1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <string>
16 #include <functional>
17 #include <memory>
18 #include <vector>
19
20 #include <stdint.h>
21 #include <string.h>
22
23 #include <openssl/aead.h>
24 #include <openssl/digest.h>
25 #include <openssl/err.h>
26 #include <openssl/obj.h>
27 #include <openssl/rand.h>
28 #include <openssl/rsa.h>
29
30 #if defined(OPENSSL_WINDOWS)
31 #pragma warning(push, 3)
32 #include <windows.h>
33 #pragma warning(pop)
34 #elif defined(OPENSSL_APPLE)
35 #include <sys/time.h>
36 #endif
37
38 #include "../crypto/test/scoped_types.h"
39
40
41 extern "C" {
42 // These values are DER encoded, RSA private keys.
43 extern const uint8_t kDERRSAPrivate2048[];
44 extern size_t kDERRSAPrivate2048Len;
45 extern const uint8_t kDERRSAPrivate4096[];
46 extern size_t kDERRSAPrivate4096Len;
47 }
48
49 // TimeResults represents the results of benchmarking a function.
50 struct TimeResults {
51 // num_calls is the number of function calls done in the time period.
52 unsigned num_calls;
53 // us is the number of microseconds that elapsed in the time period.
54 unsigned us;
55
PrintTimeResults56 void Print(const std::string &description) {
57 printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
58 description.c_str(), us,
59 (static_cast<double>(num_calls) / us) * 1000000);
60 }
61
PrintWithBytesTimeResults62 void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
63 printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
64 num_calls, description.c_str(), us,
65 (static_cast<double>(num_calls) / us) * 1000000,
66 static_cast<double>(bytes_per_call * num_calls) / us);
67 }
68 };
69
70 #if defined(OPENSSL_WINDOWS)
time_now()71 static uint64_t time_now() { return GetTickCount64() * 1000; }
72 #elif defined(OPENSSL_APPLE)
time_now()73 static uint64_t time_now() {
74 struct timeval tv;
75 uint64_t ret;
76
77 gettimeofday(&tv, NULL);
78 ret = tv.tv_sec;
79 ret *= 1000000;
80 ret += tv.tv_usec;
81 return ret;
82 }
83 #else
time_now()84 static uint64_t time_now() {
85 struct timespec ts;
86 clock_gettime(CLOCK_MONOTONIC, &ts);
87
88 uint64_t ret = ts.tv_sec;
89 ret *= 1000000;
90 ret += ts.tv_nsec / 1000;
91 return ret;
92 }
93 #endif
94
TimeFunction(TimeResults * results,std::function<bool ()> func)95 static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
96 // kTotalMS is the total amount of time that we'll aim to measure a function
97 // for.
98 static const uint64_t kTotalUS = 1000000;
99 uint64_t start = time_now(), now, delta;
100 unsigned done = 0, iterations_between_time_checks;
101
102 if (!func()) {
103 return false;
104 }
105 now = time_now();
106 delta = now - start;
107 if (delta == 0) {
108 iterations_between_time_checks = 250;
109 } else {
110 // Aim for about 100ms between time checks.
111 iterations_between_time_checks =
112 static_cast<double>(100000) / static_cast<double>(delta);
113 if (iterations_between_time_checks > 1000) {
114 iterations_between_time_checks = 1000;
115 } else if (iterations_between_time_checks < 1) {
116 iterations_between_time_checks = 1;
117 }
118 }
119
120 for (;;) {
121 for (unsigned i = 0; i < iterations_between_time_checks; i++) {
122 if (!func()) {
123 return false;
124 }
125 done++;
126 }
127
128 now = time_now();
129 if (now - start > kTotalUS) {
130 break;
131 }
132 }
133
134 results->us = now - start;
135 results->num_calls = done;
136 return true;
137 }
138
SpeedRSA(const std::string & key_name,RSA * key,const std::string & selected)139 static bool SpeedRSA(const std::string &key_name, RSA *key,
140 const std::string &selected) {
141 if (!selected.empty() && key_name.find(selected) == std::string::npos) {
142 return true;
143 }
144
145 std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
146 const uint8_t fake_sha256_hash[32] = {0};
147 unsigned sig_len;
148
149 TimeResults results;
150 if (!TimeFunction(&results,
151 [key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
152 return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
153 sig.get(), &sig_len, key);
154 })) {
155 fprintf(stderr, "RSA_sign failed.\n");
156 ERR_print_errors_fp(stderr);
157 return false;
158 }
159 results.Print(key_name + " signing");
160
161 if (!TimeFunction(&results,
162 [key, &fake_sha256_hash, &sig, sig_len]() -> bool {
163 return RSA_verify(NID_sha256, fake_sha256_hash,
164 sizeof(fake_sha256_hash), sig.get(), sig_len, key);
165 })) {
166 fprintf(stderr, "RSA_verify failed.\n");
167 ERR_print_errors_fp(stderr);
168 return false;
169 }
170 results.Print(key_name + " verify");
171
172 return true;
173 }
174
align(uint8_t * in,unsigned alignment)175 static uint8_t *align(uint8_t *in, unsigned alignment) {
176 return reinterpret_cast<uint8_t *>(
177 (reinterpret_cast<uintptr_t>(in) + alignment) &
178 ~static_cast<size_t>(alignment - 1));
179 }
180
