1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/syscall.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include <unwind.h>
31
32 #include <atomic>
33 #include <regex>
34 #include <vector>
35
36 #include <base/file.h>
37 #include <base/stringprintf.h>
38
39 #include "private/bionic_macros.h"
40 #include "private/ScopeGuard.h"
41 #include "BionicDeathTest.h"
42 #include "ScopedSignalHandler.h"
43
44 extern "C" pid_t gettid();
45
TEST(pthread,pthread_key_create)46 TEST(pthread, pthread_key_create) {
47 pthread_key_t key;
48 ASSERT_EQ(0, pthread_key_create(&key, NULL));
49 ASSERT_EQ(0, pthread_key_delete(key));
50 // Can't delete a key that's already been deleted.
51 ASSERT_EQ(EINVAL, pthread_key_delete(key));
52 }
53
TEST(pthread,pthread_keys_max)54 TEST(pthread, pthread_keys_max) {
55 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
56 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
57 }
58
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)59 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
60 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
61 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
62 }
63
TEST(pthread,pthread_key_many_distinct)64 TEST(pthread, pthread_key_many_distinct) {
65 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
66 // pthread keys, but We should be able to allocate at least this many keys.
67 int nkeys = PTHREAD_KEYS_MAX / 2;
68 std::vector<pthread_key_t> keys;
69
70 auto scope_guard = make_scope_guard([&keys]{
71 for (auto key : keys) {
72 EXPECT_EQ(0, pthread_key_delete(key));
73 }
74 });
75
76 for (int i = 0; i < nkeys; ++i) {
77 pthread_key_t key;
78 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
79 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
80 keys.push_back(key);
81 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
82 }
83
84 for (int i = keys.size() - 1; i >= 0; --i) {
85 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
86 pthread_key_t key = keys.back();
87 keys.pop_back();
88 ASSERT_EQ(0, pthread_key_delete(key));
89 }
90 }
91
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)92 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
93 std::vector<pthread_key_t> keys;
94 int rv = 0;
95
96 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
97 // be more than we are allowed to allocate now.
98 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
99 pthread_key_t key;
100 rv = pthread_key_create(&key, NULL);
101 if (rv == EAGAIN) {
102 break;
103 }
104 EXPECT_EQ(0, rv);
105 keys.push_back(key);
106 }
107
108 // Don't leak keys.
109 for (auto key : keys) {
110 EXPECT_EQ(0, pthread_key_delete(key));
111 }
112 keys.clear();
113
114 // We should have eventually reached the maximum number of keys and received
115 // EAGAIN.
116 ASSERT_EQ(EAGAIN, rv);
117 }
118
TEST(pthread,pthread_key_delete)119 TEST(pthread, pthread_key_delete) {
120 void* expected = reinterpret_cast<void*>(1234);
121 pthread_key_t key;
122 ASSERT_EQ(0, pthread_key_create(&key, NULL));
123 ASSERT_EQ(0, pthread_setspecific(key, expected));
124 ASSERT_EQ(expected, pthread_getspecific(key));
125 ASSERT_EQ(0, pthread_key_delete(key));
126 // After deletion, pthread_getspecific returns NULL.
127 ASSERT_EQ(NULL, pthread_getspecific(key));
128 // And you can't use pthread_setspecific with the deleted key.
129 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
130 }
131
TEST(pthread,pthread_key_fork)132 TEST(pthread, pthread_key_fork) {
133 void* expected = reinterpret_cast<void*>(1234);
134 pthread_key_t key;
135 ASSERT_EQ(0, pthread_key_create(&key, NULL));
136 ASSERT_EQ(0, pthread_setspecific(key, expected));
137 ASSERT_EQ(expected, pthread_getspecific(key));
138
139 pid_t pid = fork();
140 ASSERT_NE(-1, pid) << strerror(errno);
141
142 if (pid == 0) {
143 // The surviving thread inherits all the forking thread's TLS values...
144 ASSERT_EQ(expected, pthread_getspecific(key));
145 _exit(99);
146 }
147
148 int status;
149 ASSERT_EQ(pid, waitpid(pid, &status, 0));
150 ASSERT_TRUE(WIFEXITED(status));
151 ASSERT_EQ(99, WEXITSTATUS(status));
152
153 ASSERT_EQ(expected, pthread_getspecific(key));
154 ASSERT_EQ(0, pthread_key_delete(key));
155 }
156
DirtyKeyFn(void * key)157 static void* DirtyKeyFn(void* key) {
158 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
159 }
160
TEST(pthread,pthread_key_dirty)161 TEST(pthread, pthread_key_dirty) {
162 pthread_key_t key;
163 ASSERT_EQ(0, pthread_key_create(&key, NULL));
164
165 size_t stack_size = 128 * 1024;
166 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
167 ASSERT_NE(MAP_FAILED, stack);
168 memset(stack, 0xff, stack_size);
169
170 pthread_attr_t attr;
171 ASSERT_EQ(0, pthread_attr_init(&attr));
172 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
173
174 pthread_t t;
175 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
176
177 void* result;
178 ASSERT_EQ(0, pthread_join(t, &result));
179 ASSERT_EQ(nullptr, result); // Not ~0!
180
181 ASSERT_EQ(0, munmap(stack, stack_size));
182 ASSERT_EQ(0, pthread_key_delete(key));
183 }
184
TEST(pthread,static_pthread_key_used_before_creation)185 TEST(pthread, static_pthread_key_used_before_creation) {
186 #if defined(__BIONIC__)
187 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
188 // So here tests if the static/global default value 0 can be detected as invalid key.
