• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# SHA256/512 for ARMv8.
11#
12# Performance in cycles per processed byte and improvement coefficient
13# over code generated with "default" compiler:
14#
15#		SHA256-hw	SHA256(*)	SHA512
16# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
17# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
18# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
19# Denver	2.01		10.5 (+26%)	6.70 (+8%)
20# X-Gene			20.0 (+100%)	12.8 (+300%(***))
21#
22# (*)	Software SHA256 results are of lesser relevance, presented
23#	mostly for informational purposes.
24# (**)	The result is a trade-off: it's possible to improve it by
25#	10% (or by 1 cycle per round), but at the cost of 20% loss
26#	on Cortex-A53 (or by 4 cycles per round).
27# (***)	Super-impressive coefficients over gcc-generated code are
28#	indication of some compiler "pathology", most notably code
29#	generated with -mgeneral-regs-only is significanty faster
30#	and the gap is only 40-90%.
31
32$flavour=shift;
33# Unlike most perlasm files, sha512-armv8.pl takes an additional argument to
34# determine which hash function to emit. This differs from upstream OpenSSL so
35# that the script may continue to output to stdout.
36$variant=shift;
37$output=shift;
38
39$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
40( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
41( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
42die "can't locate arm-xlate.pl";
43
44open OUT,"| \"$^X\" $xlate $flavour $output";
45*STDOUT=*OUT;
46
47if ($variant eq "sha512") {
48	$BITS=512;
49	$SZ=8;
50	@Sigma0=(28,34,39);
51	@Sigma1=(14,18,41);
52	@sigma0=(1,  8, 7);
53	@sigma1=(19,61, 6);
54	$rounds=80;
55	$reg_t="x";
56} elsif ($variant eq "sha256") {
57	$BITS=256;
58	$SZ=4;
59	@Sigma0=( 2,13,22);
60	@Sigma1=( 6,11,25);
61	@sigma0=( 7,18, 3);
62	@sigma1=(17,19,10);
63	$rounds=64;
64	$reg_t="w";
65} else {
66  die "Unknown variant: $variant";
67}
68
69$func="sha${BITS}_block_data_order";
70
71($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
72
73@X=map("$reg_t$_",(3..15,0..2));
74@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
75($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
76
77sub BODY_00_xx {
78my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
79my $j=($i+1)&15;
80my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
81   $T0=@X[$i+3] if ($i<11);
82
83$code.=<<___	if ($i<16);
84#ifndef	__ARMEB__
85	rev	@X[$i],@X[$i]			// $i
86#endif
87___
88$code.=<<___	if ($i<13 && ($i&1));
89	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
90___
91$code.=<<___	if ($i==13);
92	ldp	@X[14],@X[15],[$inp]
93___
94$code.=<<___	if ($i>=14);
95	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
96___
97$code.=<<___	if ($i>0 && $i<16);
98	add	$a,$a,$t1			// h+=Sigma0(a)
99___
100$code.=<<___	if ($i>=11);
101	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
102___
103# While ARMv8 specifies merged rotate-n-logical operation such as
104# 'eor x,y,z,ror#n', it was found to negatively affect performance
105# on Apple A7. The reason seems to be that it requires even 'y' to
106# be available earlier. This means that such merged instruction is
107# not necessarily best choice on critical path... On the other hand
108# Cortex-A5x handles merged instructions much better than disjoint
109# rotate and logical... See (**) footnote above.
