• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1NIST/ITL StRD
2Dataset Name:  Rat43             (Rat43.dat)
3
4File Format:   ASCII
5               Starting Values   (lines 41 to 44)
6               Certified Values  (lines 41 to 49)
7               Data              (lines 61 to 75)
8
9Procedure:     Nonlinear Least Squares Regression
10
11Description:   This model and data are an example of fitting
12               sigmoidal growth curves taken from Ratkowsky (1983).
13               The response variable is the dry weight of onion bulbs
14               and tops, and the predictor variable is growing time.
15
16
17Reference:     Ratkowsky, D.A. (1983).
18               Nonlinear Regression Modeling.
19               New York, NY:  Marcel Dekker, pp. 62 and 88.
20
21
22
23
24
25Data:          1 Response  (y = onion bulb dry weight)
26               1 Predictor (x = growing time)
27               15 Observations
28               Higher Level of Difficulty
29               Observed Data
30
31Model:         Exponential Class
32               4 Parameters (b1 to b4)
33
34               y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  e
35
36
37
38          Starting Values                  Certified Values
39
40        Start 1     Start 2           Parameter     Standard Deviation
41  b1 =   100         700           6.9964151270E+02  1.6302297817E+01
42  b2 =    10           5           5.2771253025E+00  2.0828735829E+00
43  b3 =     1           0.75        7.5962938329E-01  1.9566123451E-01
44  b4 =     1           1.3         1.2792483859E+00  6.8761936385E-01
45
46Residual Sum of Squares:                    8.7864049080E+03
47Residual Standard Deviation:                2.8262414662E+01
48Degrees of Freedom:                                9
49Number of Observations:                           15
50
51
52
53
54
55
56
57
58
59
60Data:   y          x
61      16.08E0     1.0E0
62      33.83E0     2.0E0
63      65.80E0     3.0E0
64      97.20E0     4.0E0
65     191.55E0     5.0E0
66     326.20E0     6.0E0
67     386.87E0     7.0E0
68     520.53E0     8.0E0
69     590.03E0     9.0E0
70     651.92E0    10.0E0
71     724.93E0    11.0E0
72     699.56E0    12.0E0
73     689.96E0    13.0E0
74     637.56E0    14.0E0
75     717.41E0    15.0E0
76