1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 // * A success/failure flag indicating whether constant folding was successful.
15 // This is the 'bool' return value used by most of the code in this file. A
16 // 'false' return value indicates that constant folding has failed, and any
17 // appropriate diagnostic has already been produced.
18 //
19 // * An evaluated result, valid only if constant folding has not failed.
20 //
21 // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 // where it is possible to determine the evaluated result regardless.
24 //
25 // * A set of notes indicating why the evaluation was not a constant expression
26 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 // too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54
55 static bool IsGlobalLValue(APValue::LValueBase B);
56
57 namespace {
58 struct LValue;
59 struct CallStackFrame;
60 struct EvalInfo;
61
getType(APValue::LValueBase B)62 static QualType getType(APValue::LValueBase B) {
63 if (!B) return QualType();
64 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65 return D->getType();
66
67 const Expr *Base = B.get<const Expr*>();
68
69 // For a materialized temporary, the type of the temporary we materialized
70 // may not be the type of the expression.
71 if (const MaterializeTemporaryExpr *MTE =
72 dyn_cast<MaterializeTemporaryExpr>(Base)) {
73 SmallVector<const Expr *, 2> CommaLHSs;
74 SmallVector<SubobjectAdjustment, 2> Adjustments;
75 const Expr *Temp = MTE->GetTemporaryExpr();
76 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77 Adjustments);
78 // Keep any cv-qualifiers from the reference if we generated a temporary
79 // for it.
80 if (Inner != Temp)
81 return Inner->getType();
82 }
83
84 return Base->getType();
85 }
86
87 /// Get an LValue path entry, which is known to not be an array index, as a
88 /// field or base class.
89 static
getAsBaseOrMember(APValue::LValuePathEntry E)90 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91 APValue::BaseOrMemberType Value;
92 Value.setFromOpaqueValue(E.BaseOrMember);
93 return Value;
94 }
95
96 /// Get an LValue path entry, which is known to not be an array index, as a
97 /// field declaration.
getAsField(APValue::LValuePathEntry E)98 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100 }
101 /// Get an LValue path entry, which is known to not be an array index, as a
102 /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)103 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105 }
106 /// Determine whether this LValue path entry for a base class names a virtual
107 /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)108 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109 return getAsBaseOrMember(E).getInt();
110 }
111
112 /// Find the path length and type of the most-derived subobject in the given
113 /// path, and find the size of the containing array, if any.
114 static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type)115 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116 ArrayRef<APValue::LValuePathEntry> Path,
117 uint64_t &ArraySize, QualType &Type) {
118 unsigned MostDerivedLength = 0;
119 Type = Base;
120 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
121 if (Type->isArrayType()) {
122 const ConstantArrayType *CAT =
123 cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
124 Type = CAT->getElementType();
125 ArraySize = CAT->getSize().getZExtValue();
126 MostDerivedLength = I + 1;
127 } else if (Type->isAnyComplexType()) {
128 const ComplexType *CT = Type->castAs<ComplexType>();
129 Type = CT->getElementType();
130 ArraySize = 2;
131 MostDerivedLength = I + 1;
132 } else if (const FieldDecl *FD = getAsField(Path[I])) {
133 Type = FD->getType();
134 ArraySize = 0;
135 MostDerivedLength = I + 1;
136 } else {
137 // Path[I] describes a base class.
138 ArraySize = 0;
139 }
140 }
141 return MostDerivedLength;
142 }
143
144 // The order of this enum is important for diagnostics.
145 enum CheckSubobjectKind {
146 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
147 CSK_This, CSK_Real, CSK_Imag
148 };
149
150 /// A path from a glvalue to a subobject of that glvalue.
151 struct SubobjectDesignator {
152 /// True if the subobject was named in a manner not supported by C++11. Such
153 /// lvalues can still be folded, but they are not core constant expressions
154 /// and we cannot perform lvalue-to-rvalue conversions on them.
155 bool Invalid : 1;
156
157 /// Is this a pointer one past the end of an object?
158 bool IsOnePastTheEnd : 1;
159
160 /// The length of the path to the most-derived object of which this is a
161 /// subobject.
162 unsigned MostDerivedPathLength : 30;
163
164 /// The size of the array of which the most-derived object is an element, or
165 /// 0 if the most-derived object is not an array element.
166 uint64_t MostDerivedArraySize;
167
168 /// The type of the most derived object referred to by this address.
169 QualType MostDerivedType;
170
171 typedef APValue::LValuePathEntry PathEntry;
172
173 /// The entries on the path from the glvalue to the designated subobject.
174 SmallVector<PathEntry, 8> Entries;
175
SubobjectDesignator__anona626307c0111::SubobjectDesignator176 SubobjectDesignator() : Invalid(true) {}
177
SubobjectDesignator__anona626307c0111::SubobjectDesignator178 explicit SubobjectDesignator(QualType T)
179 : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
180 MostDerivedArraySize(0), MostDerivedType(T) {}
181
SubobjectDesignator__anona626307c0111::SubobjectDesignator182 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
183 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
184 MostDerivedPathLength(0), MostDerivedArraySize(0) {
185 if (!Invalid) {
186 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
187 ArrayRef<PathEntry> VEntries = V.getLValuePath();
188 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
189 if (V.getLValueBase())
190 MostDerivedPathLength =
191 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
192 V.getLValuePath(), MostDerivedArraySize,
193 MostDerivedType);
194 }
195 }
196
setInvalid__anona626307c0111::SubobjectDesignator197 void setInvalid() {
198 Invalid = true;
199 Entries.clear();
200 }
201
202 /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anona626307c0111::SubobjectDesignator203 bool isOnePastTheEnd() const {
204 assert(!Invalid);
205 if (IsOnePastTheEnd)
206 return true;
207 if (MostDerivedArraySize &&
208 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
209 return true;
210 return false;
211 }
212
213 /// Check that this refers to a valid subobject.
isValidSubobject__anona626307c0111::SubobjectDesignator214 bool isValidSubobject() const {
215 if (Invalid)
216 return false;
217 return !isOnePastTheEnd();
218 }
219 /// Check that this refers to a valid subobject, and if not, produce a
220 /// relevant diagnostic and set the designator as invalid.
221 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
222
223 /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anona626307c0111::SubobjectDesignator224 void addArrayUnchecked(const ConstantArrayType *CAT) {
225 PathEntry Entry;
226 Entry.ArrayIndex = 0;
227 Entries.push_back(Entry);
228
229 // This is a most-derived object.
230 MostDerivedType = CAT->getElementType();
231 MostDerivedArraySize = CAT->getSize().getZExtValue();
232 MostDerivedPathLength = Entries.size();
233 }
234 /// Update this designator to refer to the given base or member of this
235 /// object.
addDeclUnchecked__anona626307c0111::SubobjectDesignator236 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
237 PathEntry Entry;
238 APValue::BaseOrMemberType Value(D, Virtual);
239 Entry.BaseOrMember = Value.getOpaqueValue();
240 Entries.push_back(Entry);
241
242 // If this isn't a base class, it's a new most-derived object.
243 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
244 MostDerivedType = FD->getType();
245 MostDerivedArraySize = 0;
246 MostDerivedPathLength = Entries.size();
247 }
248 }
249 /// Update this designator to refer to the given complex component.
addComplexUnchecked__anona626307c0111::SubobjectDesignator250 void addComplexUnchecked(QualType EltTy, bool Imag) {
251 PathEntry Entry;
252 Entry.ArrayIndex = Imag;
253 Entries.push_back(Entry);
254
255 // This is technically a most-derived object, though in practice this
256 // is unlikely to matter.
257 MostDerivedType = EltTy;
258 MostDerivedArraySize = 2;
259 MostDerivedPathLength = Entries.size();
260 }
261 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
262 /// Add N to the address of this subobject.
adjustIndex__anona626307c0111::SubobjectDesignator263 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
264 if (Invalid) return;
265 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
266 Entries.back().ArrayIndex += N;
267 if (Entries.back().ArrayIndex > MostDerivedArraySize) {
268 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
269 setInvalid();
270 }
271 return;
272 }
273 // [expr.add]p4: For the purposes of these operators, a pointer to a
274 // nonarray object behaves the same as a pointer to the first element of
275 // an array of length one with the type of the object as its element type.
276 if (IsOnePastTheEnd && N == (uint64_t)-1)
277 IsOnePastTheEnd = false;
278 else if (!IsOnePastTheEnd && N == 1)
279 IsOnePastTheEnd = true;
280 else if (N != 0) {
281 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
282 setInvalid();
283 }
284 }
285 };
286
287 /// A stack frame in the constexpr call stack.
288 struct CallStackFrame {
289 EvalInfo &Info;
290
291 /// Parent - The caller of this stack frame.
292 CallStackFrame *Caller;
293
294 /// CallLoc - The location of the call expression for this call.
295 SourceLocation CallLoc;
296
297 /// Callee - The function which was called.
298 const FunctionDecl *Callee;
299
300 /// Index - The call index of this call.
301 unsigned Index;
302
303 /// This - The binding for the this pointer in this call, if any.
304 const LValue *This;
305
306 /// Arguments - Parameter bindings for this function call, indexed by
307 /// parameters' function scope indices.
308 APValue *Arguments;
309
310 // Note that we intentionally use std::map here so that references to
311 // values are stable.
312 typedef std::map<const void*, APValue> MapTy;
313 typedef MapTy::const_iterator temp_iterator;
314 /// Temporaries - Temporary lvalues materialized within this stack frame.
315 MapTy Temporaries;
316
317 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
318 const FunctionDecl *Callee, const LValue *This,
319 APValue *Arguments);
320 ~CallStackFrame();
321
getTemporary__anona626307c0111::CallStackFrame322 APValue *getTemporary(const void *Key) {
323 MapTy::iterator I = Temporaries.find(Key);
324 return I == Temporaries.end() ? nullptr : &I->second;
325 }
326 APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
327 };
328
329 /// Temporarily override 'this'.
330 class ThisOverrideRAII {
331 public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)332 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
333 : Frame(Frame), OldThis(Frame.This) {
334 if (Enable)
335 Frame.This = NewThis;
336 }
~ThisOverrideRAII()337 ~ThisOverrideRAII() {
338 Frame.This = OldThis;
339 }
340 private:
341 CallStackFrame &Frame;
342 const LValue *OldThis;
343 };
344
345 /// A partial diagnostic which we might know in advance that we are not going
346 /// to emit.
347 class OptionalDiagnostic {
348 PartialDiagnostic *Diag;
349
350 public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)351 explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
352 : Diag(Diag) {}
353
354 template<typename T>
operator <<(const T & v)355 OptionalDiagnostic &operator<<(const T &v) {
356 if (Diag)
357 *Diag << v;
358 return *this;
359 }
360
operator <<(const APSInt & I)361 OptionalDiagnostic &operator<<(const APSInt &I) {
362 if (Diag) {
363 SmallVector<char, 32> Buffer;
364 I.toString(Buffer);
365 *Diag << StringRef(Buffer.data(), Buffer.size());
366 }
367 return *this;
368 }
369
operator <<(const APFloat & F)370 OptionalDiagnostic &operator<<(const APFloat &F) {
371 if (Diag) {
372 // FIXME: Force the precision of the source value down so we don't
373 // print digits which are usually useless (we don't really care here if
374 // we truncate a digit by accident in edge cases). Ideally,
375 // APFloat::toString would automatically print the shortest
376 // representation which rounds to the correct value, but it's a bit
377 // tricky to implement.
378 unsigned precision =
379 llvm::APFloat::semanticsPrecision(F.getSemantics());
380 precision = (precision * 59 + 195) / 196;
381 SmallVector<char, 32> Buffer;
382 F.toString(Buffer, precision);
383 *Diag << StringRef(Buffer.data(), Buffer.size());
384 }
385 return *this;
386 }
387 };
388
389 /// A cleanup, and a flag indicating whether it is lifetime-extended.