189 static pthread_key_t key;
190 ASSERT_EQ(nullptr, pthread_getspecific(key));
191 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
192 ASSERT_EQ(EINVAL, pthread_key_delete(key));
193 #else
194 GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
195 #endif
196 }
197
IdFn(void * arg)198 static void* IdFn(void* arg) {
199 return arg;
200 }
201
202 class SpinFunctionHelper {
203 public:
SpinFunctionHelper()204 SpinFunctionHelper() {
205 SpinFunctionHelper::spin_flag_ = true;
206 }
~SpinFunctionHelper()207 ~SpinFunctionHelper() {
208 UnSpin();
209 }
GetFunction()210 auto GetFunction() -> void* (*)(void*) {
211 return SpinFunctionHelper::SpinFn;
212 }
213
UnSpin()214 void UnSpin() {
215 SpinFunctionHelper::spin_flag_ = false;
216 }
217
218 private:
SpinFn(void *)219 static void* SpinFn(void*) {
220 while (spin_flag_) {}
221 return NULL;
222 }
223 static volatile bool spin_flag_;
224 };
225
226 // It doesn't matter if spin_flag_ is used in several tests,
227 // because it is always set to false after each test. Each thread
228 // loops on spin_flag_ can find it becomes false at some time.
229 volatile bool SpinFunctionHelper::spin_flag_ = false;
230
JoinFn(void * arg)231 static void* JoinFn(void* arg) {
232 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
233 }
234
AssertDetached(pthread_t t,bool is_detached)235 static void AssertDetached(pthread_t t, bool is_detached) {
236 pthread_attr_t attr;
237 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
238 int detach_state;
239 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
240 pthread_attr_destroy(&attr);
241 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
242 }
243
MakeDeadThread(pthread_t & t)244 static void MakeDeadThread(pthread_t& t) {
245 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
246 ASSERT_EQ(0, pthread_join(t, NULL));
247 }
248
TEST(pthread,pthread_create)249 TEST(pthread, pthread_create) {
250 void* expected_result = reinterpret_cast<void*>(123);
251 // Can we create a thread?
252 pthread_t t;
253 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
254 // If we join, do we get the expected value back?
255 void* result;
256 ASSERT_EQ(0, pthread_join(t, &result));
257 ASSERT_EQ(expected_result, result);
258 }
259
TEST(pthread,pthread_create_EAGAIN)260 TEST(pthread, pthread_create_EAGAIN) {
261 pthread_attr_t attributes;
262 ASSERT_EQ(0, pthread_attr_init(&attributes));
263 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
264
265 pthread_t t;
266 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
267 }
268
TEST(pthread,pthread_no_join_after_detach)269 TEST(pthread, pthread_no_join_after_detach) {
270 SpinFunctionHelper spinhelper;
271
272 pthread_t t1;
273 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
274
275 // After a pthread_detach...
276 ASSERT_EQ(0, pthread_detach(t1));
277 AssertDetached(t1, true);
278
279 // ...pthread_join should fail.
280 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
281 }
282
TEST(pthread,pthread_no_op_detach_after_join)283 TEST(pthread, pthread_no_op_detach_after_join) {
284 SpinFunctionHelper spinhelper;
285
286 pthread_t t1;
287 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
288
289 // If thread 2 is already waiting to join thread 1...
290 pthread_t t2;
291 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
292
293 sleep(1); // (Give t2 a chance to call pthread_join.)
294
295 #if defined(__BIONIC__)
296 ASSERT_EQ(EINVAL, pthread_detach(t1));
297 #else
298 ASSERT_EQ(0, pthread_detach(t1));
299 #endif
300 AssertDetached(t1, false);
301
302 spinhelper.UnSpin();
303
304 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
305 void* join_result;
306 ASSERT_EQ(0, pthread_join(t2, &join_result));
307 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
308 }
309
TEST(pthread,pthread_join_self)310 TEST(pthread, pthread_join_self) {
311 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
312 }
313
314 struct TestBug37410 {
315 pthread_t main_thread;
316 pthread_mutex_t mutex;
317
mainTestBug37410318 static void main() {
319 TestBug37410 data;
320 data.main_thread = pthread_self();
321 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
322 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
323
324 pthread_t t;
325 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
326
327 // Wait for the thread to be running...
328 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
329 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
330
331 // ...and exit.
332 pthread_exit(NULL);
333 }
334
335 private:
thread_fnTestBug37410336 static void* thread_fn(void* arg) {
337 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
338
339 // Let the main thread know we're running.
340 pthread_mutex_unlock(&data->mutex);
341
342 // And wait for the main thread to exit.
343 pthread_join(data->main_thread, NULL);
344
345 return NULL;
346 }
347 };
348
349 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
350 // run this test (which exits normally) in its own process.
351
352 class pthread_DeathTest : public BionicDeathTest {};
353
TEST_F(pthread_DeathTest,pthread_bug_37410)354 TEST_F(pthread_DeathTest, pthread_bug_37410) {
355 // http://code.google.com/p/android/issues/detail?id=37410
356 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
357 }
358
SignalHandlerFn(void * arg)359 static void* SignalHandlerFn(void* arg) {
360 sigset_t wait_set;
361 sigfillset(&wait_set);
362 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
363 }
364
TEST(pthread,pthread_sigmask)365 TEST(pthread, pthread_sigmask) {
366 // Check that SIGUSR1 isn't blocked.
367 sigset_t original_set;
368 sigemptyset(&original_set);
369 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
370 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
371
372 // Block SIGUSR1.
