?
460 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
461 {
462 std::string msg(child_jni_env_ext.get() == nullptr ?
463 "Could not allocate JNI Env" :
464 StringPrintf("pthread_create (%s stack) failed: %s",
465 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
466 ScopedObjectAccess soa(env);
467 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
468 }
469 }
470
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)471 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
472 // This function does all the initialization that must be run by the native thread it applies to.
473 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
474 // we can handshake with the corresponding native thread when it's ready.) Check this native
475 // thread hasn't been through here already...
476 CHECK(Thread::Current() == nullptr);
477
478 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
479 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
480 tlsPtr_.pthread_self = pthread_self();
481 CHECK(is_started_);
482
483 SetUpAlternateSignalStack();
484 if (!InitStackHwm()) {
485 return false;
486 }
487 InitCpu();
488 InitTlsEntryPoints();
489 RemoveSuspendTrigger();
490 InitCardTable();
491 InitTid();
492
493 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
494 DCHECK_EQ(Thread::Current(), this);
495
496 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
497
498 if (jni_env_ext != nullptr) {
499 DCHECK_EQ(jni_env_ext->vm, java_vm);
500 DCHECK_EQ(jni_env_ext->self, this);
501 tlsPtr_.jni_env = jni_env_ext;
502 } else {
503 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
504 if (tlsPtr_.jni_env == nullptr) {
505 return false;
506 }
507 }
508
509 thread_list->Register(this);
510 return true;
511 }
512
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)513 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
514 bool create_peer) {
515 Runtime* runtime = Runtime::Current();
516 if (runtime == nullptr) {
517 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
518 return nullptr;
519 }
520 Thread* self;
521 {
522 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
523 if (runtime->IsShuttingDownLocked()) {
524 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
525 return nullptr;
526 } else {
527 Runtime::Current()->StartThreadBirth();
528 self = new Thread(as_daemon);
529 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
530 Runtime::Current()->EndThreadBirth();
531 if (!init_success) {
532 delete self;
533 return nullptr;
534 }
535 }
536 }
537
538 self->InitStringEntryPoints();
539
540 CHECK_NE(self->GetState(), kRunnable);
541 self->SetState(kNative);
542
543 // If we're the main thread, ClassLinker won't be created until after we're attached,
544 // so that thread needs a two-stage attach. Regular threads don't need this hack.
545 // In the compiler, all threads need this hack, because no-one's going to be getting
546 // a native peer!
547 if (create_peer) {
548 self->CreatePeer(thread_name, as_daemon, thread_group);
549 if (self->IsExceptionPending()) {
550 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
551 {
552 ScopedObjectAccess soa(self);
553 LOG(ERROR) << "Exception creating thread peer:";
554 LOG(ERROR) << self->GetException()->Dump();
555 self->ClearException();
556 }
557 runtime->GetThreadList()->Unregister(self);
558 // Unregister deletes self, no need to do this here.
559 return nullptr;
560 }
561 } else {
562 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
563 if (thread_name != nullptr) {
564 self->tlsPtr_.name->assign(thread_name);
565 ::art::SetThreadName(thread_name);
566 } else if (self->GetJniEnv()->check_jni) {
567 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
568 }
569 }
570
571 {
572 ScopedObjectAccess soa(self);
573 Dbg::PostThreadStart(self);
574 }
575
576 return self;
577 }
578
CreatePeer(const char * name,bool as_daemon,jobject thread_group)579 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
580 Runtime* runtime = Runtime::Current();
581 CHECK(runtime->IsStarted());
582 JNIEnv* env = tlsPtr_.jni_env;
583
584 if (thread_group == nullptr) {
585 thread_group = runtime->GetMainThreadGroup();
586 }
587 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
588 // Add missing null check in case of OOM b/18297817
589 if (name != nullptr && thread_name.get() == nullptr) {
590 CHECK(IsExceptionPending());
591 return;
592 }
593 jint thread_priority = GetNativePriority();
594 jboolean thread_is_daemon = as_daemon;
595
596 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
597 if (peer.get() == nullptr) {
598 CHECK(IsExceptionPending());
599 return;
600 }
601 {
602 ScopedObjectAccess soa(this);
603 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
604 }
605 env->CallNonvirtualVoidMethod(peer.get(),
606 WellKnownClasses::java_lang_Thread,
607 WellKnownClasses::java_lang_Thread_init,
608 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
609 if (IsExceptionPending()) {
610 return;
611 }
612
613 Thread* self = this;
614 DCHECK_EQ(self, Thread::Current());
615 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
616 reinterpret_cast<jlong>(self));
617
618 ScopedObjectAccess soa(self);
619 StackHandleScope<1> hs(self);
620 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
621 if (peer_thread_name.Get() == nullptr) {
622 // The Thread constructor should have set the Thread.name to a
623 // non-null value. However, because we can run without code
624 // available (in the compiler, in tests), we manually assign the
625 // fields the constructor should have set.
626 if (runtime->IsActiveTransaction()) {
627 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
628 } else {
629 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
630 }
631 peer_thread_name.Assign(GetThreadName(soa));
632 }
633 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
634 if (peer_thread_name.Get() != nullptr) {
635 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
636 }
637 }
638
639 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)640 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
641 jobject thread_name, jint thread_priority) {
642 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
643 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
644 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
645 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
646 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
647 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
648 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
649 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
650 }
651
SetThreadName(const char * name)652 void Thread::SetThreadName(const char* name) {
653 tlsPtr_.name->assign(name);
654 ::art::SetThreadName(name);
655 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
656 }
657
InitStackHwm()658 bool Thread::InitStackHwm() {
659 void* read_stack_base;
660 size_t read_stack_size;
661 size_t read_guard_size;
662 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
663
664 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
665 tlsPtr_.stack_size = read_stack_size;
666
667 // The minimum stack size we can cope with is the overflow reserved bytes (typically
668 // 8K) + the protected region size (4K) + another page (4K). Typically this will
669 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
670 // between 8K and 12K.
671 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
672 + 4 * KB;
673 if (read_stack_size <= min_stack) {
674 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
675 LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
676 "Attempt to attach a thread with a too-small stack");
677 return false;
678 }
679
680 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
681 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
682 read_stack_base,
683 PrettySize(read_stack_size).c_str(),
684 PrettySize(read_guard_size).c_str());
685
686 // Set stack_end_ to the bottom of the stack saving space of stack overflows
687
688 Runtime* runtime = Runtime::Current();
689 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
690 ResetDefaultStackEnd();
691
692 // Install the protected region if we are doing implicit overflow checks.
693 if (implicit_stack_check) {
694 // The thread might have protected region at the bottom. We need
695 // to install our own region so we need to move the limits
696 // of the stack to make room for it.
697
698 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
699 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
700 tlsPtr_.stack_size -= read_guard_size;
701
702 InstallImplicitProtection();
703 }
704
705 // Sanity check.
706 int stack_variable;
707 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
708
709 return true;
710 }
711
ShortDump(std::ostream & os) const712 void Thread::ShortDump(std::ostream& os) const {
713 os << "Thread[";
714 if (GetThreadId() != 0) {
715 // If we're in kStarting, we won't have a thin lock id or tid yet.
716 os << GetThreadId()
717 << ",tid=" << GetTid() << ',';
718 }
719 os << GetState()
720 << ",Thread*=" << this
721 << ",peer=" << tlsPtr_.opeer
722 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
723 << "]";
724 }
725
Dump(std::ostream & os) const726 void Thread::Dump(std::ostream& os) const {
727 DumpState(os);
728 DumpStack(os);
729 }
730
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const731 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
732 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
733 return (tlsPtr_.opeer != nullptr) ?