390 class Cleanup {
391 llvm::PointerIntPair<APValue*, 1, bool> Value;
392
393 public:
Cleanup(APValue * Val,bool IsLifetimeExtended)394 Cleanup(APValue *Val, bool IsLifetimeExtended)
395 : Value(Val, IsLifetimeExtended) {}
396
isLifetimeExtended() const397 bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()398 void endLifetime() {
399 *Value.getPointer() = APValue();
400 }
401 };
402
403 /// EvalInfo - This is a private struct used by the evaluator to capture
404 /// information about a subexpression as it is folded. It retains information
405 /// about the AST context, but also maintains information about the folded
406 /// expression.
407 ///
408 /// If an expression could be evaluated, it is still possible it is not a C
409 /// "integer constant expression" or constant expression. If not, this struct
410 /// captures information about how and why not.
411 ///
412 /// One bit of information passed *into* the request for constant folding
413 /// indicates whether the subexpression is "evaluated" or not according to C
414 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
415 /// evaluate the expression regardless of what the RHS is, but C only allows
416 /// certain things in certain situations.
417 struct EvalInfo {
418 ASTContext &Ctx;
419
420 /// EvalStatus - Contains information about the evaluation.
421 Expr::EvalStatus &EvalStatus;
422
423 /// CurrentCall - The top of the constexpr call stack.
424 CallStackFrame *CurrentCall;
425
426 /// CallStackDepth - The number of calls in the call stack right now.
427 unsigned CallStackDepth;
428
429 /// NextCallIndex - The next call index to assign.
430 unsigned NextCallIndex;
431
432 /// StepsLeft - The remaining number of evaluation steps we're permitted
433 /// to perform. This is essentially a limit for the number of statements
434 /// we will evaluate.
435 unsigned StepsLeft;
436
437 /// BottomFrame - The frame in which evaluation started. This must be
438 /// initialized after CurrentCall and CallStackDepth.
439 CallStackFrame BottomFrame;
440
441 /// A stack of values whose lifetimes end at the end of some surrounding
442 /// evaluation frame.
443 llvm::SmallVector<Cleanup, 16> CleanupStack;
444
445 /// EvaluatingDecl - This is the declaration whose initializer is being
446 /// evaluated, if any.
447 APValue::LValueBase EvaluatingDecl;
448
449 /// EvaluatingDeclValue - This is the value being constructed for the
450 /// declaration whose initializer is being evaluated, if any.
451 APValue *EvaluatingDeclValue;
452
453 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
454 /// notes attached to it will also be stored, otherwise they will not be.
455 bool HasActiveDiagnostic;
456
457 enum EvaluationMode {
458 /// Evaluate as a constant expression. Stop if we find that the expression
459 /// is not a constant expression.
460 EM_ConstantExpression,
461
462 /// Evaluate as a potential constant expression. Keep going if we hit a
463 /// construct that we can't evaluate yet (because we don't yet know the
464 /// value of something) but stop if we hit something that could never be
465 /// a constant expression.
466 EM_PotentialConstantExpression,
467
468 /// Fold the expression to a constant. Stop if we hit a side-effect that
469 /// we can't model.
470 EM_ConstantFold,
471
472 /// Evaluate the expression looking for integer overflow and similar
473 /// issues. Don't worry about side-effects, and try to visit all
474 /// subexpressions.
475 EM_EvaluateForOverflow,
476
477 /// Evaluate in any way we know how. Don't worry about side-effects that
478 /// can't be modeled.
479 EM_IgnoreSideEffects,
480
481 /// Evaluate as a constant expression. Stop if we find that the expression
482 /// is not a constant expression. Some expressions can be retried in the
483 /// optimizer if we don't constant fold them here, but in an unevaluated
484 /// context we try to fold them immediately since the optimizer never
485 /// gets a chance to look at it.
486 EM_ConstantExpressionUnevaluated,
487
488 /// Evaluate as a potential constant expression. Keep going if we hit a
489 /// construct that we can't evaluate yet (because we don't yet know the
490 /// value of something) but stop if we hit something that could never be
491 /// a constant expression. Some expressions can be retried in the
492 /// optimizer if we don't constant fold them here, but in an unevaluated
493 /// context we try to fold them immediately since the optimizer never
494 /// gets a chance to look at it.
495 EM_PotentialConstantExpressionUnevaluated
496 } EvalMode;
497
498 /// Are we checking whether the expression is a potential constant
499 /// expression?
checkingPotentialConstantExpression__anona626307c0111::EvalInfo500 bool checkingPotentialConstantExpression() const {
501 return EvalMode == EM_PotentialConstantExpression ||
502 EvalMode == EM_PotentialConstantExpressionUnevaluated;
503 }
504
505 /// Are we checking an expression for overflow?
506 // FIXME: We should check for any kind of undefined or suspicious behavior
507 // in such constructs, not just overflow.
checkingForOverflow__anona626307c0111::EvalInfo508 bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
509
EvalInfo__anona626307c0111::EvalInfo510 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
511 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
512 CallStackDepth(0), NextCallIndex(1),
513 StepsLeft(getLangOpts().ConstexprStepLimit),
514 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
515 EvaluatingDecl((const ValueDecl *)nullptr),
516 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
517 EvalMode(Mode) {}
518
setEvaluatingDecl__anona626307c0111::EvalInfo519 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
520 EvaluatingDecl = Base;
521 EvaluatingDeclValue = &Value;
522 }
523
getLangOpts__anona626307c0111::EvalInfo524 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
525
CheckCallLimit__anona626307c0111::EvalInfo526 bool CheckCallLimit(SourceLocation Loc) {
527 // Don't perform any constexpr calls (other than the call we're checking)
528 // when checking a potential constant expression.
529 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
530 return false;
531 if (NextCallIndex == 0) {
532 // NextCallIndex has wrapped around.
533 Diag(Loc, diag::note_constexpr_call_limit_exceeded);
534 return false;
535 }
536 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
537 return true;
538 Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
539 << getLangOpts().ConstexprCallDepth;
540 return false;
541 }
542
getCallFrame__anona626307c0111::EvalInfo543 CallStackFrame *getCallFrame(unsigned CallIndex) {
544 assert(CallIndex && "no call index in getCallFrame");
545 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
546 // be null in this loop.
547 CallStackFrame *Frame = CurrentCall;
548 while (Frame->Index > CallIndex)
549 Frame = Frame->Caller;
550 return (Frame->Index == CallIndex) ? Frame : nullptr;
551 }
552
nextStep__anona626307c0111::EvalInfo553 bool nextStep(const Stmt *S) {
554 if (!StepsLeft) {
555 Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
556 return false;
557 }
558 --StepsLeft;
559 return true;
560 }
561
562 private:
563 /// Add a diagnostic to the diagnostics list.
addDiag__anona626307c0111::EvalInfo564 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
565 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
566 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
567 return EvalStatus.Diag->back().second;
568 }
569
570 /// Add notes containing a call stack to the current point of evaluation.
571 void addCallStack(unsigned Limit);
572
573 public:
574 /// Diagnose that the evaluation cannot be folded.
Diag__anona626307c0111::EvalInfo575 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
576 = diag::note_invalid_subexpr_in_const_expr,
577 unsigned ExtraNotes = 0) {
578 if (EvalStatus.Diag) {
579 // If we have a prior diagnostic, it will be noting that the expression
580 // isn't a constant expression. This diagnostic is more important,
581 // unless we require this evaluation to produce a constant expression.
582 //
583 // FIXME: We might want to show both diagnostics to the user in
584 // EM_ConstantFold mode.
585 if (!EvalStatus.Diag->empty()) {
586 switch (EvalMode) {
587 case EM_ConstantFold:
588 case EM_IgnoreSideEffects:
589 case EM_EvaluateForOverflow:
590 if (!EvalStatus.HasSideEffects)
591 break;
592 // We've had side-effects; we want the diagnostic from them, not
593 // some later problem.
594 case EM_ConstantExpression:
595 case EM_PotentialConstantExpression:
596 case EM_ConstantExpressionUnevaluated:
597 case EM_PotentialConstantExpressionUnevaluated:
598 HasActiveDiagnostic = false;
599 return OptionalDiagnostic();
600 }
601 }
602
603 unsigned CallStackNotes = CallStackDepth - 1;
604 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
605 if (Limit)
606 CallStackNotes = std::min(CallStackNotes, Limit + 1);
607 if (checkingPotentialConstantExpression())
608 CallStackNotes = 0;
609
610 HasActiveDiagnostic = true;
611 EvalStatus.Diag->clear();
612 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
613 addDiag(Loc, DiagId);
614 if (!checkingPotentialConstantExpression())
615 addCallStack(Limit);
616 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
617 }
618 HasActiveDiagnostic = false;
619 return OptionalDiagnostic();
620 }
621
Diag__anona626307c0111::EvalInfo622 OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
623 = diag::note_invalid_subexpr_in_const_expr,
624 unsigned ExtraNotes = 0) {
625 if (EvalStatus.Diag)
626 return Diag(E->getExprLoc(), DiagId, ExtraNotes);
627 HasActiveDiagnostic = false;
628 return OptionalDiagnostic();
629 }
630
631 /// Diagnose that the evaluation does not produce a C++11 core constant
632 /// expression.
633 ///
634 /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
635 /// EM_PotentialConstantExpression mode and we produce one of these.
636 template<typename LocArg>
CCEDiag__anona626307c0111::EvalInfo637 OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
638 = diag::note_invalid_subexpr_in_const_expr,
639 unsigned ExtraNotes = 0) {
640 // Don't override a previous diagnostic. Don't bother collecting
641 // diagnostics if we're evaluating for overflow.
642 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
643 HasActiveDiagnostic = false;
644 return OptionalDiagnostic();
645 }
646 return Diag(Loc, DiagId, ExtraNotes);
647 }
648
649 /// Add a note to a prior diagnostic.
Note__anona626307c0111::EvalInfo650 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
651 if (!HasActiveDiagnostic)
652 return OptionalDiagnostic();
653 return OptionalDiagnostic(&addDiag(Loc, DiagId));
654 }
655
656 /// Add a stack of notes to a prior diagnostic.
addNotes__anona626307c0111::EvalInfo657 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
658 if (HasActiveDiagnostic) {
659 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
660 Diags.begin(), Diags.end());
661 }
662 }
663
664 /// Should we continue evaluation after encountering a side-effect that we
665 /// couldn't model?
keepEvaluatingAfterSideEffect__anona626307c0111::EvalInfo666 bool keepEvaluatingAfterSideEffect() {
667 switch (EvalMode) {
668 case EM_PotentialConstantExpression:
669 case EM_PotentialConstantExpressionUnevaluated:
670 case EM_EvaluateForOverflow:
671 case EM_IgnoreSideEffects:
672 return true;
673
674 case EM_ConstantExpression:
675 case EM_ConstantExpressionUnevaluated:
676 case EM_ConstantFold:
677 return false;
678 }
679 llvm_unreachable("Missed EvalMode case");
680 }
681
682 /// Note that we have had a side-effect, and determine whether we should
683 /// keep evaluating.
noteSideEffect__anona626307c0111::EvalInfo684 bool noteSideEffect() {
685 EvalStatus.HasSideEffects = true;
686 return keepEvaluatingAfterSideEffect();
687 }
688
689 /// Should we continue evaluation as much as possible after encountering a
690 /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anona626307c0111::EvalInfo691 bool keepEvaluatingAfterFailure() {
692 if (!StepsLeft)
693 return false;
694
695 switch (EvalMode) {
696 case EM_PotentialConstantExpression:
697 case EM_PotentialConstantExpressionUnevaluated:
698 case EM_EvaluateForOverflow:
699 return true;
700
701 case EM_ConstantExpression:
702 case EM_ConstantExpressionUnevaluated:
703 case EM_ConstantFold:
704 case EM_IgnoreSideEffects:
705 return false;
706 }
707 llvm_unreachable("Missed EvalMode case");
708 }
709 };
710
711 /// Object used to treat all foldable expressions as constant expressions.