373 sigset_t set;
374 sigemptyset(&set);
375 sigaddset(&set, SIGUSR1);
376 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
377
378 // Check that SIGUSR1 is blocked.
379 sigset_t final_set;
380 sigemptyset(&final_set);
381 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
382 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
383 // ...and that sigprocmask agrees with pthread_sigmask.
384 sigemptyset(&final_set);
385 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
386 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
387
388 // Spawn a thread that calls sigwait and tells us what it received.
389 pthread_t signal_thread;
390 int received_signal = -1;
391 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
392
393 // Send that thread SIGUSR1.
394 pthread_kill(signal_thread, SIGUSR1);
395
396 // See what it got.
397 void* join_result;
398 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
399 ASSERT_EQ(SIGUSR1, received_signal);
400 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
401
402 // Restore the original signal mask.
403 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
404 }
405
TEST(pthread,pthread_setname_np__too_long)406 TEST(pthread, pthread_setname_np__too_long) {
407 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
408 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
409 ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
410 }
411
TEST(pthread,pthread_setname_np__self)412 TEST(pthread, pthread_setname_np__self) {
413 ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
414 }
415
TEST(pthread,pthread_setname_np__other)416 TEST(pthread, pthread_setname_np__other) {
417 SpinFunctionHelper spinhelper;
418
419 pthread_t t1;
420 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
421 ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
422 }
423
TEST(pthread,pthread_setname_np__no_such_thread)424 TEST(pthread, pthread_setname_np__no_such_thread) {
425 pthread_t dead_thread;
426 MakeDeadThread(dead_thread);
427
428 // Call pthread_setname_np after thread has already exited.
429 ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
430 }
431
TEST(pthread,pthread_kill__0)432 TEST(pthread, pthread_kill__0) {
433 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
434 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
435 }
436
TEST(pthread,pthread_kill__invalid_signal)437 TEST(pthread, pthread_kill__invalid_signal) {
438 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
439 }
440
pthread_kill__in_signal_handler_helper(int signal_number)441 static void pthread_kill__in_signal_handler_helper(int signal_number) {
442 static int count = 0;
443 ASSERT_EQ(SIGALRM, signal_number);
444 if (++count == 1) {
445 // Can we call pthread_kill from a signal handler?
446 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
447 }
448 }
449
TEST(pthread,pthread_kill__in_signal_handler)450 TEST(pthread, pthread_kill__in_signal_handler) {
451 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
452 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
453 }
454
TEST(pthread,pthread_detach__no_such_thread)455 TEST(pthread, pthread_detach__no_such_thread) {
456 pthread_t dead_thread;
457 MakeDeadThread(dead_thread);
458
459 ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
460 }
461
TEST(pthread,pthread_getcpuclockid__clock_gettime)462 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
463 SpinFunctionHelper spinhelper;
464
465 pthread_t t;
466 ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
467
468 clockid_t c;
469 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
470 timespec ts;
471 ASSERT_EQ(0, clock_gettime(c, &ts));
472 }
473
TEST(pthread,pthread_getcpuclockid__no_such_thread)474 TEST(pthread, pthread_getcpuclockid__no_such_thread) {
475 pthread_t dead_thread;
476 MakeDeadThread(dead_thread);
477
478 clockid_t c;
479 ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
480 }
481
TEST(pthread,pthread_getschedparam__no_such_thread)482 TEST(pthread, pthread_getschedparam__no_such_thread) {
483 pthread_t dead_thread;
484 MakeDeadThread(dead_thread);
485
486 int policy;
487 sched_param param;
488 ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, ¶m));
489 }
490
TEST(pthread,pthread_setschedparam__no_such_thread)491 TEST(pthread, pthread_setschedparam__no_such_thread) {
492 pthread_t dead_thread;
493 MakeDeadThread(dead_thread);
494
495 int policy = 0;
496 sched_param param;
497 ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, ¶m));
498 }
499
TEST(pthread,pthread_join__no_such_thread)500 TEST(pthread, pthread_join__no_such_thread) {
501 pthread_t dead_thread;
502 MakeDeadThread(dead_thread);
503
504 ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
505 }
506
TEST(pthread,pthread_kill__no_such_thread)507 TEST(pthread, pthread_kill__no_such_thread) {
508 pthread_t dead_thread;
509 MakeDeadThread(dead_thread);
510
511 ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
512 }
513
TEST(pthread,pthread_join__multijoin)514 TEST(pthread, pthread_join__multijoin) {
515 SpinFunctionHelper spinhelper;
516
517 pthread_t t1;
518 ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
519
520 pthread_t t2;
521 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
522
523 sleep(1); // (Give t2 a chance to call pthread_join.)
524
525 // Multiple joins to the same thread should fail.
526 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
527
528 spinhelper.UnSpin();
529
530 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
531 void* join_result;
532 ASSERT_EQ(0, pthread_join(t2, &join_result));
533 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
534 }
535
TEST(pthread,pthread_join__race)536 TEST(pthread, pthread_join__race) {
537 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
538 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
539 for (size_t i = 0; i < 1024; ++i) {
540 size_t stack_size = 64*1024;
541 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
542
543 pthread_attr_t a;
544 pthread_attr_init(&a);
545 pthread_attr_setstack(&a, stack, stack_size);
546
547 pthread_t t;
548 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
549 ASSERT_EQ(0, pthread_join(t, NULL));
550 ASSERT_EQ(0, munmap(stack, stack_size));
551 }
552 }
553
GetActualGuardSizeFn(void * arg)554 static void* GetActualGuardSizeFn(void* arg) {
555 pthread_attr_t attributes;
556 pthread_getattr_np(pthread_self(), &attributes);
557 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
558 return NULL;
559 }
560
GetActualGuardSize(const pthread_attr_t & attributes)561 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
562 size_t result;
563 pthread_t t;
564 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
565 pthread_join(t, NULL);
566 return result;
567 }
568
GetActualStackSizeFn(void * arg)569 static void* GetActualStackSizeFn(void* arg) {
570 pthread_attr_t attributes;
571 pthread_getattr_np(pthread_self(), &attributes);
572 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
573 return NULL;
574 }
575
GetActualStackSize(const pthread_attr_t & attributes)576 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
577 size_t result;
578 pthread_t t;
579 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
580 pthread_join(t, NULL);
581 return result;
582 }
583
TEST(pthread,pthread_attr_setguardsize)584 TEST(pthread, pthread_attr_setguardsize) {
585 pthread_attr_t attributes;
586 ASSERT_EQ(0, pthread_attr_init(&attributes));
587
588 // Get the default guard size.
