• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/sha.h>
58 
59 #include <string.h>
60 
61 #include <openssl/mem.h>
62 
63 
64 #if !defined(OPENSSL_NO_ASM) &&                         \
65     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
66      defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
67 #define SHA1_ASM
68 #endif
69 
SHA1_Init(SHA_CTX * sha)70 int SHA1_Init(SHA_CTX *sha) {
71   memset(sha, 0, sizeof(SHA_CTX));
72   sha->h0 = 0x67452301UL;
73   sha->h1 = 0xefcdab89UL;
74   sha->h2 = 0x98badcfeUL;
75   sha->h3 = 0x10325476UL;
76   sha->h4 = 0xc3d2e1f0UL;
77   return 1;
78 }
79 
SHA1(const uint8_t * data,size_t len,uint8_t * out)80 uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t *out) {
81   SHA_CTX ctx;
82   static uint8_t buf[SHA_DIGEST_LENGTH];
83 
84   /* TODO(fork): remove this static buffer. */
85   if (out == NULL) {
86     out = buf;
87   }
88   if (!SHA1_Init(&ctx)) {
89     return NULL;
90   }
91   SHA1_Update(&ctx, data, len);
92   SHA1_Final(out, &ctx);
93   OPENSSL_cleanse(&ctx, sizeof(ctx));
94   return out;
95 }
96 
97 #define DATA_ORDER_IS_BIG_ENDIAN
98 
99 #define HASH_LONG               uint32_t
100 #define HASH_CTX                SHA_CTX
101 #define HASH_CBLOCK             64
102 #define HASH_MAKE_STRING(c, s) \
103   do {                         \
104     uint32_t ll;               \
105     ll = (c)->h0;              \
106     (void) HOST_l2c(ll, (s));  \
107     ll = (c)->h1;              \
108     (void) HOST_l2c(ll, (s));  \
109     ll = (c)->h2;              \
110     (void) HOST_l2c(ll, (s));  \
111     ll = (c)->h3;              \
112     (void) HOST_l2c(ll, (s));  \
113     ll = (c)->h4;              \
114     (void) HOST_l2c(ll, (s));  \
115   } while (0)
116 
117 #define HASH_UPDATE SHA1_Update
118 #define HASH_TRANSFORM SHA1_Transform
119 #define HASH_FINAL SHA1_Final
120 #define HASH_BLOCK_DATA_ORDER sha1_block_data_order
121 #define Xupdate(a, ix, ia, ib, ic, id) \
122   ((a) = (ia ^ ib ^ ic ^ id), ix = (a) = ROTATE((a), 1))
123 
124 #ifndef SHA1_ASM
125 static
126 #endif
127 void sha1_block_data_order(SHA_CTX *c, const void *p, size_t num);
128 
129 #include "../digest/md32_common.h"
130 
131 #define K_00_19 0x5a827999UL
132 #define K_20_39 0x6ed9eba1UL
133 #define K_40_59 0x8f1bbcdcUL
134 #define K_60_79 0xca62c1d6UL
135 
136 /* As  pointed out by Wei Dai <weidai@eskimo.com>, F() below can be simplified
137  * to the code in F_00_19.  Wei attributes these optimisations to Peter
138  * Gutmann's SHS code, and he attributes it to Rich Schroeppel. #define
139  * F(x,y,z) (((x) & (y))  |  ((~(x)) & (z))) I've just become aware of another
140  * tweak to be made, again from Wei Dai, in F_40_59, (x&a)|(y&a) -> (x|y)&a */
141 #define F_00_19(b, c, d) ((((c) ^ (d)) & (b)) ^ (d))
142 #define F_20_39(b, c, d) ((b) ^ (c) ^ (d))
143 #define F_40_59(b, c, d) (((b) & (c)) | (((b) | (c)) & (d)))
144 #define F_60_79(b, c, d) F_20_39(b, c, d)
145 
146 #define BODY_00_15(i, a, b, c, d, e, f, xi)                           \
147   (f) = xi + (e) + K_00_19 + ROTATE((a), 5) + F_00_19((b), (c), (d)); \
148   (b) = ROTATE((b), 30);
149 
150 #define BODY_16_19(i, a, b, c, d, e, f, xi, xa, xb, xc, xd)       \
151   Xupdate(f, xi, xa, xb, xc, xd);                                 \
152   (f) += (e) + K_00_19 + ROTATE((a), 5) + F_00_19((b), (c), (d)); \
153   (b) = ROTATE((b), 30);
154 
155 #define BODY_20_31(i, a, b, c, d, e, f, xi, xa, xb, xc, xd)       \
156   Xupdate(f, xi, xa, xb, xc, xd);                                 \
157   (f) += (e) + K_20_39 + ROTATE((a), 5) + F_20_39((b), (c), (d)); \
158   (b) = ROTATE((b), 30);
159 
160 #define BODY_32_39(i, a, b, c, d, e, f, xa, xb, xc, xd)           \
161   Xupdate(f, xa, xa, xb, xc, xd);                                 \
162   (f) += (e) + K_20_39 + ROTATE((a), 5) + F_20_39((b), (c), (d)); \
163   (b) = ROTATE((b), 30);
164 
165 #define BODY_40_59(i, a, b, c, d, e, f, xa, xb, xc, xd)           \
166   Xupdate(f, xa, xa, xb, xc, xd);                                 \
167   (f) += (e) + K_40_59 + ROTATE((a), 5) + F_40_59((b), (c), (d)); \
168   (b) = ROTATE((b), 30);
169 
170 #define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd)               \
171   Xupdate(f, xa, xa, xb, xc, xd);                                     \