712 struct FoldConstant {
713 EvalInfo &Info;
714 bool Enabled;
715 bool HadNoPriorDiags;
716 EvalInfo::EvaluationMode OldMode;
717
FoldConstant__anona626307c0111::FoldConstant718 explicit FoldConstant(EvalInfo &Info, bool Enabled)
719 : Info(Info),
720 Enabled(Enabled),
721 HadNoPriorDiags(Info.EvalStatus.Diag &&
722 Info.EvalStatus.Diag->empty() &&
723 !Info.EvalStatus.HasSideEffects),
724 OldMode(Info.EvalMode) {
725 if (Enabled &&
726 (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
727 Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
728 Info.EvalMode = EvalInfo::EM_ConstantFold;
729 }
keepDiagnostics__anona626307c0111::FoldConstant730 void keepDiagnostics() { Enabled = false; }
~FoldConstant__anona626307c0111::FoldConstant731 ~FoldConstant() {
732 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
733 !Info.EvalStatus.HasSideEffects)
734 Info.EvalStatus.Diag->clear();
735 Info.EvalMode = OldMode;
736 }
737 };
738
739 /// RAII object used to suppress diagnostics and side-effects from a
740 /// speculative evaluation.
741 class SpeculativeEvaluationRAII {
742 EvalInfo &Info;
743 Expr::EvalStatus Old;
744
745 public:
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)746 SpeculativeEvaluationRAII(EvalInfo &Info,
747 SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
748 : Info(Info), Old(Info.EvalStatus) {
749 Info.EvalStatus.Diag = NewDiag;
750 // If we're speculatively evaluating, we may have skipped over some
751 // evaluations and missed out a side effect.
752 Info.EvalStatus.HasSideEffects = true;
753 }
~SpeculativeEvaluationRAII()754 ~SpeculativeEvaluationRAII() {
755 Info.EvalStatus = Old;
756 }
757 };
758
759 /// RAII object wrapping a full-expression or block scope, and handling
760 /// the ending of the lifetime of temporaries created within it.
761 template<bool IsFullExpression>
762 class ScopeRAII {
763 EvalInfo &Info;
764 unsigned OldStackSize;
765 public:
ScopeRAII(EvalInfo & Info)766 ScopeRAII(EvalInfo &Info)
767 : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()768 ~ScopeRAII() {
769 // Body moved to a static method to encourage the compiler to inline away
770 // instances of this class.
771 cleanup(Info, OldStackSize);
772 }
773 private:
cleanup(EvalInfo & Info,unsigned OldStackSize)774 static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
775 unsigned NewEnd = OldStackSize;
776 for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
777 I != N; ++I) {
778 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
779 // Full-expression cleanup of a lifetime-extended temporary: nothing
780 // to do, just move this cleanup to the right place in the stack.
781 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
782 ++NewEnd;
783 } else {
784 // End the lifetime of the object.
785 Info.CleanupStack[I].endLifetime();
786 }
787 }
788 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
789 Info.CleanupStack.end());
790 }
791 };
792 typedef ScopeRAII<false> BlockScopeRAII;
793 typedef ScopeRAII<true> FullExpressionRAII;
794 }
795
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)796 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
797 CheckSubobjectKind CSK) {
798 if (Invalid)
799 return false;
800 if (isOnePastTheEnd()) {
801 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
802 << CSK;
803 setInvalid();
804 return false;
805 }
806 return true;
807 }
808
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)809 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
810 const Expr *E, uint64_t N) {
811 if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
812 Info.CCEDiag(E, diag::note_constexpr_array_index)
813 << static_cast<int>(N) << /*array*/ 0
814 << static_cast<unsigned>(MostDerivedArraySize);
815 else
816 Info.CCEDiag(E, diag::note_constexpr_array_index)
817 << static_cast<int>(N) << /*non-array*/ 1;
818 setInvalid();
819 }
820
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)821 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
822 const FunctionDecl *Callee, const LValue *This,
823 APValue *Arguments)
824 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
825 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
826 Info.CurrentCall = this;
827 ++Info.CallStackDepth;
828 }
829
~CallStackFrame()830 CallStackFrame::~CallStackFrame() {
831 assert(Info.CurrentCall == this && "calls retired out of order");
832 --Info.CallStackDepth;
833 Info.CurrentCall = Caller;
834 }
835
createTemporary(const void * Key,bool IsLifetimeExtended)836 APValue &CallStackFrame::createTemporary(const void *Key,
837 bool IsLifetimeExtended) {
838 APValue &Result = Temporaries[Key];
839 assert(Result.isUninit() && "temporary created multiple times");
840 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
841 return Result;
842 }
843
844 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
845
addCallStack(unsigned Limit)846 void EvalInfo::addCallStack(unsigned Limit) {
847 // Determine which calls to skip, if any.
848 unsigned ActiveCalls = CallStackDepth - 1;
849 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
850 if (Limit && Limit < ActiveCalls) {
851 SkipStart = Limit / 2 + Limit % 2;
852 SkipEnd = ActiveCalls - Limit / 2;
853 }
854
855 // Walk the call stack and add the diagnostics.
856 unsigned CallIdx = 0;
857 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
858 Frame = Frame->Caller, ++CallIdx) {
859 // Skip this call?
860 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
861 if (CallIdx == SkipStart) {
862 // Note that we're skipping calls.
863 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
864 << unsigned(ActiveCalls - Limit);
865 }
866 continue;
867 }
868
869 SmallVector<char, 128> Buffer;
870 llvm::raw_svector_ostream Out(Buffer);
871 describeCall(Frame, Out);
872 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
873 }
874 }
875
876 namespace {
877 struct ComplexValue {
878 private:
879 bool IsInt;
880
881 public:
882 APSInt IntReal, IntImag;
883 APFloat FloatReal, FloatImag;
884
ComplexValue__anona626307c0211::ComplexValue885 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
886
makeComplexFloat__anona626307c0211::ComplexValue887 void makeComplexFloat() { IsInt = false; }
isComplexFloat__anona626307c0211::ComplexValue888 bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anona626307c0211::ComplexValue889 APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anona626307c0211::ComplexValue890 APFloat &getComplexFloatImag() { return FloatImag; }
891
makeComplexInt__anona626307c0211::ComplexValue892 void makeComplexInt() { IsInt = true; }
isComplexInt__anona626307c0211::ComplexValue893 bool isComplexInt() const { return IsInt; }
getComplexIntReal__anona626307c0211::ComplexValue894 APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anona626307c0211::ComplexValue895 APSInt &getComplexIntImag() { return IntImag; }
896
moveInto__anona626307c0211::ComplexValue897 void moveInto(APValue &v) const {
898 if (isComplexFloat())
899 v = APValue(FloatReal, FloatImag);
900 else
901 v = APValue(IntReal, IntImag);
902 }
setFrom__anona626307c0211::ComplexValue903 void setFrom(const APValue &v) {
904 assert(v.isComplexFloat() || v.isComplexInt());
905 if (v.isComplexFloat()) {
906 makeComplexFloat();
907 FloatReal = v.getComplexFloatReal();
908 FloatImag = v.getComplexFloatImag();
909 } else {
910 makeComplexInt();
911 IntReal = v.getComplexIntReal();
912 IntImag = v.getComplexIntImag();
913 }
914 }
915 };
916
917 struct LValue {
918 APValue::LValueBase Base;
919 CharUnits Offset;
920 unsigned CallIndex;
921 SubobjectDesignator Designator;
922
getLValueBase__anona626307c0211::LValue923 const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anona626307c0211::LValue924 CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anona626307c0211::LValue925 const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anona626307c0211::LValue926 unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anona626307c0211::LValue927 SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anona626307c0211::LValue928 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
929
moveInto__anona626307c0211::LValue930 void moveInto(APValue &V) const {
931 if (Designator.Invalid)
932 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
933 else
934 V = APValue(Base, Offset, Designator.Entries,
935 Designator.IsOnePastTheEnd, CallIndex);
936 }
setFrom__anona626307c0211::LValue937 void setFrom(ASTContext &Ctx, const APValue &V) {
938 assert(V.isLValue());
939 Base = V.getLValueBase();
940 Offset = V.getLValueOffset();
941 CallIndex = V.getLValueCallIndex();
942 Designator = SubobjectDesignator(Ctx, V);
943 }
944
set__anona626307c0211::LValue945 void set(APValue::LValueBase B, unsigned I = 0) {
946 Base = B;
947 Offset = CharUnits::Zero();
948 CallIndex = I;
949 Designator = SubobjectDesignator(getType(B));
950 }
951
952 // Check that this LValue is not based on a null pointer. If it is, produce
953 // a diagnostic and mark the designator as invalid.
checkNullPointer__anona626307c0211::LValue954 bool checkNullPointer(EvalInfo &Info, const Expr *E,
955 CheckSubobjectKind CSK) {
956 if (Designator.Invalid)
957 return false;
958 if (!Base) {
959 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
960 << CSK;
961 Designator.setInvalid();
962 return false;
963 }
964 return true;
965 }
966
967 // Check this LValue refers to an object. If not, set the designator to be
968 // invalid and emit a diagnostic.
checkSubobject__anona626307c0211::LValue969 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
970 // Outside C++11, do not build a designator referring to a subobject of
971 // any object: we won't use such a designator for anything.
972 if (!Info.getLangOpts().CPlusPlus11)
973 Designator.setInvalid();
974 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
975 Designator.checkSubobject(Info, E, CSK);
976 }
977
addDecl__anona626307c0211::LValue978 void addDecl(EvalInfo &Info, const Expr *E,
979 const Decl *D, bool Virtual = false) {
980 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
981 Designator.addDeclUnchecked(D, Virtual);
982 }
addArray__anona626307c0211::LValue983 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
984 if (checkSubobject(Info, E, CSK_ArrayToPointer))
985 Designator.addArrayUnchecked(CAT);
986 }
addComplex__anona626307c0211::LValue987 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
988 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
989 Designator.addComplexUnchecked(EltTy, Imag);
990 }
adjustIndex__anona626307c0211::LValue991 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
992 if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
993 Designator.adjustIndex(Info, E, N);
994 }
995 };
996
997 struct MemberPtr {
MemberPtr__anona626307c0211::MemberPtr998 MemberPtr() {}
MemberPtr__anona626307c0211::MemberPtr999 explicit MemberPtr(const ValueDecl *Decl) :
1000 DeclAndIsDerivedMember(Decl, false), Path() {}
1001
1002 /// The member or (direct or indirect) field referred to by this member
1003 /// pointer, or 0 if this is a null member pointer.
getDecl__anona626307c0211::MemberPtr1004 const ValueDecl *getDecl() const {
1005 return DeclAndIsDerivedMember.getPointer();
1006 }
1007 /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anona626307c0211::MemberPtr1008 bool isDerivedMember() const {
1009 return DeclAndIsDerivedMember.getInt();
1010 }
1011 /// Get the class which the declaration actually lives in.
getContainingRecord__anona626307c0211::MemberPtr1012 const CXXRecordDecl *getContainingRecord() const {
1013 return cast<CXXRecordDecl>(
1014 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1015 }
1016
moveInto__anona626307c0211::MemberPtr1017 void moveInto(APValue &V) const {
1018 V = APValue(getDecl(), isDerivedMember(), Path);
1019 }
setFrom__anona626307c0211::MemberPtr1020 void setFrom(const APValue &V) {
1021 assert(V.isMemberPointer());
1022 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1023 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1024 Path.clear();
1025 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1026 Path.insert(Path.end(), P.begin(), P.end());
1027 }
1028
1029 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1030 /// whether the member is a member of some class derived from the class type
1031 /// of the member pointer.
1032 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1033 /// Path - The path of base/derived classes from the member declaration's
1034 /// class (exclusive) to the class type of the member pointer (inclusive).