589 size_t default_guard_size;
590 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
591
592 // No such thing as too small: will be rounded up to one page by pthread_create.
593 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
594 size_t guard_size;
595 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
596 ASSERT_EQ(128U, guard_size);
597 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
598
599 // Large enough and a multiple of the page size.
600 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
601 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
602 ASSERT_EQ(32*1024U, guard_size);
603
604 // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
605 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
606 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
607 ASSERT_EQ(32*1024U + 1, guard_size);
608 }
609
TEST(pthread,pthread_attr_setstacksize)610 TEST(pthread, pthread_attr_setstacksize) {
611 pthread_attr_t attributes;
612 ASSERT_EQ(0, pthread_attr_init(&attributes));
613
614 // Get the default stack size.
615 size_t default_stack_size;
616 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
617
618 // Too small.
619 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
620 size_t stack_size;
621 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
622 ASSERT_EQ(default_stack_size, stack_size);
623 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
624
625 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
626 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
627 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
628 ASSERT_EQ(32*1024U, stack_size);
629 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
630
631 // Large enough but not aligned; will be rounded up by pthread_create.
632 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
633 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
634 ASSERT_EQ(32*1024U + 1, stack_size);
635 #if defined(__BIONIC__)
636 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
637 #else // __BIONIC__
638 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
639 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
640 #endif // __BIONIC__
641 }
642
TEST(pthread,pthread_rwlockattr_smoke)643 TEST(pthread, pthread_rwlockattr_smoke) {
644 pthread_rwlockattr_t attr;
645 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
646
647 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
648 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
649 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
650 int pshared;
651 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
652 ASSERT_EQ(pshared_value_array[i], pshared);
653 }
654
655 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
656 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
657 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
658 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
659 int kind;
660 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
661 ASSERT_EQ(kind_array[i], kind);
662 }
663
664 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
665 }
666
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)667 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
668 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
669 pthread_rwlock_t lock2;
670 ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
671 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
672 }
673
TEST(pthread,pthread_rwlock_smoke)674 TEST(pthread, pthread_rwlock_smoke) {
675 pthread_rwlock_t l;
676 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
677
678 // Single read lock
679 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
680 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
681
682 // Multiple read lock
683 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
684 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
685 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
686 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
687
688 // Write lock
689 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
690 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
691
692 // Try writer lock
693 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
694 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
695 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
696 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
697
698 // Try reader lock
699 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
700 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
701 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
702 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
703 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
704
705 // Try writer lock after unlock
706 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
707 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
708
709 // EDEADLK in "read after write"
710 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
711 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
712 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
713
714 // EDEADLK in "write after write"
715 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
716 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
717 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
718
719 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
720 }
721
WaitUntilThreadSleep(std::atomic<pid_t> & pid)722 static void WaitUntilThreadSleep(std::atomic<pid_t>& pid) {
723 while (pid == 0) {
724 usleep(1000);
725 }
726 std::string filename = android::base::StringPrintf("/proc/%d/stat", pid.load());
727 std::regex regex {R"(\s+S\s+)"};
728
729 while (true) {
730 std::string content;
731 ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
732 if (std::regex_search(content, regex)) {
733 break;
734 }
735 usleep(1000);
736 }
737 }
738
739 struct RwlockWakeupHelperArg {
740 pthread_rwlock_t lock;
741 enum Progress {
742 LOCK_INITIALIZED,
743 LOCK_WAITING,
744 LOCK_RELEASED,
745 LOCK_ACCESSED
746 };
747 std::atomic<Progress> progress;
748 std::atomic<pid_t> tid;
749 };
750
pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg * arg)751 static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
752 arg->tid = gettid();
753 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
754 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
755
756 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
757 ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
758 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
759 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
760
761 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
762 }
763
TEST(pthread,pthread_rwlock_reader_wakeup_writer)764 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
765 RwlockWakeupHelperArg wakeup_arg;
766 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
767 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
768 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
769 wakeup_arg.tid = 0;
770
771 pthread_t thread;
772 ASSERT_EQ(0, pthread_create(&thread, NULL,
773 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
774 WaitUntilThreadSleep(wakeup_arg.tid);
775 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
776
777 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
778 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
779
780 ASSERT_EQ(0, pthread_join(thread, NULL));