734 reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
735 }
736
GetThreadName(std::string & name) const737 void Thread::GetThreadName(std::string& name) const {
738 name.assign(*tlsPtr_.name);
739 }
740
GetCpuMicroTime() const741 uint64_t Thread::GetCpuMicroTime() const {
742 #if defined(__linux__)
743 clockid_t cpu_clock_id;
744 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
745 timespec now;
746 clock_gettime(cpu_clock_id, &now);
747 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
748 #else // __APPLE__
749 UNIMPLEMENTED(WARNING);
750 return -1;
751 #endif
752 }
753
754 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)755 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
756 LOG(ERROR) << *thread << " suspend count already zero.";
757 Locks::thread_suspend_count_lock_->Unlock(self);
758 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
759 Locks::mutator_lock_->SharedTryLock(self);
760 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
761 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
762 }
763 }
764 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
765 Locks::thread_list_lock_->TryLock(self);
766 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
767 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
768 }
769 }
770 std::ostringstream ss;
771 Runtime::Current()->GetThreadList()->Dump(ss);
772 LOG(FATAL) << ss.str();
773 }
774
ModifySuspendCount(Thread * self,int delta,bool for_debugger)775 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
776 if (kIsDebugBuild) {
777 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
778 << delta << " " << tls32_.debug_suspend_count << " " << this;
779 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
780 Locks::thread_suspend_count_lock_->AssertHeld(self);
781 if (this != self && !IsSuspended()) {
782 Locks::thread_list_lock_->AssertHeld(self);
783 }
784 }
785 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
786 UnsafeLogFatalForSuspendCount(self, this);
787 return;
788 }
789
790 tls32_.suspend_count += delta;
791 if (for_debugger) {
792 tls32_.debug_suspend_count += delta;
793 }
794
795 if (tls32_.suspend_count == 0) {
796 AtomicClearFlag(kSuspendRequest);
797 } else {
798 AtomicSetFlag(kSuspendRequest);
799 TriggerSuspend();
800 }
801 }
802
RunCheckpointFunction()803 void Thread::RunCheckpointFunction() {
804 Closure *checkpoints[kMaxCheckpoints];
805
806 // Grab the suspend_count lock and copy the current set of
807 // checkpoints. Then clear the list and the flag. The RequestCheckpoint
808 // function will also grab this lock so we prevent a race between setting
809 // the kCheckpointRequest flag and clearing it.
810 {
811 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
812 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
813 checkpoints[i] = tlsPtr_.checkpoint_functions[i];
814 tlsPtr_.checkpoint_functions[i] = nullptr;
815 }
816 AtomicClearFlag(kCheckpointRequest);
817 }
818
819 // Outside the lock, run all the checkpoint functions that
820 // we collected.
821 bool found_checkpoint = false;
822 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
823 if (checkpoints[i] != nullptr) {
824 ATRACE_BEGIN("Checkpoint function");
825 checkpoints[i]->Run(this);
826 ATRACE_END();
827 found_checkpoint = true;
828 }
829 }
830 CHECK(found_checkpoint);
831 }
832
RequestCheckpoint(Closure * function)833 bool Thread::RequestCheckpoint(Closure* function) {
834 union StateAndFlags old_state_and_flags;
835 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
836 if (old_state_and_flags.as_struct.state != kRunnable) {
837 return false; // Fail, thread is suspended and so can't run a checkpoint.
838 }
839
840 uint32_t available_checkpoint = kMaxCheckpoints;
841 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
842 if (tlsPtr_.checkpoint_functions[i] == nullptr) {
843 available_checkpoint = i;
844 break;
845 }
846 }
847 if (available_checkpoint == kMaxCheckpoints) {
848 // No checkpoint functions available, we can't run a checkpoint
849 return false;
850 }
851 tlsPtr_.checkpoint_functions[available_checkpoint] = function;
852
853 // Checkpoint function installed now install flag bit.
854 // We must be runnable to request a checkpoint.
855 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
856 union StateAndFlags new_state_and_flags;
857 new_state_and_flags.as_int = old_state_and_flags.as_int;
858 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
859 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
860 old_state_and_flags.as_int, new_state_and_flags.as_int);
861 if (UNLIKELY(!success)) {
862 // The thread changed state before the checkpoint was installed.
863 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
864 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
865 } else {
866 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
867 TriggerSuspend();
868 }
869 return success;
870 }
871
GetFlipFunction()872 Closure* Thread::GetFlipFunction() {
873 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
874 Closure* func;
875 do {
876 func = atomic_func->LoadRelaxed();
877 if (func == nullptr) {
878 return nullptr;
879 }
880 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
881 DCHECK(func != nullptr);
882 return func;
883 }
884
SetFlipFunction(Closure * function)885 void Thread::SetFlipFunction(Closure* function) {
886 CHECK(function != nullptr);
887 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
888 atomic_func->StoreSequentiallyConsistent(function);
889 }
890
FullSuspendCheck()891 void Thread::FullSuspendCheck() {
892 VLOG(threads) << this << " self-suspending";
893 ATRACE_BEGIN("Full suspend check");
894 // Make thread appear suspended to other threads, release mutator_lock_.
895 tls32_.suspended_at_suspend_check = true;
896 TransitionFromRunnableToSuspended(kSuspended);
897 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
898 TransitionFromSuspendedToRunnable();
899 tls32_.suspended_at_suspend_check = false;
900 ATRACE_END();
901 VLOG(threads) << this << " self-reviving";
902 }
903
DumpState(std::ostream & os,const Thread * thread,pid_t tid)904 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
905 std::string group_name;
906 int priority;
907 bool is_daemon = false;
908 Thread* self = Thread::Current();
909
910 // If flip_function is not null, it means we have run a checkpoint
911 // before the thread wakes up to execute the flip function and the
912 // thread roots haven't been forwarded. So the following access to
913 // the roots (opeer or methods in the frames) would be bad. Run it
914 // here. TODO: clean up.
915 if (thread != nullptr) {
916 ScopedObjectAccessUnchecked soa(self);
917 Thread* this_thread = const_cast<Thread*>(thread);
918 Closure* flip_func = this_thread->GetFlipFunction();
919 if (flip_func != nullptr) {
920 flip_func->Run(this_thread);
921 }
922 }
923
924 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
925 // cause ScopedObjectAccessUnchecked to deadlock.
926 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
927 ScopedObjectAccessUnchecked soa(self);
928 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
929 ->GetInt(thread->tlsPtr_.opeer);
930 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
931 ->GetBoolean(thread->tlsPtr_.opeer);
932
933 mirror::Object* thread_group =
934 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
935
936 if (thread_group != nullptr) {
937 ArtField* group_name_field =
938 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
939 mirror::String* group_name_string =
940 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
941 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
942 }
943 } else {
944 priority = GetNativePriority();
945 }
946
947 std::string scheduler_group_name(GetSchedulerGroupName(tid));
948 if (scheduler_group_name.empty()) {
949 scheduler_group_name = "default";
950 }
951
952 if (thread != nullptr) {
953 os << '"' << *thread->tlsPtr_.name << '"';
954 if (is_daemon) {
955 os << " daemon";
956 }
957 os << " prio=" << priority
958 << " tid=" << thread->GetThreadId()
959 << " " << thread->GetState();
960 if (thread->IsStillStarting()) {
961 os << " (still starting up)";
962 }
963 os << "\n";
964 } else {
965 os << '"' << ::art::GetThreadName(tid) << '"'
966 << " prio=" << priority
967 << " (not attached)\n";
968 }
969
970 if (thread != nullptr) {
971 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
972 os << " | group=\"" << group_name << "\""
973 << " sCount=" << thread->tls32_.suspend_count
974 << " dsCount=" << thread->tls32_.debug_suspend_count
975 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
976 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
977 }
978
979 os << " | sysTid=" << tid
980 << " nice=" << getpriority(PRIO_PROCESS, tid)
981 << " cgrp=" << scheduler_group_name;
982 if (thread != nullptr) {
983 int policy;
984 sched_param sp;
985 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
986 __FUNCTION__);
987 os << " sched=" << policy << "/" << sp.sched_priority
988 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
989 }
990 os << "\n";
991
992 // Grab the scheduler stats for this thread.
993 std::string scheduler_stats;
994 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
995 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
996 } else {
997 scheduler_stats = "0 0 0";
998 }
999
1000 char native_thread_state = '?';
1001 int utime = 0;
1002 int stime = 0;
1003 int task_cpu = 0;
1004 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1005
1006 os << " | state=" << native_thread_state
1007 << " schedstat=( " << scheduler_stats << " )"
1008 << " utm=" << utime
1009 << " stm=" << stime
1010 << " core=" << task_cpu
1011 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1012 if (thread != nullptr) {
1013 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1014 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1015 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1016 // Dump the held mutexes.