1035 SmallVector<const CXXRecordDecl*, 4> Path;
1036
1037 /// Perform a cast towards the class of the Decl (either up or down the
1038 /// hierarchy).
castBack__anona626307c0211::MemberPtr1039 bool castBack(const CXXRecordDecl *Class) {
1040 assert(!Path.empty());
1041 const CXXRecordDecl *Expected;
1042 if (Path.size() >= 2)
1043 Expected = Path[Path.size() - 2];
1044 else
1045 Expected = getContainingRecord();
1046 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1047 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1048 // if B does not contain the original member and is not a base or
1049 // derived class of the class containing the original member, the result
1050 // of the cast is undefined.
1051 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1052 // (D::*). We consider that to be a language defect.
1053 return false;
1054 }
1055 Path.pop_back();
1056 return true;
1057 }
1058 /// Perform a base-to-derived member pointer cast.
castToDerived__anona626307c0211::MemberPtr1059 bool castToDerived(const CXXRecordDecl *Derived) {
1060 if (!getDecl())
1061 return true;
1062 if (!isDerivedMember()) {
1063 Path.push_back(Derived);
1064 return true;
1065 }
1066 if (!castBack(Derived))
1067 return false;
1068 if (Path.empty())
1069 DeclAndIsDerivedMember.setInt(false);
1070 return true;
1071 }
1072 /// Perform a derived-to-base member pointer cast.
castToBase__anona626307c0211::MemberPtr1073 bool castToBase(const CXXRecordDecl *Base) {
1074 if (!getDecl())
1075 return true;
1076 if (Path.empty())
1077 DeclAndIsDerivedMember.setInt(true);
1078 if (isDerivedMember()) {
1079 Path.push_back(Base);
1080 return true;
1081 }
1082 return castBack(Base);
1083 }
1084 };
1085
1086 /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1087 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1088 if (!LHS.getDecl() || !RHS.getDecl())
1089 return !LHS.getDecl() && !RHS.getDecl();
1090 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1091 return false;
1092 return LHS.Path == RHS.Path;
1093 }
1094 }
1095
1096 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1097 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1098 const LValue &This, const Expr *E,
1099 bool AllowNonLiteralTypes = false);
1100 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1101 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1102 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1103 EvalInfo &Info);
1104 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1105 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1106 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1107 EvalInfo &Info);
1108 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1109 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1110 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1111
1112 //===----------------------------------------------------------------------===//
1113 // Misc utilities
1114 //===----------------------------------------------------------------------===//
1115
1116 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1117 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1118 unsigned ArgIndex = 0;
1119 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1120 !isa<CXXConstructorDecl>(Frame->Callee) &&
1121 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1122
1123 if (!IsMemberCall)
1124 Out << *Frame->Callee << '(';
1125
1126 if (Frame->This && IsMemberCall) {
1127 APValue Val;
1128 Frame->This->moveInto(Val);
1129 Val.printPretty(Out, Frame->Info.Ctx,
1130 Frame->This->Designator.MostDerivedType);
1131 // FIXME: Add parens around Val if needed.
1132 Out << "->" << *Frame->Callee << '(';
1133 IsMemberCall = false;
1134 }
1135
1136 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1137 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1138 if (ArgIndex > (unsigned)IsMemberCall)
1139 Out << ", ";
1140
1141 const ParmVarDecl *Param = *I;
1142 const APValue &Arg = Frame->Arguments[ArgIndex];
1143 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1144
1145 if (ArgIndex == 0 && IsMemberCall)
1146 Out << "->" << *Frame->Callee << '(';
1147 }
1148
1149 Out << ')';
1150 }
1151
1152 /// Evaluate an expression to see if it had side-effects, and discard its
1153 /// result.
1154 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1155 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1156 APValue Scratch;
1157 if (!Evaluate(Scratch, Info, E))
1158 // We don't need the value, but we might have skipped a side effect here.
1159 return Info.noteSideEffect();
1160 return true;
1161 }
1162
1163 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1164 /// return its existing value.
getExtValue(const APSInt & Value)1165 static int64_t getExtValue(const APSInt &Value) {
1166 return Value.isSigned() ? Value.getSExtValue()
1167 : static_cast<int64_t>(Value.getZExtValue());
1168 }
1169
1170 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1171 static bool IsStringLiteralCall(const CallExpr *E) {
1172 unsigned Builtin = E->getBuiltinCallee();
1173 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1174 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1175 }
1176
IsGlobalLValue(APValue::LValueBase B)1177 static bool IsGlobalLValue(APValue::LValueBase B) {
1178 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1179 // constant expression of pointer type that evaluates to...
1180
1181 // ... a null pointer value, or a prvalue core constant expression of type
1182 // std::nullptr_t.
1183 if (!B) return true;
1184
1185 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1186 // ... the address of an object with static storage duration,
1187 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1188 return VD->hasGlobalStorage();
1189 // ... the address of a function,
1190 return isa<FunctionDecl>(D);
1191 }
1192
1193 const Expr *E = B.get<const Expr*>();
1194 switch (E->getStmtClass()) {
1195 default:
1196 return false;
1197 case Expr::CompoundLiteralExprClass: {
1198 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1199 return CLE->isFileScope() && CLE->isLValue();
1200 }
1201 case Expr::MaterializeTemporaryExprClass:
1202 // A materialized temporary might have been lifetime-extended to static
1203 // storage duration.
1204 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1205 // A string literal has static storage duration.
1206 case Expr::StringLiteralClass:
1207 case Expr::PredefinedExprClass:
1208 case Expr::ObjCStringLiteralClass:
1209 case Expr::ObjCEncodeExprClass:
1210 case Expr::CXXTypeidExprClass:
1211 case Expr::CXXUuidofExprClass:
1212 return true;
1213 case Expr::CallExprClass:
1214 return IsStringLiteralCall(cast<CallExpr>(E));
1215 // For GCC compatibility, &&label has static storage duration.
1216 case Expr::AddrLabelExprClass:
1217 return true;
1218 // A Block literal expression may be used as the initialization value for
1219 // Block variables at global or local static scope.
1220 case Expr::BlockExprClass:
1221 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1222 case Expr::ImplicitValueInitExprClass:
1223 // FIXME:
1224 // We can never form an lvalue with an implicit value initialization as its
1225 // base through expression evaluation, so these only appear in one case: the
1226 // implicit variable declaration we invent when checking whether a constexpr
1227 // constructor can produce a constant expression. We must assume that such
1228 // an expression might be a global lvalue.
1229 return true;
1230 }
1231 }
1232
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1233 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1234 assert(Base && "no location for a null lvalue");
1235 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1236 if (VD)
1237 Info.Note(VD->getLocation(), diag::note_declared_at);
1238 else
1239 Info.Note(Base.get<const Expr*>()->getExprLoc(),
1240 diag::note_constexpr_temporary_here);
1241 }
1242
1243 /// Check that this reference or pointer core constant expression is a valid
1244 /// value for an address or reference constant expression. Return true if we
1245 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1246 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1247 QualType Type, const LValue &LVal) {
1248 bool IsReferenceType = Type->isReferenceType();
1249
1250 APValue::LValueBase Base = LVal.getLValueBase();
1251 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1252
1253 // Check that the object is a global. Note that the fake 'this' object we
1254 // manufacture when checking potential constant expressions is conservatively
1255 // assumed to be global here.
1256 if (!IsGlobalLValue(Base)) {
1257 if (Info.getLangOpts().CPlusPlus11) {
1258 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1259 Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1260 << IsReferenceType << !Designator.Entries.empty()
1261 << !!VD << VD;
1262 NoteLValueLocation(Info, Base);
1263 } else {
1264 Info.Diag(Loc);
1265 }
1266 // Don't allow references to temporaries to escape.
1267 return false;
1268 }
1269 assert((Info.checkingPotentialConstantExpression() ||
1270 LVal.getLValueCallIndex() == 0) &&
1271 "have call index for global lvalue");
1272
1273 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1274 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1275 // Check if this is a thread-local variable.
1276 if (Var->getTLSKind())
1277 return false;
1278
1279 // A dllimport variable never acts like a constant.
1280 if (Var->hasAttr<DLLImportAttr>())
1281 return false;
1282 }
1283 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1284 // __declspec(dllimport) must be handled very carefully:
1285 // We must never initialize an expression with the thunk in C++.
1286 // Doing otherwise would allow the same id-expression to yield
1287 // different addresses for the same function in different translation
1288 // units. However, this means that we must dynamically initialize the
1289 // expression with the contents of the import address table at runtime.
1290 //
1291 // The C language has no notion of ODR; furthermore, it has no notion of
1292 // dynamic initialization. This means that we are permitted to
1293 // perform initialization with the address of the thunk.
1294 if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1295 return false;
1296 }
1297 }
1298
1299 // Allow address constant expressions to be past-the-end pointers. This is
1300 // an extension: the standard requires them to point to an object.
1301 if (!IsReferenceType)
1302 return true;
1303
1304 // A reference constant expression must refer to an object.
1305 if (!Base) {
1306 // FIXME: diagnostic
1307 Info.CCEDiag(Loc);
1308 return true;
1309 }
1310
1311 // Does this refer one past the end of some object?
1312 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1313 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1314 Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1315 << !Designator.Entries.empty() << !!VD << VD;
1316 NoteLValueLocation(Info, Base);
1317 }
1318
1319 return true;
1320 }
1321
1322 /// Check that this core constant expression is of literal type, and if not,
1323 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1324 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1325 const LValue *This = nullptr) {
1326 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1327 return true;
1328
1329 // C++1y: A constant initializer for an object o [...] may also invoke
1330 // constexpr constructors for o and its subobjects even if those objects
1331 // are of non-literal class types.
1332 if (Info.getLangOpts().CPlusPlus14 && This &&
1333 Info.EvaluatingDecl == This->getLValueBase())
1334 return true;
1335
1336 // Prvalue constant expressions must be of literal types.
1337 if (Info.getLangOpts().CPlusPlus11)
1338 Info.Diag(E, diag::note_constexpr_nonliteral)
1339 << E->getType();
1340 else
1341 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1342 return false;
1343 }
1344
1345 /// Check that this core constant expression value is a valid value for a
1346 /// constant expression. If not, report an appropriate diagnostic. Does not
1347 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1348 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1349 QualType Type, const APValue &Value) {
1350 if (Value.isUninit()) {
1351 Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1352 << true << Type;
1353 return false;
1354 }
1355
1356 // We allow _Atomic(T) to be initialized from anything that T can be
1357 // initialized from.
1358 if (const AtomicType *AT = Type->getAs<AtomicType>())
1359 Type = AT->getValueType();
1360
1361 // Core issue 1454: For a literal constant expression of array or class type,
1362 // each subobject of its value shall have been initialized by a constant
1363 // expression.
1364 if (Value.isArray()) {
1365 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1366 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1367 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1368 Value.getArrayInitializedElt(I)))
1369 return false;
1370 }
1371 if (!Value.hasArrayFiller())
1372 return true;
1373 return CheckConstantExpression(Info, DiagLoc, EltTy,
1374 Value.getArrayFiller());
1375 }
1376 if (Value.isUnion() && Value.getUnionField()) {
1377 return CheckConstantExpression(Info, DiagLoc,
1378 Value.getUnionField()->getType(),
1379 Value.getUnionValue());
1380 }
1381 if (Value.isStruct()) {
1382 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1383 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1384 unsigned BaseIndex = 0;
1385 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1386 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1387 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1388 Value.getStructBase(BaseIndex)))
1389 return false;
1390 }
1391 }
1392 for (const auto *I : RD->fields()) {
1393 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1394 Value.getStructField(I->getFieldIndex())))
1395 return false;
1396 }
1397 }
1398
1399 if (Value.isLValue()) {
1400 LValue LVal;
1401 LVal.setFrom(Info.Ctx, Value);
1402 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1403 }
1404
1405 // Everything else is fine.