781 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
782 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
783 }
784
pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg * arg)785 static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
786 arg->tid = gettid();
787 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
788 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
789
790 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
791 ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
792 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
793 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
794
795 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
796 }
797
TEST(pthread,pthread_rwlock_writer_wakeup_reader)798 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
799 RwlockWakeupHelperArg wakeup_arg;
800 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
801 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
802 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
803 wakeup_arg.tid = 0;
804
805 pthread_t thread;
806 ASSERT_EQ(0, pthread_create(&thread, NULL,
807 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
808 WaitUntilThreadSleep(wakeup_arg.tid);
809 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
810
811 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
812 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
813
814 ASSERT_EQ(0, pthread_join(thread, NULL));
815 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
816 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
817 }
818
819 class RwlockKindTestHelper {
820 private:
821 struct ThreadArg {
822 RwlockKindTestHelper* helper;
823 std::atomic<pid_t>& tid;
824
ThreadArgRwlockKindTestHelper::ThreadArg825 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
826 : helper(helper), tid(tid) { }
827 };
828
829 public:
830 pthread_rwlock_t lock;
831
832 public:
RwlockKindTestHelper(int kind_type)833 RwlockKindTestHelper(int kind_type) {
834 InitRwlock(kind_type);
835 }
836
~RwlockKindTestHelper()837 ~RwlockKindTestHelper() {
838 DestroyRwlock();
839 }
840
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)841 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
842 tid = 0;
843 ThreadArg* arg = new ThreadArg(this, tid);
844 ASSERT_EQ(0, pthread_create(&thread, NULL,
845 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
846 }
847
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)848 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
849 tid = 0;
850 ThreadArg* arg = new ThreadArg(this, tid);
851 ASSERT_EQ(0, pthread_create(&thread, NULL,
852 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
853 }
854
855 private:
InitRwlock(int kind_type)856 void InitRwlock(int kind_type) {
857 pthread_rwlockattr_t attr;
858 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
859 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
860 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
861 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
862 }
863
DestroyRwlock()864 void DestroyRwlock() {
865 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
866 }
867
WriterThreadFn(ThreadArg * arg)868 static void WriterThreadFn(ThreadArg* arg) {
869 arg->tid = gettid();
870
871 RwlockKindTestHelper* helper = arg->helper;
872 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
873 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
874 delete arg;
875 }
876
ReaderThreadFn(ThreadArg * arg)877 static void ReaderThreadFn(ThreadArg* arg) {
878 arg->tid = gettid();
879
880 RwlockKindTestHelper* helper = arg->helper;
881 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
882 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
883 delete arg;
884 }
885 };
886
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)887 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
888 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
889 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
890
891 pthread_t writer_thread;
892 std::atomic<pid_t> writer_tid;
893 helper.CreateWriterThread(writer_thread, writer_tid);
894 WaitUntilThreadSleep(writer_tid);
895
896 pthread_t reader_thread;
897 std::atomic<pid_t> reader_tid;
898 helper.CreateReaderThread(reader_thread, reader_tid);
899 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
900
901 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
902 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
903 }
904
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)905 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
906 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
907 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
908
909 pthread_t writer_thread;
910 std::atomic<pid_t> writer_tid;
911 helper.CreateWriterThread(writer_thread, writer_tid);
912 WaitUntilThreadSleep(writer_tid);
913
914 pthread_t reader_thread;
915 std::atomic<pid_t> reader_tid;
916 helper.CreateReaderThread(reader_thread, reader_tid);
917 WaitUntilThreadSleep(reader_tid);
918
919 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
920 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
921 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
922 }
923
924 static int g_once_fn_call_count = 0;
OnceFn()925 static void OnceFn() {
926 ++g_once_fn_call_count;
927 }
928
TEST(pthread,pthread_once_smoke)929 TEST(pthread, pthread_once_smoke) {
930 pthread_once_t once_control = PTHREAD_ONCE_INIT;
931 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
932 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
933 ASSERT_EQ(1, g_once_fn_call_count);
934 }
935
936 static std::string pthread_once_1934122_result = "";
937
Routine2()938 static void Routine2() {
939 pthread_once_1934122_result += "2";
940 }
941
Routine1()942 static void Routine1() {
943 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
944 pthread_once_1934122_result += "1";
945 pthread_once(&once_control_2, &Routine2);
946 }
947
TEST(pthread,pthread_once_1934122)948 TEST(pthread, pthread_once_1934122) {
949 // Very old versions of Android couldn't call pthread_once from a
950 // pthread_once init routine. http://b/1934122.
951 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
952 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
953 ASSERT_EQ("12", pthread_once_1934122_result);
954 }
955
956 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()957 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()958 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
959 static int g_atfork_parent_calls = 0;
AtForkParent1()960 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()961 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
962 static int g_atfork_child_calls = 0;
AtForkChild1()963 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()964 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
965
TEST(pthread,pthread_atfork_smoke)966 TEST(pthread, pthread_atfork_smoke) {
967 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
968 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
969
970 int pid = fork();
971 ASSERT_NE(-1, pid) << strerror(errno);
972
973 // Child and parent calls are made in the order they were registered.
974 if (pid == 0) {
975 ASSERT_EQ(12, g_atfork_child_calls);
976 _exit(0);
977 }
978 ASSERT_EQ(12, g_atfork_parent_calls);
979
980 // Prepare calls are made in the reverse order.
