• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2015 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#      http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import its.image
16import its.caps
17import its.device
18import its.objects
19import its.target
20import math
21import matplotlib
22import matplotlib.pyplot
23import numpy
24import os.path
25import pylab
26
27def main():
28    """Test that the android.noiseReduction.mode param is applied when set for
29       reprocessing requests.
30
31    Capture reprocessed images with the camera dimly lit. Uses a high analog
32    gain to ensure the captured image is noisy.
33
34    Captures three reprocessed images, for NR off, "fast", and "high quality".
35    Also captures a reprocessed image with low gain and NR off, and uses the
36    variance of this as the baseline.
37    """
38
39    NAME = os.path.basename(__file__).split(".")[0]
40
41    NUM_SAMPLES_PER_MODE = 4
42    SNR_TOLERANCE = 3 # unit in db
43
44    with its.device.ItsSession() as cam:
45        props = cam.get_camera_properties()
46
47        its.caps.skip_unless(its.caps.compute_target_exposure(props) and
48                             its.caps.per_frame_control(props) and
49                             its.caps.noise_reduction_mode(props, 0) and
50                             (its.caps.yuv_reprocess(props) or
51                              its.caps.private_reprocess(props)))
52
53        # If reprocessing is supported, ZSL NR mode must be avaiable.
54        assert(its.caps.noise_reduction_mode(props, 4))
55
56        reprocess_formats = []
57        if (its.caps.yuv_reprocess(props)):
58            reprocess_formats.append("yuv")
59        if (its.caps.private_reprocess(props)):
60            reprocess_formats.append("private")
61
62        for reprocess_format in reprocess_formats:
63            # List of variances for R, G, B.
64            snrs = [[], [], []]
65            nr_modes_reported = []
66
67            # NR mode 0 with low gain
68            e, s = its.target.get_target_exposure_combos(cam)["minSensitivity"]
69            req = its.objects.manual_capture_request(s, e)
70            req["android.noiseReduction.mode"] = 0
71
72            # Test reprocess_format->JPEG reprocessing
73            # TODO: Switch to reprocess_format->YUV when YUV reprocessing is
74            #       supported.
75            size = its.objects.get_available_output_sizes("jpg", props)[0]
76            out_surface = {"width":size[0], "height":size[1], "format":"jpg"}
77            cap = cam.do_capture(req, out_surface, reprocess_format)
78            img = its.image.decompress_jpeg_to_rgb_image(cap["data"])
79            its.image.write_image(img, "%s_low_gain_fmt=jpg.jpg" % (NAME))
80            tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
81            ref_snr = its.image.compute_image_snrs(tile)
82            print "Ref SNRs:", ref_snr
83
84            e, s = its.target.get_target_exposure_combos(cam)["maxSensitivity"]
85            for nr_mode in range(5):
86                # Skip unavailable modes
87                if not its.caps.noise_reduction_mode(props, nr_mode):
88                    nr_modes_reported.append(nr_mode)
89                    for channel in range(3):
90                        snrs[channel].append(0)
91                    continue
92
93                rgb_snr_list = []
94                # Capture several images to account for per frame noise
95                # variations
96                for n in range(NUM_SAMPLES_PER_MODE):
97                    req = its.objects.manual_capture_request(s, e)
98                    req["android.noiseReduction.mode"] = nr_mode
99                    cap = cam.do_capture(req, out_surface, reprocess_format)
100
101                    img = its.image.decompress_jpeg_to_rgb_image(cap["data"])
102                    if n == 0:
103                        its.image.write_image(
104                                img,
105                                "%s_high_gain_nr=%d_fmt=jpg.jpg"
106                                        %(NAME, nr_mode))
107                        nr_modes_reported.append(
108                                cap["metadata"]["android.noiseReduction.mode"])
109
110                    tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
111                    # Get the variances for R, G, and B channels
112                    rgb_snrs = its.image.compute_image_snrs(tile)
113                    rgb_snr_list.append(rgb_snrs)
114
115                r_snrs = [rgb[0] for rgb in rgb_snr_list]
116                g_snrs = [rgb[1] for rgb in rgb_snr_list]
117                b_snrs = [rgb[2] for rgb in rgb_snr_list]
118                rgb_snrs = [numpy.mean(r_snrs),
119                            numpy.mean(g_snrs),
120                            numpy.mean(b_snrs)]
121                print "NR mode", nr_mode, "SNRs:"
122                print "    R SNR:", rgb_snrs[0],\
123                        "Min:", min(r_snrs), "Max:", max(r_snrs)
124                print "    G SNR:", rgb_snrs[1],\
125                        "Min:", min(g_snrs), "Max:", max(g_snrs)
126                print "    B SNR:", rgb_snrs[2],\
127                        "Min:", min(b_snrs), "Max:", max(b_snrs)
128
129                for chan in range(3):
130                    snrs[chan].append(rgb_snrs[chan])
131
132            # Draw a plot.
133            for channel in range(3):
134                pylab.plot(range(5), snrs[channel], "rgb"[channel])
135
136            matplotlib.pyplot.savefig("%s_plot_%s_SNRs.png" %
137                                      (NAME, reprocess_format))
138
139            assert(nr_modes_reported == [0,1,2,3,4])
140
141            for j in range(3):
142                # Larger is better
143                # Verify OFF(0) is not better than FAST(1)
144                assert(snrs[j][0] <
145                       snrs[j][1] + SNR_TOLERANCE)
146                # Verify FAST(1) is not better than HQ(2)
147                assert(snrs[j][1] <
148                       snrs[j][2] + SNR_TOLERANCE)
149                # Verify HQ(2) is better than OFF(0)
150                assert(snrs[j][0] < snrs[j][2])
151                if its.caps.noise_reduction_mode(props, 3):
152                    # Verify OFF(0) is not better than MINIMAL(3)
153                    assert(snrs[j][0] <
154                           snrs[j][3] + SNR_TOLERANCE)
155                    # Verify MINIMAL(3) is not better than HQ(2)
156                    assert(snrs[j][3] <
157                           snrs[j][2] + SNR_TOLERANCE)
158                    # Verify ZSL(4) is close to MINIMAL(3)
159                    assert(numpy.isclose(snrs[j][4], snrs[j][3],
160                                         atol=SNR_TOLERANCE))
161                else:
162                    # Verify ZSL(4) is close to OFF(0)
163                    assert(numpy.isclose(snrs[j][4], snrs[j][0],
164                                         atol=SNR_TOLERANCE))
165
166if __name__ == '__main__':
167    main()
168
169