1406 return true;
1407 }
1408
GetLValueBaseDecl(const LValue & LVal)1409 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1410 return LVal.Base.dyn_cast<const ValueDecl*>();
1411 }
1412
IsLiteralLValue(const LValue & Value)1413 static bool IsLiteralLValue(const LValue &Value) {
1414 if (Value.CallIndex)
1415 return false;
1416 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1417 return E && !isa<MaterializeTemporaryExpr>(E);
1418 }
1419
IsWeakLValue(const LValue & Value)1420 static bool IsWeakLValue(const LValue &Value) {
1421 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1422 return Decl && Decl->isWeak();
1423 }
1424
isZeroSized(const LValue & Value)1425 static bool isZeroSized(const LValue &Value) {
1426 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1427 if (Decl && isa<VarDecl>(Decl)) {
1428 QualType Ty = Decl->getType();
1429 if (Ty->isArrayType())
1430 return Ty->isIncompleteType() ||
1431 Decl->getASTContext().getTypeSize(Ty) == 0;
1432 }
1433 return false;
1434 }
1435
EvalPointerValueAsBool(const APValue & Value,bool & Result)1436 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1437 // A null base expression indicates a null pointer. These are always
1438 // evaluatable, and they are false unless the offset is zero.
1439 if (!Value.getLValueBase()) {
1440 Result = !Value.getLValueOffset().isZero();
1441 return true;
1442 }
1443
1444 // We have a non-null base. These are generally known to be true, but if it's
1445 // a weak declaration it can be null at runtime.
1446 Result = true;
1447 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1448 return !Decl || !Decl->isWeak();
1449 }
1450
HandleConversionToBool(const APValue & Val,bool & Result)1451 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1452 switch (Val.getKind()) {
1453 case APValue::Uninitialized:
1454 return false;
1455 case APValue::Int:
1456 Result = Val.getInt().getBoolValue();
1457 return true;
1458 case APValue::Float:
1459 Result = !Val.getFloat().isZero();
1460 return true;
1461 case APValue::ComplexInt:
1462 Result = Val.getComplexIntReal().getBoolValue() ||
1463 Val.getComplexIntImag().getBoolValue();
1464 return true;
1465 case APValue::ComplexFloat:
1466 Result = !Val.getComplexFloatReal().isZero() ||
1467 !Val.getComplexFloatImag().isZero();
1468 return true;
1469 case APValue::LValue:
1470 return EvalPointerValueAsBool(Val, Result);
1471 case APValue::MemberPointer:
1472 Result = Val.getMemberPointerDecl();
1473 return true;
1474 case APValue::Vector:
1475 case APValue::Array:
1476 case APValue::Struct:
1477 case APValue::Union:
1478 case APValue::AddrLabelDiff:
1479 return false;
1480 }
1481
1482 llvm_unreachable("unknown APValue kind");
1483 }
1484
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1485 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1486 EvalInfo &Info) {
1487 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1488 APValue Val;
1489 if (!Evaluate(Val, Info, E))
1490 return false;
1491 return HandleConversionToBool(Val, Result);
1492 }
1493
1494 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1495 static void HandleOverflow(EvalInfo &Info, const Expr *E,
1496 const T &SrcValue, QualType DestType) {
1497 Info.CCEDiag(E, diag::note_constexpr_overflow)
1498 << SrcValue << DestType;
1499 }
1500
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1501 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1502 QualType SrcType, const APFloat &Value,
1503 QualType DestType, APSInt &Result) {
1504 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1505 // Determine whether we are converting to unsigned or signed.
1506 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1507
1508 Result = APSInt(DestWidth, !DestSigned);
1509 bool ignored;
1510 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1511 & APFloat::opInvalidOp)
1512 HandleOverflow(Info, E, Value, DestType);
1513 return true;
1514 }
1515
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1516 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1517 QualType SrcType, QualType DestType,
1518 APFloat &Result) {
1519 APFloat Value = Result;
1520 bool ignored;
1521 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1522 APFloat::rmNearestTiesToEven, &ignored)
1523 & APFloat::opOverflow)
1524 HandleOverflow(Info, E, Value, DestType);
1525 return true;
1526 }
1527
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,APSInt & Value)1528 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1529 QualType DestType, QualType SrcType,
1530 APSInt &Value) {
1531 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1532 APSInt Result = Value;
1533 // Figure out if this is a truncate, extend or noop cast.
1534 // If the input is signed, do a sign extend, noop, or truncate.
1535 Result = Result.extOrTrunc(DestWidth);
1536 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1537 return Result;
1538 }
1539
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1540 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1541 QualType SrcType, const APSInt &Value,
1542 QualType DestType, APFloat &Result) {
1543 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1544 if (Result.convertFromAPInt(Value, Value.isSigned(),
1545 APFloat::rmNearestTiesToEven)
1546 & APFloat::opOverflow)
1547 HandleOverflow(Info, E, Value, DestType);
1548 return true;
1549 }
1550
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1551 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1552 APValue &Value, const FieldDecl *FD) {
1553 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1554
1555 if (!Value.isInt()) {
1556 // Trying to store a pointer-cast-to-integer into a bitfield.
1557 // FIXME: In this case, we should provide the diagnostic for casting
1558 // a pointer to an integer.
1559 assert(Value.isLValue() && "integral value neither int nor lvalue?");
1560 Info.Diag(E);
1561 return false;
1562 }
1563
1564 APSInt &Int = Value.getInt();
1565 unsigned OldBitWidth = Int.getBitWidth();
1566 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1567 if (NewBitWidth < OldBitWidth)
1568 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1569 return true;
1570 }
1571
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1572 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1573 llvm::APInt &Res) {
1574 APValue SVal;
1575 if (!Evaluate(SVal, Info, E))
1576 return false;
1577 if (SVal.isInt()) {
1578 Res = SVal.getInt();
1579 return true;
1580 }
1581 if (SVal.isFloat()) {
1582 Res = SVal.getFloat().bitcastToAPInt();
1583 return true;
1584 }
1585 if (SVal.isVector()) {
1586 QualType VecTy = E->getType();
1587 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1588 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1589 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1590 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1591 Res = llvm::APInt::getNullValue(VecSize);
1592 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1593 APValue &Elt = SVal.getVectorElt(i);
1594 llvm::APInt EltAsInt;
1595 if (Elt.isInt()) {
1596 EltAsInt = Elt.getInt();
1597 } else if (Elt.isFloat()) {
1598 EltAsInt = Elt.getFloat().bitcastToAPInt();
1599 } else {
1600 // Don't try to handle vectors of anything other than int or float
1601 // (not sure if it's possible to hit this case).
1602 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1603 return false;
1604 }
1605 unsigned BaseEltSize = EltAsInt.getBitWidth();
1606 if (BigEndian)
1607 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1608 else
1609 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1610 }
1611 return true;
1612 }
1613 // Give up if the input isn't an int, float, or vector. For example, we
1614 // reject "(v4i16)(intptr_t)&a".
1615 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1616 return false;
1617 }
1618
1619 /// Perform the given integer operation, which is known to need at most BitWidth
1620 /// bits, and check for overflow in the original type (if that type was not an
1621 /// unsigned type).
1622 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op)1623 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1624 const APSInt &LHS, const APSInt &RHS,
1625 unsigned BitWidth, Operation Op) {
1626 if (LHS.isUnsigned())
1627 return Op(LHS, RHS);
1628
1629 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1630 APSInt Result = Value.trunc(LHS.getBitWidth());
1631 if (Result.extend(BitWidth) != Value) {
1632 if (Info.checkingForOverflow())
1633 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1634 diag::warn_integer_constant_overflow)
1635 << Result.toString(10) << E->getType();
1636 else
1637 HandleOverflow(Info, E, Value, E->getType());
1638 }
1639 return Result;
1640 }
1641
1642 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1643 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1644 BinaryOperatorKind Opcode, APSInt RHS,
1645 APSInt &Result) {
1646 switch (Opcode) {
1647 default:
1648 Info.Diag(E);
1649 return false;
1650 case BO_Mul:
1651 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1652 std::multiplies<APSInt>());
1653 return true;
1654 case BO_Add:
1655 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1656 std::plus<APSInt>());
1657 return true;
1658 case BO_Sub:
1659 Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1660 std::minus<APSInt>());
1661 return true;
1662 case BO_And: Result = LHS & RHS; return true;
1663 case BO_Xor: Result = LHS ^ RHS; return true;
1664 case BO_Or: Result = LHS | RHS; return true;
1665 case BO_Div:
1666 case BO_Rem:
1667 if (RHS == 0) {
1668 Info.Diag(E, diag::note_expr_divide_by_zero);
1669 return false;
1670 }
1671 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
1672 if (RHS.isNegative() && RHS.isAllOnesValue() &&
1673 LHS.isSigned() && LHS.isMinSignedValue())
1674 HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
1675 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1676 return true;
1677 case BO_Shl: {
1678 if (Info.getLangOpts().OpenCL)
1679 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1680 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1681 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1682 RHS.isUnsigned());
1683 else if (RHS.isSigned() && RHS.isNegative()) {
1684 // During constant-folding, a negative shift is an opposite shift. Such
1685 // a shift is not a constant expression.
1686 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1687 RHS = -RHS;
1688 goto shift_right;
1689 }
1690 shift_left:
1691 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1692 // the shifted type.
1693 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1694 if (SA != RHS) {
1695 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1696 << RHS << E->getType() << LHS.getBitWidth();
1697 } else if (LHS.isSigned()) {
1698 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1699 // operand, and must not overflow the corresponding unsigned type.
1700 if (LHS.isNegative())
1701 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1702 else if (LHS.countLeadingZeros() < SA)
1703 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1704 }
1705 Result = LHS << SA;
1706 return true;
1707 }
1708 case BO_Shr: {
1709 if (Info.getLangOpts().OpenCL)
1710 // OpenCL 6.3j: shift values are effectively % word size of LHS.
1711 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1712 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1713 RHS.isUnsigned());
1714 else if (RHS.isSigned() && RHS.isNegative()) {
1715 // During constant-folding, a negative shift is an opposite shift. Such a
1716 // shift is not a constant expression.
1717 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1718 RHS = -RHS;
1719 goto shift_left;
1720 }
1721 shift_right:
1722 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1723 // shifted type.
1724 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1725 if (SA != RHS)
1726 Info.CCEDiag(E, diag::note_constexpr_large_shift)
1727 << RHS << E->getType() << LHS.getBitWidth();
1728 Result = LHS >> SA;
1729 return true;
1730 }
1731
1732 case BO_LT: Result = LHS < RHS; return true;
1733 case BO_GT: Result = LHS > RHS; return true;
1734 case BO_LE: Result = LHS <= RHS; return true;
1735 case BO_GE: Result = LHS >= RHS; return true;
1736 case BO_EQ: Result = LHS == RHS; return true;
1737 case BO_NE: Result = LHS != RHS; return true;
1738 }
1739 }
1740
1741 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1742 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1743 APFloat &LHS, BinaryOperatorKind Opcode,
1744 const APFloat &RHS) {
1745 switch (Opcode) {
1746 default:
1747 Info.Diag(E);
1748 return false;
1749 case BO_Mul:
1750 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1751 break;
1752 case BO_Add:
1753 LHS.add(RHS, APFloat::rmNearestTiesToEven);
1754 break;
1755 case BO_Sub:
1756 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1757 break;
1758 case BO_Div:
1759 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1760 break;
1761 }
1762
1763 if (LHS.isInfinity() || LHS.isNaN())
1764 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1765 return true;
1766 }
1767
1768 /// Cast an lvalue referring to a base subobject to a derived class, by
1769 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1770 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1771 const RecordDecl *TruncatedType,
1772 unsigned TruncatedElements) {
1773 SubobjectDesignator &D = Result.Designator;
1774
1775 // Check we actually point to a derived class object.
1776 if (TruncatedElements == D.Entries.size())
1777 return true;
1778 assert(TruncatedElements >= D.MostDerivedPathLength &&
1779 "not casting to a derived class");
1780 if (!Result.checkSubobject(Info, E, CSK_Derived))
1781 return false;
1782
1783 // Truncate the path to the subobject, and remove any derived-to-base offsets.