110$code.=<<___	if ($i<15);
111	ror	$t0,$e,#$Sigma1[0]
112	add	$h,$h,$t2			// h+=K[i]
113	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
114	and	$t1,$f,$e
115	bic	$t2,$g,$e
116	add	$h,$h,@X[$i&15]			// h+=X[i]
117	orr	$t1,$t1,$t2			// Ch(e,f,g)
118	eor	$t2,$a,$b			// a^b, b^c in next round
119	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
120	ror	$T0,$a,#$Sigma0[0]
121	add	$h,$h,$t1			// h+=Ch(e,f,g)
122	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
123	add	$h,$h,$t0			// h+=Sigma1(e)
124	and	$t3,$t3,$t2			// (b^c)&=(a^b)
125	add	$d,$d,$h			// d+=h
126	eor	$t3,$t3,$b			// Maj(a,b,c)
127	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
128	add	$h,$h,$t3			// h+=Maj(a,b,c)
129	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
130	//add	$h,$h,$t1			// h+=Sigma0(a)
131___
132$code.=<<___	if ($i>=15);
133	ror	$t0,$e,#$Sigma1[0]
134	add	$h,$h,$t2			// h+=K[i]
135	ror	$T1,@X[($j+1)&15],#$sigma0[0]
136	and	$t1,$f,$e
137	ror	$T2,@X[($j+14)&15],#$sigma1[0]
138	bic	$t2,$g,$e
139	ror	$T0,$a,#$Sigma0[0]
140	add	$h,$h,@X[$i&15]			// h+=X[i]
141	eor	$t0,$t0,$e,ror#$Sigma1[1]
142	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
143	orr	$t1,$t1,$t2			// Ch(e,f,g)
144	eor	$t2,$a,$b			// a^b, b^c in next round
145	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
146	eor	$T0,$T0,$a,ror#$Sigma0[1]
147	add	$h,$h,$t1			// h+=Ch(e,f,g)
148	and	$t3,$t3,$t2			// (b^c)&=(a^b)
149	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
150	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
151	add	$h,$h,$t0			// h+=Sigma1(e)
152	eor	$t3,$t3,$b			// Maj(a,b,c)
153	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
154	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
155	add	@X[$j],@X[$j],@X[($j+9)&15]
156	add	$d,$d,$h			// d+=h
157	add	$h,$h,$t3			// h+=Maj(a,b,c)
158	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
159	add	@X[$j],@X[$j],$T1
160	add	$h,$h,$t1			// h+=Sigma0(a)
161	add	@X[$j],@X[$j],$T2
162___
163	($t2,$t3)=($t3,$t2);
164}
165
166$code.=<<___;
167#include "arm_arch.h"
168
169.text
170
171.extern	OPENSSL_armcap_P
172.globl	$func
173.type	$func,%function
174.align	6
175$func:
176___
177$code.=<<___	if ($SZ==4);
178	ldr	x16,.LOPENSSL_armcap_P
179	adr	x17,.LOPENSSL_armcap_P
180	add	x16,x16,x17
181	ldr	w16,[x16]
182	tst	w16,#ARMV8_SHA256
183	b.ne	.Lv8_entry
184___
185$code.=<<___;
186	stp	x29,x30,[sp,#-128]!
187	add	x29,sp,#0
188
189	stp	x19,x20,[sp,#16]
190	stp	x21,x22,[sp,#32]
191	stp	x23,x24,[sp,#48]
192	stp	x25,x26,[sp,#64]
193	stp	x27,x28,[sp,#80]
194	sub	sp,sp,#4*$SZ
195
196	ldp	$A,$B,[$ctx]				// load context
197	ldp	$C,$D,[$ctx,#2*$SZ]
198	ldp	$E,$F,[$ctx,#4*$SZ]
199	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
200	ldp	$G,$H,[$ctx,#6*$SZ]
201	adr	$Ktbl,.LK$BITS
202	stp	$ctx,$num,[x29,#96]
203
204.Loop:
205	ldp	@X[0],@X[1],[$inp],#2*$SZ
206	ldr	$t2,[$Ktbl],#$SZ			// *K++
207	eor	$t3,$B,$C				// magic seed
208	str	$inp,[x29,#112]
209___
210for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
211$code.=".Loop_16_xx:\n";
212for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
213$code.=<<___;
214	cbnz	$t2,.Loop_16_xx
215
216	ldp	$ctx,$num,[x29,#96]
217	ldr	$inp,[x29,#112]
218	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
219
220	ldp	@X[0],@X[1],[$ctx]
221	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
222	add	$inp,$inp,#14*$SZ			// advance input pointer
223	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
224	add	$A,$A,@X[0]
225	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
226	add	$B,$B,@X[1]
227	add	$C,$C,@X[2]
228	add	$D,$D,@X[3]
229	stp	$A,$B,[$ctx]
230	add	$E,$E,@X[4]
231	add	$F,$F,@X[5]
232	stp	$C,$D,[$ctx,#2*$SZ]
233	add	$G,$G,@X[6]
234	add	$H,$H,@X[7]
235	cmp	$inp,$num
236	stp	$E,$F,[$ctx,#4*$SZ]
237	stp	$G,$H,[$ctx,#6*$SZ]
238	b.ne	.Loop
239
240	ldp	x19,x20,[x29,#16]
241	add	sp,sp,#4*$SZ
242	ldp	x21,x22,[x29,#32]
243	ldp	x23,x24,[x29,#48]
244	ldp	x25,x26,[x29,#64]
245	ldp	x27,x28,[x29,#80]
246	ldp	x29,x30,[sp],#128
247	ret
248.size	$func,.-$func
249
250.align	6
251.type	.LK$BITS,%object
252.LK$BITS:
253___
254$code.=<<___ if ($SZ==8);
255	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
256	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
257	.quad	0x3956c25bf348b538,0x59f111f1b605d019
258	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
259	.quad	0xd807aa98a3030242,0x12835b0145706fbe
260	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
261	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
262	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
263	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
264	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
265	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
266	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
267	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
268	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
269	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
270	.quad	0x06ca6351e003826f,0x142929670a0e6e70
271	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
272	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
273	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
274	.quad	0x81c2c92e47edaee6,0x92722c851482353b
275	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
276	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
277	.quad	0xd192e819d6ef5218,0xd69906245565a910
278	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
279	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
280	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
281	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
282	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
283	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
284	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
285	.quad	0x90befffa23631e28,0xa4506cebde82bde9
286	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
287	.quad	0xca273eceea26619c,0xd186b8c721c0c207
288	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
289	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
290	.quad	0x113f9804bef90dae,0x1b710b35131c471b
291	.quad	0x28db77f523047d84,0x32caab7b40c72493
292	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
293	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
294	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
295	.quad	0	// terminator
296___
297$code.=<<___ if ($SZ==4);
298	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
299	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
300	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
301	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
302	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
303	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
304	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
305	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
306	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
307	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
308	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
309	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
310	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
311	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
312	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
313	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
314	.long	0	//terminator
315___
316$code.=<<___;
317.size	.LK$BITS,.-.LK$BITS
318.align	3
319.LOPENSSL_armcap_P:
320	.quad	OPENSSL_armcap_P-.