172   (f) = xa + (e) + K_60_79 + ROTATE((a), 5) + F_60_79((b), (c), (d)); \
173   (b) = ROTATE((b), 30);
174 
175 #ifdef X
176 #undef X
177 #endif
178 
179 /* Originally X was an array. As it's automatic it's natural
180 * to expect RISC compiler to accomodate at least part of it in
181 * the register bank, isn't it? Unfortunately not all compilers
182 * "find" this expectation reasonable:-( On order to make such
183 * compilers generate better code I replace X[] with a bunch of
184 * X0, X1, etc. See the function body below...
185 *					<appro@fy.chalmers.se> */
186 #define X(i)	XX##i
187 
188 #if !defined(SHA1_ASM)
HASH_BLOCK_DATA_ORDER(SHA_CTX * c,const void * p,size_t num)189 static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num) {
190   const uint8_t *data = p;
191   register uint32_t A, B, C, D, E, T, l;
192   uint32_t XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7, XX8, XX9, XX10,
193       XX11, XX12, XX13, XX14, XX15;
194 
195   A = c->h0;
196   B = c->h1;
197   C = c->h2;
198   D = c->h3;
199   E = c->h4;
200 
201   for (;;) {
202     const union {
203       long one;
204       char little;
205     } is_endian = {1};
206 
207     if (!is_endian.little && ((size_t)p % 4) == 0) {
208       const uint32_t *W = (const uint32_t *)data;
209 
210       X(0) = W[0];
211       X(1) = W[1];
212       BODY_00_15(0, A, B, C, D, E, T, X(0));
213       X(2) = W[2];
214       BODY_00_15(1, T, A, B, C, D, E, X(1));
215       X(3) = W[3];
216       BODY_00_15(2, E, T, A, B, C, D, X(2));
217       X(4) = W[4];
218       BODY_00_15(3, D, E, T, A, B, C, X(3));
219       X(5) = W[5];
220       BODY_00_15(4, C, D, E, T, A, B, X(4));
221       X(6) = W[6];
222       BODY_00_15(5, B, C, D, E, T, A, X(5));
223       X(7) = W[7];
224       BODY_00_15(6, A, B, C, D, E, T, X(6));
225       X(8) = W[8];
226       BODY_00_15(7, T, A, B, C, D, E, X(7));
227       X(9) = W[9];
228       BODY_00_15(8, E, T, A, B, C, D, X(8));
229       X(10) = W[10];
230       BODY_00_15(9, D, E, T, A, B, C, X(9));
231       X(11) = W[11];
232       BODY_00_15(10, C, D, E, T, A, B, X(10));
233       X(12) = W[12];
234       BODY_00_15(11, B, C, D, E, T, A, X(11));
235       X(13) = W[13];
236       BODY_00_15(12, A, B, C, D, E, T, X(12));
237       X(14) = W[14];
238       BODY_00_15(13, T, A, B, C, D, E, X(13));
239       X(15) = W[15];
240       BODY_00_15(14, E, T, A, B, C, D, X(14));
241       BODY_00_15(15, D, E, T, A, B, C, X(15));
242 
243       data += HASH_CBLOCK;
244     } else {
245       (void)HOST_c2l(data, l);
246       X(0) = l;
247       (void)HOST_c2l(data, l);
248       X(1) = l;
249       BODY_00_15(0, A, B, C, D, E, T, X(0));
250       (void)HOST_c2l(data, l);
251       X(2) = l;
252       BODY_00_15(1, T, A, B, C, D, E, X(1));
253       (void)HOST_c2l(data, l);
254       X(3) = l;
255       BODY_00_15(2, E, T, A, B, C, D, X(2));
256       (void)HOST_c2l(data, l);
257       X(4) = l;
258       BODY_00_15(3, D, E, T, A, B, C, X(3));
259       (void)HOST_c2l(data, l);
260       X(5) = l;
261       BODY_00_15(4, C, D, E, T, A, B, X(4));
262       (void)HOST_c2l(data, l);
263       X(6) = l;
264       BODY_00_15(5, B, C, D, E, T, A, X(5));
265       (void)HOST_c2l(data, l);
266       X(7) = l;
267       BODY_00_15(6, A, B, C, D, E, T, X(6));
268       (void)HOST_c2l(data, l);
269       X(8) = l;
270       BODY_00_15(7, T, A, B, C, D, E, X(7));
271       (void)HOST_c2l(data, l);
272       X(9) = l;
273       BODY_00_15(8, E, T, A, B, C, D, X(8));
274       (void)HOST_c2l(data, l);
275       X(10) = l;
276       BODY_00_15(9, D, E, T, A, B, C, X(9));
277       (void)HOST_c2l(data, l);
278       X(11) = l;
279       BODY_00_15(10, C, D, E, T, A, B, X(10));
280       (void)HOST_c2l(data, l);
281       X(12) = l;
282       BODY_00_15(11, B, C, D, E, T, A, X(11));
283       (void)HOST_c2l(data, l);
284       X(13) = l;
285       BODY_00_15(12, A, B, C, D, E, T, X(12));
286       (void)HOST_c2l(data, l);
287       X(14) = l;
288       BODY_00_15(13, T, A, B, C, D, E, X(13));
289       (void)HOST_c2l(data, l);
290       X(15) = l;
291       BODY_00_15(14, E, T, A, B, C, D, X(14));
292       BODY_00_15(15, D, E, T, A, B, C, X(15));
293     }
294 
295     BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
296     BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