1017 os << " | held mutexes=";
1018 for (size_t i = 0; i < kLockLevelCount; ++i) {
1019 if (i != kMonitorLock) {
1020 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1021 if (mutex != nullptr) {
1022 os << " \"" << mutex->GetName() << "\"";
1023 if (mutex->IsReaderWriterMutex()) {
1024 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1025 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1026 os << "(exclusive held)";
1027 } else {
1028 os << "(shared held)";
1029 }
1030 }
1031 }
1032 }
1033 }
1034 os << "\n";
1035 }
1036 }
1037
DumpState(std::ostream & os) const1038 void Thread::DumpState(std::ostream& os) const {
1039 Thread::DumpState(os, this, GetTid());
1040 }
1041
1042 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1043 StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
1044 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1045 : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1046 os(os_in),
1047 thread(thread_in),
1048 can_allocate(can_allocate_in),
1049 last_method(nullptr),
1050 last_line_number(0),
1051 repetition_count(0),
1052 frame_count(0) {}
1053
~StackDumpVisitorart::StackDumpVisitor1054 virtual ~StackDumpVisitor() {
1055 if (frame_count == 0) {
1056 os << " (no managed stack frames)\n";
1057 }
1058 }
1059
VisitFrameart::StackDumpVisitor1060 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1061 ArtMethod* m = GetMethod();
1062 if (m->IsRuntimeMethod()) {
1063 return true;
1064 }
1065 m = m->GetInterfaceMethodIfProxy(sizeof(void*));
1066 const int kMaxRepetition = 3;
1067 mirror::Class* c = m->GetDeclaringClass();
1068 mirror::DexCache* dex_cache = c->GetDexCache();
1069 int line_number = -1;
1070 if (dex_cache != nullptr) { // be tolerant of bad input
1071 const DexFile& dex_file = *dex_cache->GetDexFile();
1072 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
1073 }
1074 if (line_number == last_line_number && last_method == m) {
1075 ++repetition_count;
1076 } else {
1077 if (repetition_count >= kMaxRepetition) {
1078 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1079 }
1080 repetition_count = 0;
1081 last_line_number = line_number;
1082 last_method = m;
1083 }
1084 if (repetition_count < kMaxRepetition) {
1085 os << " at " << PrettyMethod(m, false);
1086 if (m->IsNative()) {
1087 os << "(Native method)";
1088 } else {
1089 const char* source_file(m->GetDeclaringClassSourceFile());
1090 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1091 << ":" << line_number << ")";
1092 }
1093 os << "\n";
1094 if (frame_count == 0) {
1095 Monitor::DescribeWait(os, thread);
1096 }
1097 if (can_allocate) {
1098 // Visit locks, but do not abort on errors. This would trigger a nested abort.
1099 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1100 }
1101 }
1102
1103 ++frame_count;
1104 return true;
1105 }
1106
DumpLockedObjectart::StackDumpVisitor1107 static void DumpLockedObject(mirror::Object* o, void* context)
1108 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1109 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1110 os << " - locked ";
1111 if (o == nullptr) {
1112 os << "an unknown object";
1113 } else {
1114 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1115 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1116 // Getting the identity hashcode here would result in lock inflation and suspension of the
1117 // current thread, which isn't safe if this is the only runnable thread.
1118 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1119 PrettyTypeOf(o).c_str());
1120 } else {
1121 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1122 // we get the pretty type beofre we call IdentityHashCode.
1123 const std::string pretty_type(PrettyTypeOf(o));
1124 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1125 }
1126 }
1127 os << "\n";
1128 }
1129
1130 std::ostream& os;
1131 const Thread* thread;
1132 const bool can_allocate;
1133 ArtMethod* last_method;
1134 int last_line_number;
1135 int repetition_count;
1136 int frame_count;
1137 };
1138
ShouldShowNativeStack(const Thread * thread)1139 static bool ShouldShowNativeStack(const Thread* thread)
1140 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1141 ThreadState state = thread->GetState();
1142
1143 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1144 if (state > kWaiting && state < kStarting) {
1145 return true;
1146 }
1147
1148 // In an Object.wait variant or Thread.sleep? That's not interesting.
1149 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1150 return false;
1151 }
1152
1153 // Threads with no managed stack frames should be shown.
1154 const ManagedStack* managed_stack = thread->GetManagedStack();
1155 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1156 managed_stack->GetTopShadowFrame() == nullptr)) {
1157 return true;
1158 }
1159
1160 // In some other native method? That's interesting.
1161 // We don't just check kNative because native methods will be in state kSuspended if they're
1162 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1163 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1164 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1165 return current_method != nullptr && current_method->IsNative();
1166 }
1167
DumpJavaStack(std::ostream & os) const1168 void Thread::DumpJavaStack(std::ostream& os) const {
1169 // If flip_function is not null, it means we have run a checkpoint
1170 // before the thread wakes up to execute the flip function and the
1171 // thread roots haven't been forwarded. So the following access to
1172 // the roots (locks or methods in the frames) would be bad. Run it
1173 // here. TODO: clean up.
1174 {
1175 Thread* this_thread = const_cast<Thread*>(this);
1176 Closure* flip_func = this_thread->GetFlipFunction();
1177 if (flip_func != nullptr) {
1178 flip_func->Run(this_thread);
1179 }
1180 }
1181
1182 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1183 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1184 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1185 // thread.
1186 StackHandleScope<1> scope(Thread::Current());
1187 Handle<mirror::Throwable> exc;
1188 bool have_exception = false;
1189 if (IsExceptionPending()) {
1190 exc = scope.NewHandle(GetException());
1191 const_cast<Thread*>(this)->ClearException();
1192 have_exception = true;
1193 }
1194
1195 std::unique_ptr<Context> context(Context::Create());
1196 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1197 !tls32_.throwing_OutOfMemoryError);
1198 dumper.WalkStack();
1199
1200 if (have_exception) {
1201 const_cast<Thread*>(this)->SetException(exc.Get());
1202 }
1203 }
1204
DumpStack(std::ostream & os) const1205 void Thread::DumpStack(std::ostream& os) const {
1206 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1207 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1208 // the race with the thread_suspend_count_lock_).
1209 bool dump_for_abort = (gAborting > 0);
1210 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1211 if (!kIsDebugBuild) {
1212 // We always want to dump the stack for an abort, however, there is no point dumping another
1213 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1214 safe_to_dump = (safe_to_dump || dump_for_abort);
1215 }
1216 if (safe_to_dump) {
1217 // If we're currently in native code, dump that stack before dumping the managed stack.
1218 if (dump_for_abort || ShouldShowNativeStack(this)) {
1219 DumpKernelStack(os, GetTid(), " kernel: ", false);
1220 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1221 }
1222 DumpJavaStack(os);
1223 } else {
1224 os << "Not able to dump stack of thread that isn't suspended";
1225 }
1226 }
1227
ThreadExitCallback(void * arg)1228 void Thread::ThreadExitCallback(void* arg) {
1229 Thread* self = reinterpret_cast<Thread*>(arg);
1230 if (self->tls32_.thread_exit_check_count == 0) {
1231 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1232 "going to use a pthread_key_create destructor?): " << *self;
1233 CHECK(is_started_);
1234 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1235 self->tls32_.thread_exit_check_count = 1;
1236 } else {
1237 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1238 }
1239 }
1240
Startup()1241 void Thread::Startup() {
1242 CHECK(!is_started_);
1243 is_started_ = true;
1244 {
1245 // MutexLock to keep annotalysis happy.
1246 //
1247 // Note we use null for the thread because Thread::Current can
1248 // return garbage since (is_started_ == true) and
1249 // Thread::pthread_key_self_ is not yet initialized.
1250 // This was seen on glibc.
1251 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1252 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1253 *Locks::thread_suspend_count_lock_);
1254 }
1255
1256 // Allocate a TLS slot.
1257 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1258 "self key");
1259
1260 // Double-check the TLS slot allocation.
1261 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1262 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1263 }
1264 }
1265
FinishStartup()1266 void Thread::FinishStartup() {
1267 Runtime* runtime = Runtime::Current();
1268 CHECK(runtime->IsStarted());
1269
1270 // Finish attaching the main thread.
1271 ScopedObjectAccess soa(Thread::Current());
1272 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1273 Thread::Current()->AssertNoPendingException();
1274
1275 Runtime::Current()->GetClassLinker()->RunRootClinits();
1276 }
1277
Shutdown()1278 void Thread::Shutdown() {
1279 CHECK(is_started_);
1280 is_started_ = false;
1281 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1282 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1283 if (resume_cond_ != nullptr) {
1284 delete resume_cond_;
1285 resume_cond_ = nullptr;
1286 }
1287 }
1288
Thread(bool daemon)1289 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1290 wait_mutex_ = new Mutex("a thread wait mutex");
1291 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1292 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1293 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1294 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1295
1296 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1297 tls32_.state_and_flags.as_struct.flags = 0;
1298 tls32_.state_and_flags.as_struct.state = kNative;
1299 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1300 std::fill(tlsPtr_.rosalloc_runs,
1301 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1302 gc::allocator::RosAlloc::GetDedicatedFullRun());
1303 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1304 tlsPtr_.checkpoint_functions[i] = nullptr;
1305 }
1306 tlsPtr_.flip_function = nullptr;
1307 tls32_.suspended_at_suspend_check = false;
1308 }
1309
IsStillStarting() const1310 bool Thread::IsStillStarting() const {
1311 // You might think you can check whether the state is kStarting, but for much of thread startup,
1312 // the thread is in kNative; it might also be in kVmWait.