981 ASSERT_EQ(21, g_atfork_prepare_calls);
982 int status;
983 ASSERT_EQ(pid, waitpid(pid, &status, 0));
984 }
985
TEST(pthread,pthread_attr_getscope)986 TEST(pthread, pthread_attr_getscope) {
987 pthread_attr_t attr;
988 ASSERT_EQ(0, pthread_attr_init(&attr));
989
990 int scope;
991 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
992 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
993 }
994
TEST(pthread,pthread_condattr_init)995 TEST(pthread, pthread_condattr_init) {
996 pthread_condattr_t attr;
997 pthread_condattr_init(&attr);
998
999 clockid_t clock;
1000 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1001 ASSERT_EQ(CLOCK_REALTIME, clock);
1002
1003 int pshared;
1004 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1005 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1006 }
1007
TEST(pthread,pthread_condattr_setclock)1008 TEST(pthread, pthread_condattr_setclock) {
1009 pthread_condattr_t attr;
1010 pthread_condattr_init(&attr);
1011
1012 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1013 clockid_t clock;
1014 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1015 ASSERT_EQ(CLOCK_REALTIME, clock);
1016
1017 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1018 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1019 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1020
1021 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1022 }
1023
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1024 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1025 #if defined(__BIONIC__)
1026 pthread_condattr_t attr;
1027 pthread_condattr_init(&attr);
1028
1029 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1030 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1031
1032 pthread_cond_t cond_var;
1033 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1034
1035 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1036 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1037
1038 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1039 clockid_t clock;
1040 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1041 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1042 int pshared;
1043 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1044 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1045 #else // !defined(__BIONIC__)
1046 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1047 #endif // !defined(__BIONIC__)
1048 }
1049
1050 class pthread_CondWakeupTest : public ::testing::Test {
1051 protected:
1052 pthread_mutex_t mutex;
1053 pthread_cond_t cond;
1054
1055 enum Progress {
1056 INITIALIZED,
1057 WAITING,
1058 SIGNALED,
1059 FINISHED,
1060 };
1061 std::atomic<Progress> progress;
1062 pthread_t thread;
1063
1064 protected:
SetUp()1065 virtual void SetUp() {
1066 ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
1067 ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
1068 progress = INITIALIZED;
1069 ASSERT_EQ(0,
1070 pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1071 }
1072
TearDown()1073 virtual void TearDown() {
1074 ASSERT_EQ(0, pthread_join(thread, NULL));
1075 ASSERT_EQ(FINISHED, progress);
1076 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1077 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1078 }
1079
SleepUntilProgress(Progress expected_progress)1080 void SleepUntilProgress(Progress expected_progress) {
1081 while (progress != expected_progress) {
1082 usleep(5000);
1083 }
1084 usleep(5000);
1085 }
1086
1087 private:
WaitThreadFn(pthread_CondWakeupTest * test)1088 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1089 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1090 test->progress = WAITING;
1091 while (test->progress == WAITING) {
1092 ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
1093 }
1094 ASSERT_EQ(SIGNALED, test->progress);
1095 test->progress = FINISHED;
1096 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1097 }
1098 };
1099
TEST_F(pthread_CondWakeupTest,signal)1100 TEST_F(pthread_CondWakeupTest, signal) {
1101 SleepUntilProgress(WAITING);
1102 progress = SIGNALED;
1103 pthread_cond_signal(&cond);
1104 }
1105
TEST_F(pthread_CondWakeupTest,broadcast)1106 TEST_F(pthread_CondWakeupTest, broadcast) {
1107 SleepUntilProgress(WAITING);
1108 progress = SIGNALED;
1109 pthread_cond_broadcast(&cond);
1110 }
1111
TEST(pthread,pthread_mutex_timedlock)1112 TEST(pthread, pthread_mutex_timedlock) {
1113 pthread_mutex_t m;
1114 ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
1115
1116 // If the mutex is already locked, pthread_mutex_timedlock should time out.
1117 ASSERT_EQ(0, pthread_mutex_lock(&m));
1118
1119 timespec ts;
1120 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1121 ts.tv_nsec += 1;
1122 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1123
1124 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1125 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1126
1127 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1128 ts.tv_nsec += 1;
1129 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1130
1131 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1132 ASSERT_EQ(0, pthread_mutex_destroy(&m));
1133 }
1134
TEST(pthread,pthread_attr_getstack__main_thread)1135 TEST(pthread, pthread_attr_getstack__main_thread) {
1136 // This test is only meaningful for the main thread, so make sure we're running on it!
1137 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1138
1139 // Get the main thread's attributes.
1140 pthread_attr_t attributes;
1141 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1142
1143 // Check that we correctly report that the main thread has no guard page.
1144 size_t guard_size;
1145 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1146 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1147
1148 // Get the stack base and the stack size (both ways).
1149 void* stack_base;
1150 size_t stack_size;
1151 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1152 size_t stack_size2;
1153 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1154
1155 // The two methods of asking for the stack size should agree.
1156 EXPECT_EQ(stack_size, stack_size2);
1157
1158 // What does /proc/self/maps' [stack] line say?
1159 void* maps_stack_hi = NULL;
1160 FILE* fp = fopen("/proc/self/maps", "r");
1161 ASSERT_TRUE(fp != NULL);
1162 char line[BUFSIZ];
1163 while (fgets(line, sizeof(line), fp) != NULL) {
1164 uintptr_t lo, hi;
1165 char name[10];
1166 sscanf(line, "%" PRIxPTR "-%" PRIxPTR " %*4s %*x %*x:%*x %*d %10s", &lo, &hi, name);
1167 if (strcmp(name, "[stack]") == 0) {
1168 maps_stack_hi = reinterpret_cast<void*>(hi);
1169 break;
1170 }
1171 }
1172 fclose(fp);
1173
1174 // The stack size should correspond to RLIMIT_STACK.
1175 rlimit rl;
1176 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1177 uint64_t original_rlim_cur = rl.rlim_cur;
1178 #if defined(__BIONIC__)
1179 if (rl.rlim_cur == RLIM_INFINITY) {
1180 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1181 }
1182 #endif
1183 EXPECT_EQ(rl.rlim_cur, stack_size);
1184
1185 auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1186 rl.rlim_cur = original_rlim_cur;
1187 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1188 });
1189
1190 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1191 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1192 // region isn't very interesting.