321.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
322.align	2
323___
324
325if ($SZ==4) {
326my $Ktbl="x3";
327
328my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
329my @MSG=map("v$_.16b",(4..7));
330my ($W0,$W1)=("v16.4s","v17.4s");
331my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
332
333$code.=<<___;
334.type	sha256_block_armv8,%function
335.align	6
336sha256_block_armv8:
337.Lv8_entry:
338	stp		x29,x30,[sp,#-16]!
339	add		x29,sp,#0
340
341	ld1.32		{$ABCD,$EFGH},[$ctx]
342	adr		$Ktbl,.LK256
343
344.Loop_hw:
345	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
346	sub		$num,$num,#1
347	ld1.32		{$W0},[$Ktbl],#16
348	rev32		@MSG[0],@MSG[0]
349	rev32		@MSG[1],@MSG[1]
350	rev32		@MSG[2],@MSG[2]
351	rev32		@MSG[3],@MSG[3]
352	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
353	orr		$EFGH_SAVE,$EFGH,$EFGH
354___
355for($i=0;$i<12;$i++) {
356$code.=<<___;
357	ld1.32		{$W1},[$Ktbl],#16
358	add.i32		$W0,$W0,@MSG[0]
359	sha256su0	@MSG[0],@MSG[1]
360	orr		$abcd,$ABCD,$ABCD
361	sha256h		$ABCD,$EFGH,$W0
362	sha256h2	$EFGH,$abcd,$W0
363	sha256su1	@MSG[0],@MSG[2],@MSG[3]
364___
365	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
366}
367$code.=<<___;
368	ld1.32		{$W1},[$Ktbl],#16
369	add.i32		$W0,$W0,@MSG[0]
370	orr		$abcd,$ABCD,$ABCD
371	sha256h		$ABCD,$EFGH,$W0
372	sha256h2	$EFGH,$abcd,$W0
373
374	ld1.32		{$W0},[$Ktbl],#16
375	add.i32		$W1,$W1,@MSG[1]
376	orr		$abcd,$ABCD,$ABCD
377	sha256h		$ABCD,$EFGH,$W1
378	sha256h2	$EFGH,$abcd,$W1
379
380	ld1.32		{$W1},[$Ktbl]
381	add.i32		$W0,$W0,@MSG[2]
382	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
383	orr		$abcd,$ABCD,$ABCD
384	sha256h		$ABCD,$EFGH,$W0
385	sha256h2	$EFGH,$abcd,$W0
386
387	add.i32		$W1,$W1,@MSG[3]
388	orr		$abcd,$ABCD,$ABCD
389	sha256h		$ABCD,$EFGH,$W1
390	sha256h2	$EFGH,$abcd,$W1
391
392	add.i32		$ABCD,$ABCD,$ABCD_SAVE
393	add.i32		$EFGH,$EFGH,$EFGH_SAVE
394
395	cbnz		$num,.Loop_hw
396
397	st1.32		{$ABCD,$EFGH},[$ctx]
398
399	ldr		x29,[sp],#16
400	ret
401.size	sha256_block_armv8,.-sha256_block_armv8
402___
403}
404
405$code.=<<___;
406.comm	OPENSSL_armcap_P,4,4
407___
408
409{   my  %opcode = (
410	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
411	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
412
413    sub unsha256 {
414	my ($mnemonic,$arg)=@_;
415
416	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
417	&&
418	sprintf ".inst\t0x%08x\t//%s %s",
419			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
420			$mnemonic,$arg;
421    }
422}
423
424foreach(split("\n",$code)) {
425
426	s/\`([^\`]*)\`/eval($1)/geo;
427
428	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo;
429
430	s/\.\w?32\b//o		and s/\.16b/\.4s/go;
431	m/(ld|st)1[^\[]+\[0\]/o	and s/\.4s/\.s/go;
432
433	print $_,"\n";
434}
435
436close STDOUT;
437