SpeedAEADChunk(const EVP_AEAD * aead,const std::string & name,size_t chunk_len,size_t ad_len)181 static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
182 size_t chunk_len, size_t ad_len) {
183 static const unsigned kAlignment = 16;
184
185 EVP_AEAD_CTX ctx;
186 const size_t key_len = EVP_AEAD_key_length(aead);
187 const size_t nonce_len = EVP_AEAD_nonce_length(aead);
188 const size_t overhead_len = EVP_AEAD_max_overhead(aead);
189
190 std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
191 memset(key.get(), 0, key_len);
192 std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
193 memset(nonce.get(), 0, nonce_len);
194 std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
195 std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]);
196 std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
197 memset(ad.get(), 0, ad_len);
198
199 uint8_t *const in = align(in_storage.get(), kAlignment);
200 memset(in, 0, chunk_len);
201 uint8_t *const out = align(out_storage.get(), kAlignment);
202 memset(out, 0, chunk_len + overhead_len);
203
204 if (!EVP_AEAD_CTX_init_with_direction(&ctx, aead, key.get(), key_len,
205 EVP_AEAD_DEFAULT_TAG_LENGTH,
206 evp_aead_seal)) {
207 fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
208 ERR_print_errors_fp(stderr);
209 return false;
210 }
211
212 TimeResults results;
213 if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
214 out, &ctx, &nonce, &ad]() -> bool {
215 size_t out_len;
216
217 return EVP_AEAD_CTX_seal(
218 &ctx, out, &out_len, chunk_len + overhead_len, nonce.get(),
219 nonce_len, in, chunk_len, ad.get(), ad_len);
220 })) {
221 fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
222 ERR_print_errors_fp(stderr);
223 return false;
224 }
225
226 results.PrintWithBytes(name + " seal", chunk_len);
227
228 EVP_AEAD_CTX_cleanup(&ctx);
229
230 return true;
231 }
232
SpeedAEAD(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)233 static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
234 size_t ad_len, const std::string &selected) {
235 if (!selected.empty() && name.find(selected) == std::string::npos) {
236 return true;
237 }
238
239 return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len) &&
240 SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len) &&
241 SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len);
242 }
243
SpeedHashChunk(const EVP_MD * md,const std::string & name,size_t chunk_len)244 static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
245 size_t chunk_len) {
246 EVP_MD_CTX *ctx = EVP_MD_CTX_create();
247 uint8_t scratch[8192];
248
249 if (chunk_len > sizeof(scratch)) {
250 return false;
251 }
252
253 TimeResults results;
254 if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
255 uint8_t digest[EVP_MAX_MD_SIZE];
256 unsigned int md_len;
257
258 return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
259 EVP_DigestUpdate(ctx, scratch, chunk_len) &&
260 EVP_DigestFinal_ex(ctx, digest, &md_len);
261 })) {
262 fprintf(stderr, "EVP_DigestInit_ex failed.\n");
263 ERR_print_errors_fp(stderr);
264 return false;
265 }
266
267 results.PrintWithBytes(name, chunk_len);
268
269 EVP_MD_CTX_destroy(ctx);
270
271 return true;
272 }
SpeedHash(const EVP_MD * md,const std::string & name,const std::string & selected)273 static bool SpeedHash(const EVP_MD *md, const std::string &name,
274 const std::string &selected) {
275 if (!selected.empty() && name.find(selected) == std::string::npos) {
276 return true;
277 }
278
279 return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
280 SpeedHashChunk(md, name + " (256 bytes)", 256) &&
281 SpeedHashChunk(md, name + " (8192 bytes)", 8192);
282 }
283
SpeedRandomChunk(const std::string name,size_t chunk_len)284 static bool SpeedRandomChunk(const std::string name, size_t chunk_len) {
285 uint8_t scratch[8192];
286
287 if (chunk_len > sizeof(scratch)) {
288 return false;
289 }
290
291 TimeResults results;
292 if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
293 RAND_bytes(scratch, chunk_len);
294 return true;
295 })) {
296 return false;
297 }
298
299 results.PrintWithBytes(name, chunk_len);
300 return true;
301 }
302
SpeedRandom(const std::string & selected)303 static bool SpeedRandom(const std::string &selected) {
304 if (!selected.empty() && selected != "RNG") {
305 return true;
306 }
307
308 return SpeedRandomChunk("RNG (16 bytes)", 16) &&
309 SpeedRandomChunk("RNG (256 bytes)", 256) &&
310 SpeedRandomChunk("RNG (8192 bytes)", 8192);
311 }
312
SpeedECDHCurve(const std::string & name,int nid,const std::string & selected)313 static bool SpeedECDHCurve(const std::string &name, int nid,
314 const std::string &selected) {
315 if (!selected.empty() && name.find(selected) == std::string::npos) {
316 return true;
317 }
318
319 TimeResults results;
320 if (!TimeFunction(&results, [nid]() -> bool {