297     BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
298     BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
299 
300     BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
301     BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
302     BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
303     BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
304     BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
305     BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
306     BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
307     BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
308     BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
309     BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
310     BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
311     BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
312 
313     BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
314     BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
315     BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
316     BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
317     BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
318     BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
319     BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
320     BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
321 
322     BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
323     BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
324     BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
325     BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
326     BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
327     BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
328     BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
329     BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
330     BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
331     BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
332     BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
333     BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
334     BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
335     BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
336     BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
337     BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
338     BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
339     BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
340     BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
341     BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
342 
343     BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
344     BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
345     BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
346     BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
347     BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
348     BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
349     BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
350     BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
351     BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
352     BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
353     BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
354     BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
355     BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
356     BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
357     BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
358     BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
359     BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
360     BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
361     BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
362     BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
363 
364     c->h0 = (c->h0 + E) & 0xffffffffL;
365     c->h1 = (c->h1 + T) & 0xffffffffL;
366     c->h2 = (c->h2 + A) & 0xffffffffL;
367     c->h3 = (c->h3 + B) & 0xffffffffL;
368     c->h4 = (c->h4 + C) & 0xffffffffL;
369 
370     if (--num == 0) {
371       break;
372     }
373 
374     A = c->h0;
375     B = c->h1;
376     C = c->h2;
377     D = c->h3;
378     E = c->h4;
379   }
380 }
381 #endif
382