1313 // You might think you can check whether the peer is null, but the peer is actually created and
1314 // assigned fairly early on, and needs to be.
1315 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1316 // this thread _ever_ entered kRunnable".
1317 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1318 (*tlsPtr_.name == kThreadNameDuringStartup);
1319 }
1320
AssertPendingException() const1321 void Thread::AssertPendingException() const {
1322 CHECK(IsExceptionPending()) << "Pending exception expected.";
1323 }
1324
AssertPendingOOMException() const1325 void Thread::AssertPendingOOMException() const {
1326 AssertPendingException();
1327 auto* e = GetException();
1328 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
1329 << e->Dump();
1330 }
1331
AssertNoPendingException() const1332 void Thread::AssertNoPendingException() const {
1333 if (UNLIKELY(IsExceptionPending())) {
1334 ScopedObjectAccess soa(Thread::Current());
1335 mirror::Throwable* exception = GetException();
1336 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1337 }
1338 }
1339
AssertNoPendingExceptionForNewException(const char * msg) const1340 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1341 if (UNLIKELY(IsExceptionPending())) {
1342 ScopedObjectAccess soa(Thread::Current());
1343 mirror::Throwable* exception = GetException();
1344 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1345 << exception->Dump();
1346 }
1347 }
1348
1349 class MonitorExitVisitor : public SingleRootVisitor {
1350 public:
MonitorExitVisitor(Thread * self)1351 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
1352
1353 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)1354 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
1355 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1356 if (self_->HoldsLock(entered_monitor)) {
1357 LOG(WARNING) << "Calling MonitorExit on object "
1358 << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
1359 << " left locked by native thread "
1360 << *Thread::Current() << " which is detaching";
1361 entered_monitor->MonitorExit(self_);
1362 }
1363 }
1364
1365 private:
1366 Thread* const self_;
1367 };
1368
Destroy()1369 void Thread::Destroy() {
1370 Thread* self = this;
1371 DCHECK_EQ(self, Thread::Current());
1372
1373 if (tlsPtr_.jni_env != nullptr) {
1374 {
1375 ScopedObjectAccess soa(self);
1376 MonitorExitVisitor visitor(self);
1377 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1378 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
1379 }
1380 // Release locally held global references which releasing may require the mutator lock.
1381 if (tlsPtr_.jpeer != nullptr) {
1382 // If pthread_create fails we don't have a jni env here.
1383 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1384 tlsPtr_.jpeer = nullptr;
1385 }
1386 if (tlsPtr_.class_loader_override != nullptr) {
1387 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1388 tlsPtr_.class_loader_override = nullptr;
1389 }
1390 }
1391
1392 if (tlsPtr_.opeer != nullptr) {
1393 ScopedObjectAccess soa(self);
1394 // We may need to call user-supplied managed code, do this before final clean-up.
1395 HandleUncaughtExceptions(soa);
1396 RemoveFromThreadGroup(soa);
1397
1398 // this.nativePeer = 0;
1399 if (Runtime::Current()->IsActiveTransaction()) {
1400 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1401 ->SetLong<true>(tlsPtr_.opeer, 0);
1402 } else {
1403 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1404 ->SetLong<false>(tlsPtr_.opeer, 0);
1405 }
1406 Dbg::PostThreadDeath(self);
1407
1408 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1409 // who is waiting.
1410 mirror::Object* lock =
1411 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1412 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1413 if (lock != nullptr) {
1414 StackHandleScope<1> hs(self);
1415 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1416 ObjectLock<mirror::Object> locker(self, h_obj);
1417 locker.NotifyAll();
1418 }
1419 tlsPtr_.opeer = nullptr;
1420 }
1421
1422 {
1423 ScopedObjectAccess soa(self);
1424 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1425 }
1426 }
1427
~Thread()1428 Thread::~Thread() {
1429 CHECK(tlsPtr_.class_loader_override == nullptr);
1430 CHECK(tlsPtr_.jpeer == nullptr);
1431 CHECK(tlsPtr_.opeer == nullptr);
1432 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
1433 if (initialized) {
1434 delete tlsPtr_.jni_env;
1435 tlsPtr_.jni_env = nullptr;
1436 }
1437 CHECK_NE(GetState(), kRunnable);
1438 CHECK_NE(ReadFlag(kCheckpointRequest), true);
1439 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1440 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1441 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1442 CHECK(tlsPtr_.flip_function == nullptr);
1443 CHECK_EQ(tls32_.suspended_at_suspend_check, false);
1444
1445 // We may be deleting a still born thread.
1446 SetStateUnsafe(kTerminated);
1447
1448 delete wait_cond_;
1449 delete wait_mutex_;
1450
1451 if (tlsPtr_.long_jump_context != nullptr) {
1452 delete tlsPtr_.long_jump_context;
1453 }
1454
1455 if (initialized) {
1456 CleanupCpu();
1457 }
1458
1459 if (tlsPtr_.single_step_control != nullptr) {
1460 delete tlsPtr_.single_step_control;
1461 }
1462 delete tlsPtr_.instrumentation_stack;
1463 delete tlsPtr_.name;
1464 delete tlsPtr_.stack_trace_sample;
1465 free(tlsPtr_.nested_signal_state);
1466
1467 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1468
1469 TearDownAlternateSignalStack();
1470 }
1471
HandleUncaughtExceptions(ScopedObjectAccess & soa)1472 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1473 if (!IsExceptionPending()) {
1474 return;
1475 }
1476 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1477 ScopedThreadStateChange tsc(this, kNative);
1478
1479 // Get and clear the exception.
1480 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1481 tlsPtr_.jni_env->ExceptionClear();
1482
1483 // If the thread has its own handler, use that.
1484 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1485 tlsPtr_.jni_env->GetObjectField(peer.get(),
1486 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1487 if (handler.get() == nullptr) {
1488 // Otherwise use the thread group's default handler.
1489 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1490 WellKnownClasses::java_lang_Thread_group));
1491 }
1492
1493 // Call the handler.
1494 tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1495 WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
1496 peer.get(), exception.get());
1497
1498 // If the handler threw, clear that exception too.
1499 tlsPtr_.jni_env->ExceptionClear();
1500 }
1501
RemoveFromThreadGroup(ScopedObjectAccess & soa)1502 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1503 // this.group.removeThread(this);
1504 // group can be null if we're in the compiler or a test.
1505 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1506 ->GetObject(tlsPtr_.opeer);
1507 if (ogroup != nullptr) {
1508 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1509 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1510 ScopedThreadStateChange tsc(soa.Self(), kNative);
1511 tlsPtr_.jni_env->CallVoidMethod(group.get(),
1512 WellKnownClasses::java_lang_ThreadGroup_removeThread,
1513 peer.get());
1514 }
1515 }
1516
NumHandleReferences()1517 size_t Thread::NumHandleReferences() {
1518 size_t count = 0;
1519 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1520 count += cur->NumberOfReferences();
1521 }
1522 return count;
1523 }
1524
HandleScopeContains(jobject obj) const1525 bool Thread::HandleScopeContains(jobject obj) const {
1526 StackReference<mirror::Object>* hs_entry =
1527 reinterpret_cast<StackReference<mirror::Object>*>(obj);
1528 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1529 if (cur->Contains(hs_entry)) {
1530 return true;
1531 }
1532 }
1533 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1534 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1535 }
1536
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)1537 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
1538 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1539 visitor, RootInfo(kRootNativeStack, thread_id));
1540 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1541 for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
1542 // GetReference returns a pointer to the stack reference within the handle scope. If this
1543 // needs to be updated, it will be done by the root visitor.
1544 buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
1545 }
1546 }
1547 }
1548
DecodeJObject(jobject obj) const1549 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1550 if (obj == nullptr) {
1551 return nullptr;
1552 }
1553 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1554 IndirectRefKind kind = GetIndirectRefKind(ref);
1555 mirror::Object* result;
1556 bool expect_null = false;
1557 // The "kinds" below are sorted by the frequency we expect to encounter them.