321 ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
322 if (!key ||
323 !EC_KEY_generate_key(key.get())) {
324 return false;
325 }
326 const EC_GROUP *const group = EC_KEY_get0_group(key.get());
327 ScopedEC_POINT point(EC_POINT_new(group));
328 ScopedBN_CTX ctx(BN_CTX_new());
329
330 ScopedBIGNUM x(BN_new());
331 ScopedBIGNUM y(BN_new());
332
333 if (!point || !ctx || !x || !y ||
334 !EC_POINT_mul(group, point.get(), NULL,
335 EC_KEY_get0_public_key(key.get()),
336 EC_KEY_get0_private_key(key.get()), ctx.get()) ||
337 !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
338 y.get(), ctx.get())) {
339 return false;
340 }
341
342 return true;
343 })) {
344 return false;
345 }
346
347 results.Print(name);
348 return true;
349 }
350
SpeedECDSACurve(const std::string & name,int nid,const std::string & selected)351 static bool SpeedECDSACurve(const std::string &name, int nid,
352 const std::string &selected) {
353 if (!selected.empty() && name.find(selected) == std::string::npos) {
354 return true;
355 }
356
357 ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
358 if (!key ||
359 !EC_KEY_generate_key(key.get())) {
360 return false;
361 }
362
363 uint8_t signature[256];
364 if (ECDSA_size(key.get()) > sizeof(signature)) {
365 return false;
366 }
367 uint8_t digest[20];
368 memset(digest, 42, sizeof(digest));
369 unsigned sig_len;
370
371 TimeResults results;
372 if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
373 return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
374 key.get()) == 1;
375 })) {
376 return false;
377 }
378
379 results.Print(name + " signing");
380
381 if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
382 return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
383 key.get()) == 1;
384 })) {
385 return false;
386 }
387
388 results.Print(name + " verify");
389
390 return true;
391 }
392
SpeedECDH(const std::string & selected)393 static bool SpeedECDH(const std::string &selected) {
394 return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
395 SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
396 SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
397 SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
398 }
399
SpeedECDSA(const std::string & selected)400 static bool SpeedECDSA(const std::string &selected) {
401 return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
402 SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
403 SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
404 SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
405 }
406
Speed(const std::vector<std::string> & args)407 bool Speed(const std::vector<std::string> &args) {
408 std::string selected;
409 if (args.size() > 1) {
410 fprintf(stderr, "Usage: bssl speed [speed test selector, i.e. 'RNG']\n");
411 return false;
412 }
413 if (args.size() > 0) {
414 selected = args[0];
415 }
416
417 RSA *key = NULL;
418 const uint8_t *inp = kDERRSAPrivate2048;
419 if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate2048Len)) {
420 fprintf(stderr, "Failed to parse RSA key.\n");
421 ERR_print_errors_fp(stderr);
422 return false;
423 }
424
425 if (!SpeedRSA("RSA 2048", key, selected)) {
426 return false;
427 }
428
429 RSA_free(key);
430 key = NULL;
431
432 inp = kDERRSAPrivate4096;
433 if (NULL == d2i_RSAPrivateKey(&key, &inp, kDERRSAPrivate4096Len)) {
434 fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
435 ERR_print_errors_fp(stderr);
436 return 1;
437 }
438
439 if (!SpeedRSA("RSA 4096", key, selected)) {
440 return false;
441 }
442
443 RSA_free(key);
444
445 // kTLSADLen is the number of bytes of additional data that TLS passes to
446 // AEADs.
447 static const size_t kTLSADLen = 13;
448 // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
449 // These are AEADs that weren't originally defined as AEADs, but which we use
450 // via the AEAD interface. In order for that to work, they have some TLS
451 // knowledge in them and construct a couple of the AD bytes internally.
452 static const size_t kLegacyADLen = kTLSADLen - 2;
453
454 if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
455 !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
456 !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
457 selected) ||
458 !SpeedAEAD(EVP_aead_rc4_md5_tls(), "RC4-MD5", kLegacyADLen, selected) ||
459 !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
460 kLegacyADLen, selected) ||
461 !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
462 kLegacyADLen, selected) ||
463 !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
464 !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
465 !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
466 !SpeedRandom(selected) ||
467 !SpeedECDH(selected) ||
468 !SpeedECDSA(selected)) {
469 return false;
470 }
471
472 return true;
473 }
474