1784 const RecordDecl *RD = TruncatedType;
1785 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1786 if (RD->isInvalidDecl()) return false;
1787 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1788 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1789 if (isVirtualBaseClass(D.Entries[I]))
1790 Result.Offset -= Layout.getVBaseClassOffset(Base);
1791 else
1792 Result.Offset -= Layout.getBaseClassOffset(Base);
1793 RD = Base;
1794 }
1795 D.Entries.resize(TruncatedElements);
1796 return true;
1797 }
1798
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1799 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1800 const CXXRecordDecl *Derived,
1801 const CXXRecordDecl *Base,
1802 const ASTRecordLayout *RL = nullptr) {
1803 if (!RL) {
1804 if (Derived->isInvalidDecl()) return false;
1805 RL = &Info.Ctx.getASTRecordLayout(Derived);
1806 }
1807
1808 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1809 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1810 return true;
1811 }
1812
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1813 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1814 const CXXRecordDecl *DerivedDecl,
1815 const CXXBaseSpecifier *Base) {
1816 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1817
1818 if (!Base->isVirtual())
1819 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1820
1821 SubobjectDesignator &D = Obj.Designator;
1822 if (D.Invalid)
1823 return false;
1824
1825 // Extract most-derived object and corresponding type.
1826 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1827 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1828 return false;
1829
1830 // Find the virtual base class.
1831 if (DerivedDecl->isInvalidDecl()) return false;
1832 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1833 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1834 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1835 return true;
1836 }
1837
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1838 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1839 QualType Type, LValue &Result) {
1840 for (CastExpr::path_const_iterator PathI = E->path_begin(),
1841 PathE = E->path_end();
1842 PathI != PathE; ++PathI) {
1843 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1844 *PathI))
1845 return false;
1846 Type = (*PathI)->getType();
1847 }
1848 return true;
1849 }
1850
1851 /// Update LVal to refer to the given field, which must be a member of the type
1852 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)1853 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1854 const FieldDecl *FD,
1855 const ASTRecordLayout *RL = nullptr) {
1856 if (!RL) {
1857 if (FD->getParent()->isInvalidDecl()) return false;
1858 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1859 }
1860
1861 unsigned I = FD->getFieldIndex();
1862 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1863 LVal.addDecl(Info, E, FD);
1864 return true;
1865 }
1866
1867 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)1868 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1869 LValue &LVal,
1870 const IndirectFieldDecl *IFD) {
1871 for (const auto *C : IFD->chain())
1872 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1873 return false;
1874 return true;
1875 }
1876
1877 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)1878 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1879 QualType Type, CharUnits &Size) {
1880 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1881 // extension.
1882 if (Type->isVoidType() || Type->isFunctionType()) {
1883 Size = CharUnits::One();
1884 return true;
1885 }
1886
1887 if (!Type->isConstantSizeType()) {
1888 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1889 // FIXME: Better diagnostic.
1890 Info.Diag(Loc);
1891 return false;
1892 }
1893
1894 Size = Info.Ctx.getTypeSizeInChars(Type);
1895 return true;
1896 }
1897
1898 /// Update a pointer value to model pointer arithmetic.
1899 /// \param Info - Information about the ongoing evaluation.
1900 /// \param E - The expression being evaluated, for diagnostic purposes.
1901 /// \param LVal - The pointer value to be updated.
1902 /// \param EltTy - The pointee type represented by LVal.
1903 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)1904 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1905 LValue &LVal, QualType EltTy,
1906 int64_t Adjustment) {
1907 CharUnits SizeOfPointee;
1908 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1909 return false;
1910
1911 // Compute the new offset in the appropriate width.
1912 LVal.Offset += Adjustment * SizeOfPointee;
1913 LVal.adjustIndex(Info, E, Adjustment);
1914 return true;
1915 }
1916
1917 /// Update an lvalue to refer to a component of a complex number.
1918 /// \param Info - Information about the ongoing evaluation.
1919 /// \param LVal - The lvalue to be updated.
1920 /// \param EltTy - The complex number's component type.
1921 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)1922 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
1923 LValue &LVal, QualType EltTy,
1924 bool Imag) {
1925 if (Imag) {
1926 CharUnits SizeOfComponent;
1927 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
1928 return false;
1929 LVal.Offset += SizeOfComponent;
1930 }
1931 LVal.addComplex(Info, E, EltTy, Imag);
1932 return true;
1933 }
1934
1935 /// Try to evaluate the initializer for a variable declaration.
1936 ///
1937 /// \param Info Information about the ongoing evaluation.
1938 /// \param E An expression to be used when printing diagnostics.
1939 /// \param VD The variable whose initializer should be obtained.
1940 /// \param Frame The frame in which the variable was created. Must be null
1941 /// if this variable is not local to the evaluation.
1942 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)1943 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
1944 const VarDecl *VD, CallStackFrame *Frame,
1945 APValue *&Result) {
1946 // If this is a parameter to an active constexpr function call, perform
1947 // argument substitution.
1948 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
1949 // Assume arguments of a potential constant expression are unknown
1950 // constant expressions.
1951 if (Info.checkingPotentialConstantExpression())
1952 return false;
1953 if (!Frame || !Frame->Arguments) {
1954 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1955 return false;
1956 }
1957 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
1958 return true;
1959 }
1960
1961 // If this is a local variable, dig out its value.
1962 if (Frame) {
1963 Result = Frame->getTemporary(VD);
1964 assert(Result && "missing value for local variable");
1965 return true;
1966 }
1967
1968 // Dig out the initializer, and use the declaration which it's attached to.
1969 const Expr *Init = VD->getAnyInitializer(VD);
1970 if (!Init || Init->isValueDependent()) {
1971 // If we're checking a potential constant expression, the variable could be
1972 // initialized later.
1973 if (!Info.checkingPotentialConstantExpression())
1974 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1975 return false;
1976 }
1977
1978 // If we're currently evaluating the initializer of this declaration, use that
1979 // in-flight value.
1980 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
1981 Result = Info.EvaluatingDeclValue;
1982 return true;
1983 }
1984
1985 // Never evaluate the initializer of a weak variable. We can't be sure that
1986 // this is the definition which will be used.
1987 if (VD->isWeak()) {
1988 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1989 return false;
1990 }
1991
1992 // Check that we can fold the initializer. In C++, we will have already done
1993 // this in the cases where it matters for conformance.
1994 SmallVector<PartialDiagnosticAt, 8> Notes;
1995 if (!VD->evaluateValue(Notes)) {
1996 Info.Diag(E, diag::note_constexpr_var_init_non_constant,
1997 Notes.size() + 1) << VD;
1998 Info.Note(VD->getLocation(), diag::note_declared_at);
1999 Info.addNotes(Notes);
2000 return false;
2001 } else if (!VD->checkInitIsICE()) {
2002 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2003 Notes.size() + 1) << VD;
2004 Info.Note(VD->getLocation(), diag::note_declared_at);
2005 Info.addNotes(Notes);
2006 }
2007
2008 Result = VD->getEvaluatedValue();
2009 return true;
2010 }
2011
IsConstNonVolatile(QualType T)2012 static bool IsConstNonVolatile(QualType T) {
2013 Qualifiers Quals = T.getQualifiers();
2014 return Quals.hasConst() && !Quals.hasVolatile();
2015 }
2016
2017 /// Get the base index of the given base class within an APValue representing
2018 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2019 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2020 const CXXRecordDecl *Base) {
2021 Base = Base->getCanonicalDecl();
2022 unsigned Index = 0;
2023 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2024 E = Derived->bases_end(); I != E; ++I, ++Index) {
2025 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2026 return Index;
2027 }
2028
2029 llvm_unreachable("base class missing from derived class's bases list");
2030 }
2031
2032 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2033 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2034 uint64_t Index) {
2035 // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2036 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2037 Lit = PE->getFunctionName();
2038 const StringLiteral *S = cast<StringLiteral>(Lit);
2039 const ConstantArrayType *CAT =
2040 Info.Ctx.getAsConstantArrayType(S->getType());
2041 assert(CAT && "string literal isn't an array");
2042 QualType CharType = CAT->getElementType();
2043 assert(CharType->isIntegerType() && "unexpected character type");
2044
2045 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2046 CharType->isUnsignedIntegerType());
2047 if (Index < S->getLength())
2048 Value = S->getCodeUnit(Index);
2049 return Value;
2050 }
2051
2052 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2053 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2054 APValue &Result) {
2055 const StringLiteral *S = cast<StringLiteral>(Lit);
2056 const ConstantArrayType *CAT =
2057 Info.Ctx.getAsConstantArrayType(S->getType());
2058 assert(CAT && "string literal isn't an array");
2059 QualType CharType = CAT->getElementType();
2060 assert(CharType->isIntegerType() && "unexpected character type");
2061
2062 unsigned Elts = CAT->getSize().getZExtValue();
2063 Result = APValue(APValue::UninitArray(),
2064 std::min(S->getLength(), Elts), Elts);
2065 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2066 CharType->isUnsignedIntegerType());
2067 if (Result.hasArrayFiller())
2068 Result.getArrayFiller() = APValue(Value);
2069 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2070 Value = S->getCodeUnit(I);
2071 Result.getArrayInitializedElt(I) = APValue(Value);
2072 }
2073 }
2074
2075 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2076 static void expandArray(APValue &Array, unsigned Index) {
2077 unsigned Size = Array.getArraySize();
2078 assert(Index < Size);
2079
2080 // Always at least double the number of elements for which we store a value.
2081 unsigned OldElts = Array.getArrayInitializedElts();
2082 unsigned NewElts = std::max(Index+1, OldElts * 2);
2083 NewElts = std::min(Size, std::max(NewElts, 8u));
2084
2085 // Copy the data across.
2086 APValue NewValue(APValue::UninitArray(), NewElts, Size);
2087 for (unsigned I = 0; I != OldElts; ++I)
2088 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2089 for (unsigned I = OldElts; I != NewElts; ++I)
2090 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2091 if (NewValue.hasArrayFiller())
2092 NewValue.getArrayFiller() = Array.getArrayFiller();
2093 Array.swap(NewValue);
2094 }
2095
2096 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2097 /// conversion. If it's of class type, we may assume that the copy operation
2098 /// is trivial. Note that this is never true for a union type with fields
2099 /// (because the copy always "reads" the active member) and always true for
2100 /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2101 static bool isReadByLvalueToRvalueConversion(QualType T) {
2102 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2103 if (!RD || (RD->isUnion() && !RD->field_empty()))
2104 return true;
2105 if (RD->isEmpty())
2106 return false;
2107
2108 for (auto *Field : RD->fields())
2109 if (isReadByLvalueToRvalueConversion(Field->getType()))
2110 return true;
2111
2112 for (auto &BaseSpec : RD->bases())
2113 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2114 return true;
2115
2116 return false;
2117 }
2118
2119 /// Diagnose an attempt to read from any unreadable field within the specified
2120 /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2121 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2122 QualType T) {
2123 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2124 if (!RD)
2125 return false;
2126
2127 if (!RD->hasMutableFields())
2128 return false;
2129
2130 for (auto *Field : RD->fields()) {
2131 // If we're actually going to read this field in some way, then it can't
2132 // be mutable. If we're in a union, then assigning to a mutable field
2133 // (even an empty one) can change the active member, so that's not OK.
2134 // FIXME: Add core issue number for the union case.
2135 if (Field->isMutable() &&
2136 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2137 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2138 Info.Note(Field->getLocation(), diag::note_declared_at);
2139 return true;
2140 }
2141
2142 if (diagnoseUnreadableFields(Info, E, Field->getType()))
2143 return true;
2144 }
2145
2146 for (auto &BaseSpec : RD->bases())
2147 if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2148 return true;
2149
2150 // All mutable fields were empty, and thus not actually read.
2151 return false;
2152 }
2153
2154 /// Kinds of access we can perform on an object, for diagnostics.
2155 enum AccessKinds {
2156 AK_Read,
2157 AK_Assign,
2158 AK_Increment,
2159 AK_Decrement
2160 };
2161
2162 /// A handle to a complete object (an object that is not a subobject of
2163 /// another object).