1558 if (kind == kLocal) {
1559 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1560 // Local references do not need a read barrier.
1561 result = locals.Get<kWithoutReadBarrier>(ref);
1562 } else if (kind == kHandleScopeOrInvalid) {
1563 // TODO: make stack indirect reference table lookup more efficient.
1564 // Check if this is a local reference in the handle scope.
1565 if (LIKELY(HandleScopeContains(obj))) {
1566 // Read from handle scope.
1567 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1568 VerifyObject(result);
1569 } else {
1570 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1571 expect_null = true;
1572 result = nullptr;
1573 }
1574 } else if (kind == kGlobal) {
1575 result = tlsPtr_.jni_env->vm->DecodeGlobal(const_cast<Thread*>(this), ref);
1576 } else {
1577 DCHECK_EQ(kind, kWeakGlobal);
1578 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1579 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1580 // This is a special case where it's okay to return null.
1581 expect_null = true;
1582 result = nullptr;
1583 }
1584 }
1585
1586 if (UNLIKELY(!expect_null && result == nullptr)) {
1587 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1588 ToStr<IndirectRefKind>(kind).c_str(), obj);
1589 }
1590 return result;
1591 }
1592
1593 // Implements java.lang.Thread.interrupted.
Interrupted()1594 bool Thread::Interrupted() {
1595 MutexLock mu(Thread::Current(), *wait_mutex_);
1596 bool interrupted = IsInterruptedLocked();
1597 SetInterruptedLocked(false);
1598 return interrupted;
1599 }
1600
1601 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1602 bool Thread::IsInterrupted() {
1603 MutexLock mu(Thread::Current(), *wait_mutex_);
1604 return IsInterruptedLocked();
1605 }
1606
Interrupt(Thread * self)1607 void Thread::Interrupt(Thread* self) {
1608 MutexLock mu(self, *wait_mutex_);
1609 if (interrupted_) {
1610 return;
1611 }
1612 interrupted_ = true;
1613 NotifyLocked(self);
1614 }
1615
Notify()1616 void Thread::Notify() {
1617 Thread* self = Thread::Current();
1618 MutexLock mu(self, *wait_mutex_);
1619 NotifyLocked(self);
1620 }
1621
NotifyLocked(Thread * self)1622 void Thread::NotifyLocked(Thread* self) {
1623 if (wait_monitor_ != nullptr) {
1624 wait_cond_->Signal(self);
1625 }
1626 }
1627
SetClassLoaderOverride(jobject class_loader_override)1628 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1629 if (tlsPtr_.class_loader_override != nullptr) {
1630 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1631 }
1632 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1633 }
1634
1635 class CountStackDepthVisitor : public StackVisitor {
1636 public:
1637 explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1638 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1639 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1640 depth_(0), skip_depth_(0), skipping_(true) {}
1641
VisitFrame()1642 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1643 // We want to skip frames up to and including the exception's constructor.
1644 // Note we also skip the frame if it doesn't have a method (namely the callee
1645 // save frame)
1646 ArtMethod* m = GetMethod();
1647 if (skipping_ && !m->IsRuntimeMethod() &&
1648 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1649 skipping_ = false;
1650 }
1651 if (!skipping_) {
1652 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1653 ++depth_;
1654 }
1655 } else {
1656 ++skip_depth_;
1657 }
1658 return true;
1659 }
1660
GetDepth() const1661 int GetDepth() const {
1662 return depth_;
1663 }
1664
GetSkipDepth() const1665 int GetSkipDepth() const {
1666 return skip_depth_;
1667 }
1668
1669 private:
1670 uint32_t depth_;
1671 uint32_t skip_depth_;
1672 bool skipping_;
1673 };
1674
1675 template<bool kTransactionActive>
1676 class BuildInternalStackTraceVisitor : public StackVisitor {
1677 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1678 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1679 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1680 self_(self),
1681 skip_depth_(skip_depth),
1682 count_(0),
1683 trace_(nullptr),
1684 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
1685
Init(int depth)1686 bool Init(int depth)
1687 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1688 // Allocate method trace with format [method pointers][pcs].
1689 auto* cl = Runtime::Current()->GetClassLinker();
1690 trace_ = cl->AllocPointerArray(self_, depth * 2);
1691 if (trace_ == nullptr) {
1692 self_->AssertPendingOOMException();
1693 return false;
1694 }
1695 // If We are called from native, use non-transactional mode.
1696 const char* last_no_suspend_cause =
1697 self_->StartAssertNoThreadSuspension("Building internal stack trace");
1698 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1699 return true;
1700 }
1701
~BuildInternalStackTraceVisitor()1702 virtual ~BuildInternalStackTraceVisitor() {
1703 if (trace_ != nullptr) {
1704 self_->EndAssertNoThreadSuspension(nullptr);
1705 }
1706 }
1707
VisitFrame()1708 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1709 if (trace_ == nullptr) {
1710 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1711 }
1712 if (skip_depth_ > 0) {
1713 skip_depth_--;
1714 return true;
1715 }
1716 ArtMethod* m = GetMethod();
1717 if (m->IsRuntimeMethod()) {
1718 return true; // Ignore runtime frames (in particular callee save).
1719 }
1720 trace_->SetElementPtrSize<kTransactionActive>(
1721 count_, m, pointer_size_);
1722 trace_->SetElementPtrSize<kTransactionActive>(
1723 trace_->GetLength() / 2 + count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
1724 pointer_size_);
1725 ++count_;
1726 return true;
1727 }
1728
GetInternalStackTrace() const1729 mirror::PointerArray* GetInternalStackTrace() const {
1730 return trace_;
1731 }
1732
1733 private:
1734 Thread* const self_;
1735 // How many more frames to skip.
1736 int32_t skip_depth_;
1737 // Current position down stack trace.
1738 uint32_t count_;
1739 // An array of the methods on the stack, the last entries are the dex PCs.
1740 mirror::PointerArray* trace_;
1741 // For cross compilation.
1742 size_t pointer_size_;
1743 };
1744
1745 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1746 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1747 // Compute depth of stack
1748 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1749 count_visitor.WalkStack();
1750 int32_t depth = count_visitor.GetDepth();
1751 int32_t skip_depth = count_visitor.GetSkipDepth();
1752
1753 // Build internal stack trace.
1754 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1755 const_cast<Thread*>(this),
1756 skip_depth);
1757 if (!build_trace_visitor.Init(depth)) {
1758 return nullptr; // Allocation failed.
1759 }
1760 build_trace_visitor.WalkStack();
1761 mirror::PointerArray* trace = build_trace_visitor.GetInternalStackTrace();
1762 if (kIsDebugBuild) {
1763 // Second half is dex PCs.
1764 for (uint32_t i = 0; i < static_cast<uint32_t>(trace->GetLength() / 2); ++i) {
1765 auto* method = trace->GetElementPtrSize<ArtMethod*>(
1766 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1767 CHECK(method != nullptr);
1768 }
1769 }
1770 return soa.AddLocalReference<jobject>(trace);
1771 }
1772 template jobject Thread::CreateInternalStackTrace<false>(
1773 const ScopedObjectAccessAlreadyRunnable& soa) const;
1774 template jobject Thread::CreateInternalStackTrace<true>(
1775 const ScopedObjectAccessAlreadyRunnable& soa) const;
1776
IsExceptionThrownByCurrentMethod(mirror::Throwable * exception) const1777 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
1778 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1779 count_visitor.WalkStack();
1780 return count_visitor.GetDepth() == exception->GetStackDepth();
1781 }
1782
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1783 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1784 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1785 int* stack_depth) {
1786 // Decode the internal stack trace into the depth, method trace and PC trace
1787 int32_t depth = soa.Decode<mirror::PointerArray*>(internal)->GetLength() / 2;
1788
1789 auto* cl = Runtime::Current()->GetClassLinker();
1790
1791 jobjectArray result;
1792
1793 if (output_array != nullptr) {
1794 // Reuse the array we were given.
1795 result = output_array;
1796 // ...adjusting the number of frames we'll write to not exceed the array length.