1193 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1194
1195 //
1196 // What if RLIMIT_STACK is smaller than the stack's current extent?
1197 //
1198 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1199 rl.rlim_max = RLIM_INFINITY;
1200 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1201
1202 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1203 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1204 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1205
1206 EXPECT_EQ(stack_size, stack_size2);
1207 ASSERT_EQ(1024U, stack_size);
1208
1209 //
1210 // What if RLIMIT_STACK isn't a whole number of pages?
1211 //
1212 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1213 rl.rlim_max = RLIM_INFINITY;
1214 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1215
1216 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1217 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1218 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1219
1220 EXPECT_EQ(stack_size, stack_size2);
1221 ASSERT_EQ(6666U, stack_size);
1222 }
1223
pthread_attr_getstack_18908062_helper(void *)1224 static void pthread_attr_getstack_18908062_helper(void*) {
1225 char local_variable;
1226 pthread_attr_t attributes;
1227 pthread_getattr_np(pthread_self(), &attributes);
1228 void* stack_base;
1229 size_t stack_size;
1230 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1231
1232 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1233 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1234 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1235 }
1236
1237 // Check whether something on stack is in the range of
1238 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1239 TEST(pthread, pthread_attr_getstack_18908062) {
1240 pthread_t t;
1241 ASSERT_EQ(0, pthread_create(&t, NULL,
1242 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1243 NULL));
1244 pthread_join(t, NULL);
1245 }
1246
1247 #if defined(__BIONIC__)
pthread_gettid_np_helper(void * arg)1248 static void* pthread_gettid_np_helper(void* arg) {
1249 *reinterpret_cast<pid_t*>(arg) = gettid();
1250 return NULL;
1251 }
1252 #endif
1253
TEST(pthread,pthread_gettid_np)1254 TEST(pthread, pthread_gettid_np) {
1255 #if defined(__BIONIC__)
1256 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1257
1258 pid_t t_gettid_result;
1259 pthread_t t;
1260 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1261
1262 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1263
1264 pthread_join(t, NULL);
1265
1266 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1267 #else
1268 GTEST_LOG_(INFO) << "This test does nothing.\n";
1269 #endif
1270 }
1271
1272 static size_t cleanup_counter = 0;
1273
AbortCleanupRoutine(void *)1274 static void AbortCleanupRoutine(void*) {
1275 abort();
1276 }
1277
CountCleanupRoutine(void *)1278 static void CountCleanupRoutine(void*) {
1279 ++cleanup_counter;
1280 }
1281
PthreadCleanupTester()1282 static void PthreadCleanupTester() {
1283 pthread_cleanup_push(CountCleanupRoutine, NULL);
1284 pthread_cleanup_push(CountCleanupRoutine, NULL);
1285 pthread_cleanup_push(AbortCleanupRoutine, NULL);
1286
1287 pthread_cleanup_pop(0); // Pop the abort without executing it.
1288 pthread_cleanup_pop(1); // Pop one count while executing it.
1289 ASSERT_EQ(1U, cleanup_counter);
1290 // Exit while the other count is still on the cleanup stack.
1291 pthread_exit(NULL);
1292
1293 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1294 pthread_cleanup_pop(0);
1295 }
1296
PthreadCleanupStartRoutine(void *)1297 static void* PthreadCleanupStartRoutine(void*) {
1298 PthreadCleanupTester();
1299 return NULL;
1300 }
1301
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1302 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1303 pthread_t t;
1304 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1305 pthread_join(t, NULL);
1306 ASSERT_EQ(2U, cleanup_counter);
1307 }
1308
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1309 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1310 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1311 }
1312
TEST(pthread,pthread_mutexattr_gettype)1313 TEST(pthread, pthread_mutexattr_gettype) {
1314 pthread_mutexattr_t attr;
1315 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1316
1317 int attr_type;
1318
1319 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1320 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1321 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1322
1323 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1324 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1325 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1326
1327 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1328 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1329 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1330
1331 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1332 }
1333
1334 struct PthreadMutex {
1335 pthread_mutex_t lock;
1336
PthreadMutexPthreadMutex1337 PthreadMutex(int mutex_type) {
1338 init(mutex_type);
1339 }
1340
~PthreadMutexPthreadMutex1341 ~PthreadMutex() {
1342 destroy();
1343 }
1344
1345 private:
initPthreadMutex1346 void init(int mutex_type) {
1347 pthread_mutexattr_t attr;
1348 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1349 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1350 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1351 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1352 }
1353
destroyPthreadMutex1354 void destroy() {
1355 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1356 }
1357
1358 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1359 };
1360
TEST(pthread,pthread_mutex_lock_NORMAL)1361 TEST(pthread, pthread_mutex_lock_NORMAL) {
1362 PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1363
1364 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1365 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1366 }
1367
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1368 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1369 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1370
1371 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1372 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1373 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1374 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1375 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1376 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1377 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1378 }
1379
TEST(pthread,pthread_mutex_lock_RECURSIVE)1380 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1381 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1382
1383 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1384 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1385 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1386 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1387 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1388 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1389 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1390 }
1391
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1392 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1393 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1394 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1395 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1396 pthread_mutex_destroy(&lock_normal);