2164 struct CompleteObject {
2165 /// The value of the complete object.
2166 APValue *Value;
2167 /// The type of the complete object.
2168 QualType Type;
2169
CompleteObjectCompleteObject2170 CompleteObject() : Value(nullptr) {}
CompleteObjectCompleteObject2171 CompleteObject(APValue *Value, QualType Type)
2172 : Value(Value), Type(Type) {
2173 assert(Value && "missing value for complete object");
2174 }
2175
operator boolCompleteObject2176 explicit operator bool() const { return Value; }
2177 };
2178
2179 /// Find the designated sub-object of an rvalue.
2180 template<typename SubobjectHandler>
2181 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2182 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2183 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2184 if (Sub.Invalid)
2185 // A diagnostic will have already been produced.
2186 return handler.failed();
2187 if (Sub.isOnePastTheEnd()) {
2188 if (Info.getLangOpts().CPlusPlus11)
2189 Info.Diag(E, diag::note_constexpr_access_past_end)
2190 << handler.AccessKind;
2191 else
2192 Info.Diag(E);
2193 return handler.failed();
2194 }
2195
2196 APValue *O = Obj.Value;
2197 QualType ObjType = Obj.Type;
2198 const FieldDecl *LastField = nullptr;
2199
2200 // Walk the designator's path to find the subobject.
2201 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2202 if (O->isUninit()) {
2203 if (!Info.checkingPotentialConstantExpression())
2204 Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2205 return handler.failed();
2206 }
2207
2208 if (I == N) {
2209 // If we are reading an object of class type, there may still be more
2210 // things we need to check: if there are any mutable subobjects, we
2211 // cannot perform this read. (This only happens when performing a trivial
2212 // copy or assignment.)
2213 if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2214 diagnoseUnreadableFields(Info, E, ObjType))
2215 return handler.failed();
2216
2217 if (!handler.found(*O, ObjType))
2218 return false;
2219
2220 // If we modified a bit-field, truncate it to the right width.
2221 if (handler.AccessKind != AK_Read &&
2222 LastField && LastField->isBitField() &&
2223 !truncateBitfieldValue(Info, E, *O, LastField))
2224 return false;
2225
2226 return true;
2227 }
2228
2229 LastField = nullptr;
2230 if (ObjType->isArrayType()) {
2231 // Next subobject is an array element.
2232 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2233 assert(CAT && "vla in literal type?");
2234 uint64_t Index = Sub.Entries[I].ArrayIndex;
2235 if (CAT->getSize().ule(Index)) {
2236 // Note, it should not be possible to form a pointer with a valid
2237 // designator which points more than one past the end of the array.
2238 if (Info.getLangOpts().CPlusPlus11)
2239 Info.Diag(E, diag::note_constexpr_access_past_end)
2240 << handler.AccessKind;
2241 else
2242 Info.Diag(E);
2243 return handler.failed();
2244 }
2245
2246 ObjType = CAT->getElementType();
2247
2248 // An array object is represented as either an Array APValue or as an
2249 // LValue which refers to a string literal.
2250 if (O->isLValue()) {
2251 assert(I == N - 1 && "extracting subobject of character?");
2252 assert(!O->hasLValuePath() || O->getLValuePath().empty());
2253 if (handler.AccessKind != AK_Read)
2254 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2255 *O);
2256 else
2257 return handler.foundString(*O, ObjType, Index);
2258 }
2259
2260 if (O->getArrayInitializedElts() > Index)
2261 O = &O->getArrayInitializedElt(Index);
2262 else if (handler.AccessKind != AK_Read) {
2263 expandArray(*O, Index);
2264 O = &O->getArrayInitializedElt(Index);
2265 } else
2266 O = &O->getArrayFiller();
2267 } else if (ObjType->isAnyComplexType()) {
2268 // Next subobject is a complex number.
2269 uint64_t Index = Sub.Entries[I].ArrayIndex;
2270 if (Index > 1) {
2271 if (Info.getLangOpts().CPlusPlus11)
2272 Info.Diag(E, diag::note_constexpr_access_past_end)
2273 << handler.AccessKind;
2274 else
2275 Info.Diag(E);
2276 return handler.failed();
2277 }
2278
2279 bool WasConstQualified = ObjType.isConstQualified();
2280 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2281 if (WasConstQualified)
2282 ObjType.addConst();
2283
2284 assert(I == N - 1 && "extracting subobject of scalar?");
2285 if (O->isComplexInt()) {
2286 return handler.found(Index ? O->getComplexIntImag()
2287 : O->getComplexIntReal(), ObjType);
2288 } else {
2289 assert(O->isComplexFloat());
2290 return handler.found(Index ? O->getComplexFloatImag()
2291 : O->getComplexFloatReal(), ObjType);
2292 }
2293 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2294 if (Field->isMutable() && handler.AccessKind == AK_Read) {
2295 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2296 << Field;
2297 Info.Note(Field->getLocation(), diag::note_declared_at);
2298 return handler.failed();
2299 }
2300
2301 // Next subobject is a class, struct or union field.
2302 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2303 if (RD->isUnion()) {
2304 const FieldDecl *UnionField = O->getUnionField();
2305 if (!UnionField ||
2306 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2307 Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2308 << handler.AccessKind << Field << !UnionField << UnionField;
2309 return handler.failed();
2310 }
2311 O = &O->getUnionValue();
2312 } else
2313 O = &O->getStructField(Field->getFieldIndex());
2314
2315 bool WasConstQualified = ObjType.isConstQualified();
2316 ObjType = Field->getType();
2317 if (WasConstQualified && !Field->isMutable())
2318 ObjType.addConst();
2319
2320 if (ObjType.isVolatileQualified()) {
2321 if (Info.getLangOpts().CPlusPlus) {
2322 // FIXME: Include a description of the path to the volatile subobject.
2323 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2324 << handler.AccessKind << 2 << Field;
2325 Info.Note(Field->getLocation(), diag::note_declared_at);
2326 } else {
2327 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2328 }
2329 return handler.failed();
2330 }
2331
2332 LastField = Field;
2333 } else {
2334 // Next subobject is a base class.
2335 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2336 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2337 O = &O->getStructBase(getBaseIndex(Derived, Base));
2338
2339 bool WasConstQualified = ObjType.isConstQualified();
2340 ObjType = Info.Ctx.getRecordType(Base);
2341 if (WasConstQualified)
2342 ObjType.addConst();
2343 }
2344 }
2345 }
2346
2347 namespace {
2348 struct ExtractSubobjectHandler {
2349 EvalInfo &Info;
2350 APValue &Result;
2351
2352 static const AccessKinds AccessKind = AK_Read;
2353
2354 typedef bool result_type;
failed__anona626307c0311::ExtractSubobjectHandler2355 bool failed() { return false; }
found__anona626307c0311::ExtractSubobjectHandler2356 bool found(APValue &Subobj, QualType SubobjType) {
2357 Result = Subobj;
2358 return true;
2359 }
found__anona626307c0311::ExtractSubobjectHandler2360 bool found(APSInt &Value, QualType SubobjType) {
2361 Result = APValue(Value);
2362 return true;
2363 }
found__anona626307c0311::ExtractSubobjectHandler2364 bool found(APFloat &Value, QualType SubobjType) {
2365 Result = APValue(Value);
2366 return true;
2367 }
foundString__anona626307c0311::ExtractSubobjectHandler2368 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2369 Result = APValue(extractStringLiteralCharacter(
2370 Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2371 return true;
2372 }
2373 };
2374 } // end anonymous namespace
2375
2376 const AccessKinds ExtractSubobjectHandler::AccessKind;
2377
2378 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2379 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2380 const CompleteObject &Obj,
2381 const SubobjectDesignator &Sub,
2382 APValue &Result) {
2383 ExtractSubobjectHandler Handler = { Info, Result };
2384 return findSubobject(Info, E, Obj, Sub, Handler);
2385 }
2386
2387 namespace {
2388 struct ModifySubobjectHandler {
2389 EvalInfo &Info;
2390 APValue &NewVal;
2391 const Expr *E;
2392
2393 typedef bool result_type;
2394 static const AccessKinds AccessKind = AK_Assign;
2395
checkConst__anona626307c0411::ModifySubobjectHandler2396 bool checkConst(QualType QT) {
2397 // Assigning to a const object has undefined behavior.
2398 if (QT.isConstQualified()) {
2399 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2400 return false;
2401 }
2402 return true;
2403 }
2404
failed__anona626307c0411::ModifySubobjectHandler2405 bool failed() { return false; }
found__anona626307c0411::ModifySubobjectHandler2406 bool found(APValue &Subobj, QualType SubobjType) {
2407 if (!checkConst(SubobjType))
2408 return false;
2409 // We've been given ownership of NewVal, so just swap it in.
2410 Subobj.swap(NewVal);
2411 return true;
2412 }
found__anona626307c0411::ModifySubobjectHandler2413 bool found(APSInt &Value, QualType SubobjType) {
2414 if (!checkConst(SubobjType))
2415 return false;
2416 if (!NewVal.isInt()) {
2417 // Maybe trying to write a cast pointer value into a complex?
2418 Info.Diag(E);
2419 return false;
2420 }
2421 Value = NewVal.getInt();
2422 return true;
2423 }
found__anona626307c0411::ModifySubobjectHandler2424 bool found(APFloat &Value, QualType SubobjType) {
2425 if (!checkConst(SubobjType))
2426 return false;
2427 Value = NewVal.getFloat();
2428 return true;
2429 }
foundString__anona626307c0411::ModifySubobjectHandler2430 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2431 llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2432 }
2433 };
2434 } // end anonymous namespace
2435
2436 const AccessKinds ModifySubobjectHandler::AccessKind;
2437
2438 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2439 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2440 const CompleteObject &Obj,
2441 const SubobjectDesignator &Sub,
2442 APValue &NewVal) {
2443 ModifySubobjectHandler Handler = { Info, NewVal, E };
2444 return findSubobject(Info, E, Obj, Sub, Handler);
2445 }
2446
2447 /// Find the position where two subobject designators diverge, or equivalently
2448 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2449 static unsigned FindDesignatorMismatch(QualType ObjType,
2450 const SubobjectDesignator &A,
2451 const SubobjectDesignator &B,
2452 bool &WasArrayIndex) {
2453 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2454 for (/**/; I != N; ++I) {
2455 if (!ObjType.isNull() &&
2456 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2457 // Next subobject is an array element.
2458 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2459 WasArrayIndex = true;
2460 return I;
2461 }
2462 if (ObjType->isAnyComplexType())
2463 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2464 else
2465 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2466 } else {
2467 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2468 WasArrayIndex = false;
2469 return I;
2470 }
2471 if (const FieldDecl *FD = getAsField(A.Entries[I]))
2472 // Next subobject is a field.
2473 ObjType = FD->getType();
2474 else
2475 // Next subobject is a base class.
2476 ObjType = QualType();
2477 }
2478 }
2479 WasArrayIndex = false;
2480 return I;
2481 }
2482
2483 /// Determine whether the given subobject designators refer to elements of the
2484 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2485 static bool AreElementsOfSameArray(QualType ObjType,
2486 const SubobjectDesignator &A,
2487 const SubobjectDesignator &B) {
2488 if (A.Entries.size() != B.Entries.size())
2489 return false;
2490
2491 bool IsArray = A.MostDerivedArraySize != 0;
2492 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2493 // A is a subobject of the array element.
2494 return false;
2495
2496 // If A (and B) designates an array element, the last entry will be the array
2497 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2498 // of length 1' case, and the entire path must match.