1797 const int32_t traces_length =
1798 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1799 depth = std::min(depth, traces_length);
1800 } else {
1801 // Create java_trace array and place in local reference table
1802 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1803 cl->AllocStackTraceElementArray(soa.Self(), depth);
1804 if (java_traces == nullptr) {
1805 return nullptr;
1806 }
1807 result = soa.AddLocalReference<jobjectArray>(java_traces);
1808 }
1809
1810 if (stack_depth != nullptr) {
1811 *stack_depth = depth;
1812 }
1813
1814 for (int32_t i = 0; i < depth; ++i) {
1815 auto* method_trace = soa.Decode<mirror::PointerArray*>(internal);
1816 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1817 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
1818 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
1819 i + method_trace->GetLength() / 2, sizeof(void*));
1820 int32_t line_number;
1821 StackHandleScope<3> hs(soa.Self());
1822 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1823 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1824 if (method->IsProxyMethod()) {
1825 line_number = -1;
1826 class_name_object.Assign(method->GetDeclaringClass()->GetName());
1827 // source_name_object intentionally left null for proxy methods
1828 } else {
1829 line_number = method->GetLineNumFromDexPC(dex_pc);
1830 // Allocate element, potentially triggering GC
1831 // TODO: reuse class_name_object via Class::name_?
1832 const char* descriptor = method->GetDeclaringClassDescriptor();
1833 CHECK(descriptor != nullptr);
1834 std::string class_name(PrettyDescriptor(descriptor));
1835 class_name_object.Assign(
1836 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1837 if (class_name_object.Get() == nullptr) {
1838 soa.Self()->AssertPendingOOMException();
1839 return nullptr;
1840 }
1841 const char* source_file = method->GetDeclaringClassSourceFile();
1842 if (source_file != nullptr) {
1843 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1844 if (source_name_object.Get() == nullptr) {
1845 soa.Self()->AssertPendingOOMException();
1846 return nullptr;
1847 }
1848 }
1849 }
1850 const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
1851 CHECK(method_name != nullptr);
1852 Handle<mirror::String> method_name_object(
1853 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1854 if (method_name_object.Get() == nullptr) {
1855 return nullptr;
1856 }
1857 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1858 soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1859 if (obj == nullptr) {
1860 return nullptr;
1861 }
1862 // We are called from native: use non-transactional mode.
1863 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1864 }
1865 return result;
1866 }
1867
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)1868 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
1869 va_list args;
1870 va_start(args, fmt);
1871 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
1872 va_end(args);
1873 }
1874
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)1875 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
1876 const char* fmt, va_list ap) {
1877 std::string msg;
1878 StringAppendV(&msg, fmt, ap);
1879 ThrowNewException(exception_class_descriptor, msg.c_str());
1880 }
1881
ThrowNewException(const char * exception_class_descriptor,const char * msg)1882 void Thread::ThrowNewException(const char* exception_class_descriptor,
1883 const char* msg) {
1884 // Callers should either clear or call ThrowNewWrappedException.
1885 AssertNoPendingExceptionForNewException(msg);
1886 ThrowNewWrappedException(exception_class_descriptor, msg);
1887 }
1888
GetCurrentClassLoader(Thread * self)1889 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
1890 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1891 ArtMethod* method = self->GetCurrentMethod(nullptr);
1892 return method != nullptr
1893 ? method->GetDeclaringClass()->GetClassLoader()
1894 : nullptr;
1895 }
1896
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)1897 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
1898 const char* msg) {
1899 DCHECK_EQ(this, Thread::Current());
1900 ScopedObjectAccessUnchecked soa(this);
1901 StackHandleScope<3> hs(soa.Self());
1902 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
1903 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
1904 ClearException();
1905 Runtime* runtime = Runtime::Current();
1906 auto* cl = runtime->GetClassLinker();
1907 Handle<mirror::Class> exception_class(
1908 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
1909 if (UNLIKELY(exception_class.Get() == nullptr)) {
1910 CHECK(IsExceptionPending());
1911 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1912 return;
1913 }
1914
1915 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
1916 true))) {
1917 DCHECK(IsExceptionPending());
1918 return;
1919 }
1920 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1921 Handle<mirror::Throwable> exception(
1922 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1923
1924 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1925 if (exception.Get() == nullptr) {
1926 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1927 return;
1928 }
1929
1930 // Choose an appropriate constructor and set up the arguments.
1931 const char* signature;
1932 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1933 if (msg != nullptr) {
1934 // Ensure we remember this and the method over the String allocation.
1935 msg_string.reset(
1936 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1937 if (UNLIKELY(msg_string.get() == nullptr)) {
1938 CHECK(IsExceptionPending()); // OOME.
1939 return;
1940 }
1941 if (cause.get() == nullptr) {
1942 signature = "(Ljava/lang/String;)V";
1943 } else {
1944 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1945 }
1946 } else {
1947 if (cause.get() == nullptr) {
1948 signature = "()V";
1949 } else {
1950 signature = "(Ljava/lang/Throwable;)V";
1951 }
1952 }
1953 ArtMethod* exception_init_method =
1954 exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
1955
1956 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1957 << PrettyDescriptor(exception_class_descriptor);
1958
1959 if (UNLIKELY(!runtime->IsStarted())) {
1960 // Something is trying to throw an exception without a started runtime, which is the common
1961 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1962 // the exception fields directly.
1963 if (msg != nullptr) {
1964 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1965 }
1966 if (cause.get() != nullptr) {
1967 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1968 }
1969 ScopedLocalRef<jobject> trace(GetJniEnv(),
1970 Runtime::Current()->IsActiveTransaction()
1971 ? CreateInternalStackTrace<true>(soa)
1972 : CreateInternalStackTrace<false>(soa));
1973 if (trace.get() != nullptr) {
1974 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1975 }
1976 SetException(exception.Get());
1977 } else {
1978 jvalue jv_args[2];
1979 size_t i = 0;
1980
1981 if (msg != nullptr) {
1982 jv_args[i].l = msg_string.get();
1983 ++i;
1984 }
1985 if (cause.get() != nullptr) {
1986 jv_args[i].l = cause.get();
1987 ++i;
1988 }
1989 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
1990 InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
1991 if (LIKELY(!IsExceptionPending())) {
1992 SetException(exception.Get());
1993 }
1994 }
1995 }
1996
ThrowOutOfMemoryError(const char * msg)1997 void Thread::ThrowOutOfMemoryError(const char* msg) {
1998 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1999 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2000 if (!tls32_.throwing_OutOfMemoryError) {
2001 tls32_.throwing_OutOfMemoryError = true;
2002 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2003 tls32_.throwing_OutOfMemoryError = false;
2004 } else {
2005 Dump(LOG(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
2006 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2007 }
2008 }
2009
CurrentFromGdb()2010 Thread* Thread::CurrentFromGdb() {
2011 return Thread::Current();
2012 }
2013
DumpFromGdb() const2014 void Thread::DumpFromGdb() const {
2015 std::ostringstream ss;
2016 Dump(ss);
2017 std::string str(ss.str());
2018 // log to stderr for debugging command line processes
2019 std::cerr << str;
2020 #ifdef HAVE_ANDROID_OS
2021 // log to logcat for debugging frameworks processes
2022 LOG(INFO) << str;
2023 #endif
2024 }
2025
2026 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2027 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
2028 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
2029
2030 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2031 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2032 #define DO_THREAD_OFFSET(x, y) \
2033 if (offset == x.Uint32Value()) { \
2034 os << y; \
2035 return; \
2036 }
2037 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2038 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2039 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2040 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2041 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2042 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2043 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2044 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2045 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2046 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2047 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2048 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2049 #undef DO_THREAD_OFFSET
2050
2051 #define INTERPRETER_ENTRY_POINT_INFO(x) \
2052 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2053 os << #x; \
2054 return; \
2055 }
2056 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
2057 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
2058 #undef INTERPRETER_ENTRY_POINT_INFO
2059
2060 #define JNI_ENTRY_POINT_INFO(x) \
2061 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2062 os << #x; \
2063 return; \
2064 }
2065 JNI_ENTRY_POINT_INFO(pDlsymLookup)
2066 #undef JNI_ENTRY_POINT_INFO
2067
2068 #define QUICK_ENTRY_POINT_INFO(x) \
2069 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2070 os << #x; \
2071 return; \
2072 }
2073 QUICK_ENTRY_POINT_INFO(pAllocArray)
2074 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2075 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
2076 QUICK_ENTRY_POINT_INFO(pAllocObject)
2077 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2078 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2079 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
2080 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
2081 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
2082 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2083 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2084 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2085 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2086 QUICK_ENTRY_POINT_INFO(pCheckCast)