1397
1398 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1399 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1400 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1401 pthread_mutex_destroy(&lock_errorcheck);
1402
1403 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1404 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1405 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1406 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1407 }
1408 class MutexWakeupHelper {
1409 private:
1410 PthreadMutex m;
1411 enum Progress {
1412 LOCK_INITIALIZED,
1413 LOCK_WAITING,
1414 LOCK_RELEASED,
1415 LOCK_ACCESSED
1416 };
1417 std::atomic<Progress> progress;
1418 std::atomic<pid_t> tid;
1419
thread_fn(MutexWakeupHelper * helper)1420 static void thread_fn(MutexWakeupHelper* helper) {
1421 helper->tid = gettid();
1422 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1423 helper->progress = LOCK_WAITING;
1424
1425 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1426 ASSERT_EQ(LOCK_RELEASED, helper->progress);
1427 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1428
1429 helper->progress = LOCK_ACCESSED;
1430 }
1431
1432 public:
MutexWakeupHelper(int mutex_type)1433 MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1434 }
1435
test()1436 void test() {
1437 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1438 progress = LOCK_INITIALIZED;
1439 tid = 0;
1440
1441 pthread_t thread;
1442 ASSERT_EQ(0, pthread_create(&thread, NULL,
1443 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1444
1445 WaitUntilThreadSleep(tid);
1446 ASSERT_EQ(LOCK_WAITING, progress);
1447
1448 progress = LOCK_RELEASED;
1449 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1450
1451 ASSERT_EQ(0, pthread_join(thread, NULL));
1452 ASSERT_EQ(LOCK_ACCESSED, progress);
1453 }
1454 };
1455
TEST(pthread,pthread_mutex_NORMAL_wakeup)1456 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1457 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1458 helper.test();
1459 }
1460
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1461 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1462 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1463 helper.test();
1464 }
1465
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1466 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1467 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1468 helper.test();
1469 }
1470
TEST(pthread,pthread_mutex_owner_tid_limit)1471 TEST(pthread, pthread_mutex_owner_tid_limit) {
1472 #if defined(__BIONIC__) && !defined(__LP64__)
1473 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1474 ASSERT_TRUE(fp != NULL);
1475 long pid_max;
1476 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1477 fclose(fp);
1478 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1479 ASSERT_LE(pid_max, 65536);
1480 #else
1481 GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1482 #endif
1483 }
1484
1485 class StrictAlignmentAllocator {
1486 public:
allocate(size_t size,size_t alignment)1487 void* allocate(size_t size, size_t alignment) {
1488 char* p = new char[size + alignment * 2];
1489 allocated_array.push_back(p);
1490 while (!is_strict_aligned(p, alignment)) {
1491 ++p;
1492 }
1493 return p;
1494 }
1495
~StrictAlignmentAllocator()1496 ~StrictAlignmentAllocator() {
1497 for (auto& p : allocated_array) {
1498 delete [] p;
1499 }
1500 }
1501
1502 private:
is_strict_aligned(char * p,size_t alignment)1503 bool is_strict_aligned(char* p, size_t alignment) {
1504 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1505 }
1506
1507 std::vector<char*> allocated_array;
1508 };
1509
TEST(pthread,pthread_types_allow_four_bytes_alignment)1510 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1511 #if defined(__BIONIC__)
1512 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1513 StrictAlignmentAllocator allocator;
1514 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1515 allocator.allocate(sizeof(pthread_mutex_t), 4));
1516 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1517 ASSERT_EQ(0, pthread_mutex_lock(mutex));
1518 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1519 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1520
1521 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1522 allocator.allocate(sizeof(pthread_cond_t), 4));
1523 ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1524 ASSERT_EQ(0, pthread_cond_signal(cond));
1525 ASSERT_EQ(0, pthread_cond_broadcast(cond));
1526 ASSERT_EQ(0, pthread_cond_destroy(cond));
1527
1528 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1529 allocator.allocate(sizeof(pthread_rwlock_t), 4));
1530 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1531 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1532 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1533 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1534 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1535 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1536
1537 #else
1538 GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1539 #endif
1540 }
1541
TEST(pthread,pthread_mutex_lock_null_32)1542 TEST(pthread, pthread_mutex_lock_null_32) {
1543 #if defined(__BIONIC__) && !defined(__LP64__)
1544 ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1545 #else
1546 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1547 #endif
1548 }
1549
TEST(pthread,pthread_mutex_unlock_null_32)1550 TEST(pthread, pthread_mutex_unlock_null_32) {
1551 #if defined(__BIONIC__) && !defined(__LP64__)
1552 ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1553 #else
1554 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1555 #endif
1556 }
1557
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1558 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1559 #if defined(__BIONIC__) && defined(__LP64__)
1560 pthread_mutex_t* null_value = nullptr;
1561 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1562 #else
1563 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1564 #endif
1565 }
1566
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1567 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1568 #if defined(__BIONIC__) && defined(__LP64__)
1569 pthread_mutex_t* null_value = nullptr;
1570 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1571 #else
1572 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1573 #endif
1574 }
1575
1576 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1577
1578 static volatile bool signal_handler_on_altstack_done;
1579
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1580 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1581 ASSERT_EQ(SIGUSR1, signo);
1582 // Check if we have enough stack space for unwinding.
1583 int count = 0;
1584 _Unwind_Backtrace(FrameCounter, &count);
1585 ASSERT_GT(count, 0);
1586 // Check if we have enough stack space for logging.
1587 std::string s(2048, '*');
1588 GTEST_LOG_(INFO) << s;
1589 signal_handler_on_altstack_done = true;
1590 }
1591
TEST(pthread,big_enough_signal_stack_for_64bit_arch)1592 TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
1593 signal_handler_on_altstack_done = false;
1594 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1595 kill(getpid(), SIGUSR1);
1596 ASSERT_TRUE(signal_handler_on_altstack_done);
1597 }
1598