2087 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2088 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2089 QUICK_ENTRY_POINT_INFO(pInitializeType)
2090 QUICK_ENTRY_POINT_INFO(pResolveString)
2091 QUICK_ENTRY_POINT_INFO(pSet8Instance)
2092 QUICK_ENTRY_POINT_INFO(pSet8Static)
2093 QUICK_ENTRY_POINT_INFO(pSet16Instance)
2094 QUICK_ENTRY_POINT_INFO(pSet16Static)
2095 QUICK_ENTRY_POINT_INFO(pSet32Instance)
2096 QUICK_ENTRY_POINT_INFO(pSet32Static)
2097 QUICK_ENTRY_POINT_INFO(pSet64Instance)
2098 QUICK_ENTRY_POINT_INFO(pSet64Static)
2099 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2100 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2101 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2102 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2103 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2104 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2105 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2106 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2107 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2108 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2109 QUICK_ENTRY_POINT_INFO(pGet32Instance)
2110 QUICK_ENTRY_POINT_INFO(pGet32Static)
2111 QUICK_ENTRY_POINT_INFO(pGet64Instance)
2112 QUICK_ENTRY_POINT_INFO(pGet64Static)
2113 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2114 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2115 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
2116 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
2117 QUICK_ENTRY_POINT_INFO(pAputObject)
2118 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
2119 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2120 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2121 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2122 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2123 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2124 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2125 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2126 QUICK_ENTRY_POINT_INFO(pLockObject)
2127 QUICK_ENTRY_POINT_INFO(pUnlockObject)
2128 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2129 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2130 QUICK_ENTRY_POINT_INFO(pCmplDouble)
2131 QUICK_ENTRY_POINT_INFO(pCmplFloat)
2132 QUICK_ENTRY_POINT_INFO(pFmod)
2133 QUICK_ENTRY_POINT_INFO(pL2d)
2134 QUICK_ENTRY_POINT_INFO(pFmodf)
2135 QUICK_ENTRY_POINT_INFO(pL2f)
2136 QUICK_ENTRY_POINT_INFO(pD2iz)
2137 QUICK_ENTRY_POINT_INFO(pF2iz)
2138 QUICK_ENTRY_POINT_INFO(pIdivmod)
2139 QUICK_ENTRY_POINT_INFO(pD2l)
2140 QUICK_ENTRY_POINT_INFO(pF2l)
2141 QUICK_ENTRY_POINT_INFO(pLdiv)
2142 QUICK_ENTRY_POINT_INFO(pLmod)
2143 QUICK_ENTRY_POINT_INFO(pLmul)
2144 QUICK_ENTRY_POINT_INFO(pShlLong)
2145 QUICK_ENTRY_POINT_INFO(pShrLong)
2146 QUICK_ENTRY_POINT_INFO(pUshrLong)
2147 QUICK_ENTRY_POINT_INFO(pIndexOf)
2148 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2149 QUICK_ENTRY_POINT_INFO(pMemcpy)
2150 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2151 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2152 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2153 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2154 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2155 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2156 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2157 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2158 QUICK_ENTRY_POINT_INFO(pTestSuspend)
2159 QUICK_ENTRY_POINT_INFO(pDeliverException)
2160 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2161 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2162 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
2163 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2164 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2165 QUICK_ENTRY_POINT_INFO(pDeoptimize)
2166 QUICK_ENTRY_POINT_INFO(pA64Load)
2167 QUICK_ENTRY_POINT_INFO(pA64Store)
2168 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2169 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2170 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2171 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2172 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2173 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2174 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2175 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2176 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2177 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2178 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2179 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2180 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2181 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2182 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2183 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2184 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2185 #undef QUICK_ENTRY_POINT_INFO
2186
2187 os << offset;
2188 }
2189
QuickDeliverException()2190 void Thread::QuickDeliverException() {
2191 // Get exception from thread.
2192 mirror::Throwable* exception = GetException();
2193 CHECK(exception != nullptr);
2194 // Don't leave exception visible while we try to find the handler, which may cause class
2195 // resolution.
2196 ClearException();
2197 bool is_deoptimization = (exception == GetDeoptimizationException());
2198 QuickExceptionHandler exception_handler(this, is_deoptimization);
2199 if (is_deoptimization) {
2200 exception_handler.DeoptimizeStack();
2201 } else {
2202 exception_handler.FindCatch(exception);
2203 }
2204 exception_handler.UpdateInstrumentationStack();
2205 exception_handler.DoLongJump();
2206 }
2207
GetLongJumpContext()2208 Context* Thread::GetLongJumpContext() {
2209 Context* result = tlsPtr_.long_jump_context;
2210 if (result == nullptr) {
2211 result = Context::Create();
2212 } else {
2213 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
2214 result->Reset();
2215 }
2216 return result;
2217 }
2218
2219 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
2220 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
2221 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL2222 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
2223 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2224 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2225 this_object_(nullptr),
2226 method_(nullptr),
2227 dex_pc_(0),
2228 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL2229 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2230 ArtMethod* m = GetMethod();
2231 if (m->IsRuntimeMethod()) {
2232 // Continue if this is a runtime method.
2233 return true;
2234 }
2235 if (context_ != nullptr) {
2236 this_object_ = GetThisObject();
2237 }
2238 method_ = m;
2239 dex_pc_ = GetDexPc(abort_on_error_);
2240 return false;
2241 }
2242 mirror::Object* this_object_;
2243 ArtMethod* method_;
2244 uint32_t dex_pc_;
2245 const bool abort_on_error_;
2246 };
2247
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2248 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2249 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2250 visitor.WalkStack(false);
2251 if (dex_pc != nullptr) {
2252 *dex_pc = visitor.dex_pc_;
2253 }
2254 return visitor.method_;
2255 }
2256
HoldsLock(mirror::Object * object) const2257 bool Thread::HoldsLock(mirror::Object* object) const {
2258 if (object == nullptr) {
2259 return false;
2260 }
2261 return object->GetLockOwnerThreadId() == GetThreadId();
2262 }
2263
2264 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2265 template <typename RootVisitor>
2266 class ReferenceMapVisitor : public StackVisitor {
2267 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)2268 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
2269 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2270 // We are visiting the references in compiled frames, so we do not need
2271 // to know the inlined frames.
2272 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2273 visitor_(visitor) {}
2274
VisitFrame()2275 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2276 if (false) {
2277 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2278 << StringPrintf("@ PC:%04x", GetDexPc());
2279 }
2280 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2281 if (shadow_frame != nullptr) {
2282 VisitShadowFrame(shadow_frame);
2283 } else {
2284 VisitQuickFrame();
2285 }
2286 return true;
2287 }
2288
VisitShadowFrame(ShadowFrame * shadow_frame)2289 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2290 ArtMethod* m = shadow_frame->GetMethod();
2291 DCHECK(m != nullptr);
2292 size_t num_regs = shadow_frame->NumberOfVRegs();
2293 if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2294 // handle scope for JNI or References for interpreter.
2295 for (size_t reg = 0; reg < num_regs; ++reg) {
2296 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2297 if (ref != nullptr) {
2298 mirror::Object* new_ref = ref;
2299 visitor_(&new_ref, reg, this);
2300 if (new_ref != ref) {
2301 shadow_frame->SetVRegReference(reg, new_ref);
2302 }
2303 }
2304 }
2305 } else {
2306 // Java method.
2307 // Portable path use DexGcMap and store in Method.native_gc_map_.
2308 const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
2309 CHECK(gc_map != nullptr) << PrettyMethod(m);
2310 verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2311 uint32_t dex_pc = shadow_frame->GetDexPC();
2312 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2313 DCHECK(reg_bitmap != nullptr);
2314 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2315 for (size_t reg = 0; reg < num_regs; ++reg) {
2316 if (TestBitmap(reg, reg_bitmap)) {
2317 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2318 if (ref != nullptr) {
2319 mirror::Object* new_ref = ref;
2320 visitor_(&new_ref, reg, this);
2321 if (new_ref != ref) {
2322 shadow_frame->SetVRegReference(reg, new_ref);
2323 }
2324 }
2325 }
2326 }
2327 }
2328 }
2329
2330 private:
VisitQuickFrame()2331 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2332 auto* cur_quick_frame = GetCurrentQuickFrame();
2333 DCHECK(cur_quick_frame != nullptr);
2334 auto* m = *cur_quick_frame;
2335
2336 // Process register map (which native and runtime methods don't have)
2337 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2338 if (m->IsOptimized(sizeof(void*))) {
2339 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
2340 reinterpret_cast<uintptr_t>(cur_quick_frame));
2341 Runtime* runtime = Runtime::Current();
2342 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2343 uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
2344 CodeInfo code_info = m->GetOptimizedCodeInfo();
2345 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
2346 MemoryRegion mask = map.GetStackMask(code_info);
2347 // Visit stack entries that hold pointers.
2348 for (size_t i = 0; i < mask.size_in_bits(); ++i) {
2349 if (mask.LoadBit(i)) {
2350 auto* ref_addr = vreg_base + i;
2351 mirror::Object* ref = ref_addr->AsMirrorPtr();
2352 if (ref != nullptr) {
2353 mirror::Object* new_ref = ref;
2354 visitor_(&new_ref, -1, this);
2355 if (ref != new_ref) {
2356 ref_addr->Assign(new_ref);
2357 }
2358 }
2359 }
2360 }
2361 // Visit callee-save registers that hold pointers.
2362 uint32_t register_mask = map.GetRegisterMask(code_info);
2363 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
2364 if (register_mask & (1 << i)) {
2365 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
2366 if (*ref_addr != nullptr) {
2367 visitor_(ref_addr, -1, this);
2368 }
2369 }
2370 }
2371 } else {
2372 const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
2373 CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2374 const DexFile::CodeItem* code_item = m->GetCodeItem();
2375 // Can't be null or how would we compile its instructions?
2376 DCHECK(code_item != nullptr) << PrettyMethod(m);
2377 NativePcOffsetToReferenceMap map(native_gc_map);
2378 size_t num_regs = std::min(map.RegWidth() * 8,
2379 static_cast<size_t>(code_item->registers_size_));
2380 if (num_regs > 0) {
2381 Runtime* runtime = Runtime::Current();
2382 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2383 uintptr_t native_pc_offset = m->NativeQuickPcOffset(GetCurrentQuickFramePc(), entry_point);
2384 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2385 DCHECK(reg_bitmap != nullptr);
2386 const void* code_pointer = ArtMethod::EntryPointToCodePointer(entry_point);
2387 const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
2388 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2389 // For all dex registers in the bitmap
2390 DCHECK(cur_quick_frame != nullptr);
2391 for (size_t reg = 0; reg < num_regs; ++reg) {
2392 // Does this register hold a reference?
2393 if (TestBitmap(reg, reg_bitmap)) {
2394 uint32_t vmap_offset;
2395 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2396 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2397 kReferenceVReg);
2398 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2399 mirror::Object** ref_addr =
2400 reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2401 if (*ref_addr != nullptr) {
2402 visitor_(ref_addr, reg, this);
2403 }
2404 } else {
2405 StackReference<mirror::Object>* ref_addr =
2406 reinterpret_cast<StackReference<mirror::Object>*>(GetVRegAddrFromQuickCode(
2407 cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2408 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2409 mirror::Object* ref = ref_addr->AsMirrorPtr();
2410 if (ref != nullptr) {
2411 mirror::Object* new_ref = ref;
2412 visitor_(&new_ref, reg, this);
2413 if (ref != new_ref) {
2414 ref_addr->Assign(new_ref);
2415 }
2416 }
2417 }
2418 }
2419 }
2420 }
2421 }
2422 }
2423 }
2424
2425 // Visitor for when we visit a root.
2426 RootVisitor& visitor_;
2427 };
2428
2429 class RootCallbackVisitor {
2430 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)2431 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
2432
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2433 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
2434 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2435 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2436 }
2437
2438 private:
2439 RootVisitor* const visitor_;
2440 const uint32_t tid_;
2441 };
2442
VisitRoots(RootVisitor * visitor)2443 void Thread::VisitRoots(RootVisitor* visitor) {
2444 const uint32_t thread_id = GetThreadId();
2445 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
2446 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2447 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
2448 RootInfo(kRootNativeStack, thread_id));
2449 }
2450 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
2451 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
2452 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
2453 HandleScopeVisitRoots(visitor, thread_id);
2454 if (tlsPtr_.debug_invoke_req != nullptr) {
2455 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
2456 }
2457 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
2458 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2459 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2460 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
2461 record != nullptr;
2462 record = record->GetLink()) {
2463 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
2464 shadow_frame != nullptr;
2465 shadow_frame = shadow_frame->GetLink()) {
2466 mapper.VisitShadowFrame(shadow_frame);
2467 }
2468 }
2469 }
2470 if (tlsPtr_.deoptimization_return_value_stack != nullptr) {
2471 for (DeoptimizationReturnValueRecord* record = tlsPtr_.deoptimization_return_value_stack;
2472 record != nullptr;
2473 record = record->GetLink()) {
2474 if (record->IsReference()) {
2475 visitor->VisitRootIfNonNull(record->GetGCRoot(),
2476 RootInfo(kRootThreadObject, thread_id));
2477 }
2478 }
2479 }
2480 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
2481 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
2482 }
2483 // Visit roots on this thread's stack
2484 Context* context = GetLongJumpContext();
2485 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2486 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2487 mapper.WalkStack();
2488 ReleaseLongJumpContext(context);
2489 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2490 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
2491 }
2492 }
2493
2494 class VerifyRootVisitor : public SingleRootVisitor {
2495 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)2496 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
2497 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2498 VerifyObject(root);
2499 }
2500 };
2501
VerifyStackImpl()2502 void Thread::VerifyStackImpl() {
2503 VerifyRootVisitor visitor;
2504 std::unique_ptr<Context> context(Context::Create());
2505 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
2506 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
2507 mapper.WalkStack();
2508 }
2509
2510 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2511 void Thread::SetStackEndForStackOverflow() {
2512 // During stack overflow we allow use of the full stack.
2513 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2514 // However, we seem to have already extended to use the full stack.
2515 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2516 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2517 DumpStack(LOG(ERROR));
2518 LOG(FATAL) << "Recursive stack overflow.";
2519 }
2520
2521 tlsPtr_.stack_end = tlsPtr_.stack_begin;
2522
2523 // Remove the stack overflow protection if is it set up.
2524 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2525 if (implicit_stack_check) {
2526 if (!UnprotectStack()) {
2527 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2528 }
2529 }
2530 }
2531
SetTlab(uint8_t * start,uint8_t * end)2532 void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2533 DCHECK_LE(start, end);
2534 tlsPtr_.thread_local_start = start;
2535 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
2536 tlsPtr_.thread_local_end = end;
2537 tlsPtr_.thread_local_objects = 0;
2538 }
2539
HasTlab() const2540 bool Thread::HasTlab() const {
2541 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2542 if (has_tlab) {
2543 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2544 } else {
2545 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2546 }
2547 return has_tlab;
2548 }
2549
operator <<(std::ostream & os,const Thread & thread)2550 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2551 thread.ShortDump(os);
2552 return os;
2553 }
2554
ProtectStack()2555 void Thread::ProtectStack() {
2556 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2557 VLOG(threads) << "Protecting stack at " << pregion;
2558 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2559 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2560 "Reason: "
2561 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
2562 }
2563 }
2564
UnprotectStack()2565 bool Thread::UnprotectStack() {
2566 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2567 VLOG(threads) << "Unprotecting stack at " << pregion;
2568 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2569 }
2570
ActivateSingleStepControl(SingleStepControl * ssc)2571 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
2572 CHECK(Dbg::IsDebuggerActive());
2573 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
2574 CHECK(ssc != nullptr);
2575 tlsPtr_.single_step_control = ssc;
2576 }
2577
DeactivateSingleStepControl()2578 void Thread::DeactivateSingleStepControl() {
2579 CHECK(Dbg::IsDebuggerActive());
2580 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
2581 SingleStepControl* ssc = GetSingleStepControl();
2582 tlsPtr_.single_step_control = nullptr;
2583 delete ssc;
2584 }
2585
SetDebugInvokeReq(DebugInvokeReq * req)2586 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
2587 CHECK(Dbg::IsDebuggerActive());
2588 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
2589 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
2590 CHECK(req != nullptr);
2591 tlsPtr_.debug_invoke_req = req;
2592 }
2593
ClearDebugInvokeReq()2594 void Thread::ClearDebugInvokeReq() {
2595 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
2596 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
2597 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
2598 tlsPtr_.debug_invoke_req = nullptr;
2599 delete req;
2600 }
2601
PushVerifier(verifier::MethodVerifier * verifier)2602 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
2603 verifier->link_ = tlsPtr_.method_verifier;
2604 tlsPtr_.method_verifier = verifier;
2605 }
2606
PopVerifier(verifier::MethodVerifier * verifier)2607 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
2608 CHECK_EQ(tlsPtr_.method_verifier, verifier);
2609 tlsPtr_.method_verifier = verifier->link_;
2610 }
2611
2612 } // namespace art
2613