2499 bool WasArrayIndex;
2500 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2501 return CommonLength >= A.Entries.size() - IsArray;
2502 }
2503
2504 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2505 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2506 AccessKinds AK, const LValue &LVal,
2507 QualType LValType) {
2508 if (!LVal.Base) {
2509 Info.Diag(E, diag::note_constexpr_access_null) << AK;
2510 return CompleteObject();
2511 }
2512
2513 CallStackFrame *Frame = nullptr;
2514 if (LVal.CallIndex) {
2515 Frame = Info.getCallFrame(LVal.CallIndex);
2516 if (!Frame) {
2517 Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2518 << AK << LVal.Base.is<const ValueDecl*>();
2519 NoteLValueLocation(Info, LVal.Base);
2520 return CompleteObject();
2521 }
2522 }
2523
2524 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2525 // is not a constant expression (even if the object is non-volatile). We also
2526 // apply this rule to C++98, in order to conform to the expected 'volatile'
2527 // semantics.
2528 if (LValType.isVolatileQualified()) {
2529 if (Info.getLangOpts().CPlusPlus)
2530 Info.Diag(E, diag::note_constexpr_access_volatile_type)
2531 << AK << LValType;
2532 else
2533 Info.Diag(E);
2534 return CompleteObject();
2535 }
2536
2537 // Compute value storage location and type of base object.
2538 APValue *BaseVal = nullptr;
2539 QualType BaseType = getType(LVal.Base);
2540
2541 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2542 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2543 // In C++11, constexpr, non-volatile variables initialized with constant
2544 // expressions are constant expressions too. Inside constexpr functions,
2545 // parameters are constant expressions even if they're non-const.
2546 // In C++1y, objects local to a constant expression (those with a Frame) are
2547 // both readable and writable inside constant expressions.
2548 // In C, such things can also be folded, although they are not ICEs.
2549 const VarDecl *VD = dyn_cast<VarDecl>(D);
2550 if (VD) {
2551 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2552 VD = VDef;
2553 }
2554 if (!VD || VD->isInvalidDecl()) {
2555 Info.Diag(E);
2556 return CompleteObject();
2557 }
2558
2559 // Accesses of volatile-qualified objects are not allowed.
2560 if (BaseType.isVolatileQualified()) {
2561 if (Info.getLangOpts().CPlusPlus) {
2562 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2563 << AK << 1 << VD;
2564 Info.Note(VD->getLocation(), diag::note_declared_at);
2565 } else {
2566 Info.Diag(E);
2567 }
2568 return CompleteObject();
2569 }
2570
2571 // Unless we're looking at a local variable or argument in a constexpr call,
2572 // the variable we're reading must be const.
2573 if (!Frame) {
2574 if (Info.getLangOpts().CPlusPlus14 &&
2575 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2576 // OK, we can read and modify an object if we're in the process of
2577 // evaluating its initializer, because its lifetime began in this
2578 // evaluation.
2579 } else if (AK != AK_Read) {
2580 // All the remaining cases only permit reading.
2581 Info.Diag(E, diag::note_constexpr_modify_global);
2582 return CompleteObject();
2583 } else if (VD->isConstexpr()) {
2584 // OK, we can read this variable.
2585 } else if (BaseType->isIntegralOrEnumerationType()) {
2586 if (!BaseType.isConstQualified()) {
2587 if (Info.getLangOpts().CPlusPlus) {
2588 Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2589 Info.Note(VD->getLocation(), diag::note_declared_at);
2590 } else {
2591 Info.Diag(E);
2592 }
2593 return CompleteObject();
2594 }
2595 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2596 // We support folding of const floating-point types, in order to make
2597 // static const data members of such types (supported as an extension)
2598 // more useful.
2599 if (Info.getLangOpts().CPlusPlus11) {
2600 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2601 Info.Note(VD->getLocation(), diag::note_declared_at);
2602 } else {
2603 Info.CCEDiag(E);
2604 }
2605 } else {
2606 // FIXME: Allow folding of values of any literal type in all languages.
2607 if (Info.getLangOpts().CPlusPlus11) {
2608 Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2609 Info.Note(VD->getLocation(), diag::note_declared_at);
2610 } else {
2611 Info.Diag(E);
2612 }
2613 return CompleteObject();
2614 }
2615 }
2616
2617 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2618 return CompleteObject();
2619 } else {
2620 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2621
2622 if (!Frame) {
2623 if (const MaterializeTemporaryExpr *MTE =
2624 dyn_cast<MaterializeTemporaryExpr>(Base)) {
2625 assert(MTE->getStorageDuration() == SD_Static &&
2626 "should have a frame for a non-global materialized temporary");
2627
2628 // Per C++1y [expr.const]p2:
2629 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2630 // - a [...] glvalue of integral or enumeration type that refers to
2631 // a non-volatile const object [...]
2632 // [...]
2633 // - a [...] glvalue of literal type that refers to a non-volatile
2634 // object whose lifetime began within the evaluation of e.
2635 //
2636 // C++11 misses the 'began within the evaluation of e' check and
2637 // instead allows all temporaries, including things like:
2638 // int &&r = 1;
2639 // int x = ++r;
2640 // constexpr int k = r;
2641 // Therefore we use the C++1y rules in C++11 too.
2642 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2643 const ValueDecl *ED = MTE->getExtendingDecl();
2644 if (!(BaseType.isConstQualified() &&
2645 BaseType->isIntegralOrEnumerationType()) &&
2646 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2647 Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2648 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2649 return CompleteObject();
2650 }
2651
2652 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2653 assert(BaseVal && "got reference to unevaluated temporary");
2654 } else {
2655 Info.Diag(E);
2656 return CompleteObject();
2657 }
2658 } else {
2659 BaseVal = Frame->getTemporary(Base);
2660 assert(BaseVal && "missing value for temporary");
2661 }
2662
2663 // Volatile temporary objects cannot be accessed in constant expressions.
2664 if (BaseType.isVolatileQualified()) {
2665 if (Info.getLangOpts().CPlusPlus) {
2666 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2667 << AK << 0;
2668 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2669 } else {
2670 Info.Diag(E);
2671 }
2672 return CompleteObject();
2673 }
2674 }
2675
2676 // During the construction of an object, it is not yet 'const'.
2677 // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2678 // and this doesn't do quite the right thing for const subobjects of the
2679 // object under construction.
2680 if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2681 BaseType = Info.Ctx.getCanonicalType(BaseType);
2682 BaseType.removeLocalConst();
2683 }
2684
2685 // In C++1y, we can't safely access any mutable state when we might be
2686 // evaluating after an unmodeled side effect or an evaluation failure.
2687 //
2688 // FIXME: Not all local state is mutable. Allow local constant subobjects
2689 // to be read here (but take care with 'mutable' fields).
2690 if (Frame && Info.getLangOpts().CPlusPlus14 &&
2691 (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2692 return CompleteObject();
2693
2694 return CompleteObject(BaseVal, BaseType);
2695 }
2696
2697 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2698 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2699 /// glvalue referred to by an entity of reference type.
2700 ///
2701 /// \param Info - Information about the ongoing evaluation.
2702 /// \param Conv - The expression for which we are performing the conversion.
2703 /// Used for diagnostics.
2704 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2705 /// case of a non-class type).
2706 /// \param LVal - The glvalue on which we are attempting to perform this action.
2707 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2708 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2709 QualType Type,
2710 const LValue &LVal, APValue &RVal) {
2711 if (LVal.Designator.Invalid)
2712 return false;
2713
2714 // Check for special cases where there is no existing APValue to look at.
2715 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2716 if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
2717 !Type.isVolatileQualified()) {
2718 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2719 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2720 // initializer until now for such expressions. Such an expression can't be
2721 // an ICE in C, so this only matters for fold.
2722 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2723 if (Type.isVolatileQualified()) {
2724 Info.Diag(Conv);
2725 return false;
2726 }
2727 APValue Lit;
2728 if (!Evaluate(Lit, Info, CLE->getInitializer()))
2729 return false;
2730 CompleteObject LitObj(&Lit, Base->getType());
2731 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2732 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2733 // We represent a string literal array as an lvalue pointing at the
2734 // corresponding expression, rather than building an array of chars.
2735 // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2736 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2737 CompleteObject StrObj(&Str, Base->getType());
2738 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2739 }
2740 }
2741
2742 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2743 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2744 }
2745
2746 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2747 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2748 QualType LValType, APValue &Val) {
2749 if (LVal.Designator.Invalid)
2750 return false;
2751
2752 if (!Info.getLangOpts().CPlusPlus14) {
2753 Info.Diag(E);
2754 return false;
2755 }
2756
2757 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2758 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2759 }
2760
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2761 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2762 return T->isSignedIntegerType() &&
2763 Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2764 }
2765
2766 namespace {
2767 struct CompoundAssignSubobjectHandler {
2768 EvalInfo &Info;
2769 const Expr *E;
2770 QualType PromotedLHSType;
2771 BinaryOperatorKind Opcode;
2772 const APValue &RHS;
2773
2774 static const AccessKinds AccessKind = AK_Assign;
2775
2776 typedef bool result_type;
2777
checkConst__anona626307c0511::CompoundAssignSubobjectHandler2778 bool checkConst(QualType QT) {
2779 // Assigning to a const object has undefined behavior.
2780 if (QT.isConstQualified()) {
2781 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2782 return false;
2783 }
2784 return true;
2785 }
2786
failed__anona626307c0511::CompoundAssignSubobjectHandler2787 bool failed() { return false; }
found__anona626307c0511::CompoundAssignSubobjectHandler2788 bool found(APValue &Subobj, QualType SubobjType) {
2789 switch (Subobj.getKind()) {
2790 case APValue::Int:
2791 return found(Subobj.getInt(), SubobjType);
2792 case APValue::Float:
2793 return found(Subobj.getFloat(), SubobjType);
2794 case APValue::ComplexInt:
2795 case APValue::ComplexFloat:
2796 // FIXME: Implement complex compound assignment.
2797 Info.Diag(E);
2798 return false;
2799 case APValue::LValue:
2800 return foundPointer(Subobj, SubobjType);
2801 default:
2802 // FIXME: can this happen?
2803 Info.Diag(E);
2804 return false;
2805 }
2806 }
found__anona626307c0511::CompoundAssignSubobjectHandler2807 bool found(APSInt &Value, QualType SubobjType) {
2808 if (!checkConst(SubobjType))
2809 return false;
2810
2811 if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2812 // We don't support compound assignment on integer-cast-to-pointer
2813 // values.
2814 Info.Diag(E);
2815 return false;
2816 }
2817
2818 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2819 SubobjType, Value);
2820 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2821 return false;
2822 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2823 return true;
2824 }
found__anona626307c0511::CompoundAssignSubobjectHandler2825 bool found(APFloat &Value, QualType SubobjType) {
2826 return checkConst(SubobjType) &&
2827 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2828 Value) &&
2829 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2830 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2831 }
foundPointer__anona626307c0511::CompoundAssignSubobjectHandler2832 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2833 if (!checkConst(SubobjType))
2834 return false;
2835
2836 QualType PointeeType;
2837 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2838 PointeeType = PT->getPointeeType();
2839
2840 if (PointeeType.isNull() || !RHS.isInt() ||
2841 (Opcode != BO_Add && Opcode != BO_Sub)) {
2842 Info.Diag(E);
2843 return false;
2844 }
2845
2846 int64_t Offset = getExtValue(RHS.getInt());
2847 if (Opcode == BO_Sub)
2848 Offset = -Offset;
2849
2850 LValue LVal;
2851 LVal.setFrom(Info.Ctx, Subobj);
2852 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2853 return false;
2854 LVal.moveInto(Subobj);
2855 return true;
2856 }
foundString__anona626307c0511::CompoundAssignSubobjectHandler2857 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2858 llvm_unreachable("shouldn't encounter string elements here");
2859 }
2860 };
2861 } // end anonymous namespace
2862
2863 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2864
2865 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)2866 static bool handleCompoundAssignment(
2867 EvalInfo &Info, const Expr *E,
2868 const LValue &LVal, QualType LValType, QualType PromotedLValType,
2869 BinaryOperatorKind Opcode, const APValue &RVal) {
2870 if (LVal.Designator.Invalid)
2871 return false;
2872
2873 if (!Info.getLangOpts().CPlusPlus14) {
2874 Info.Diag(E);
2875 return false;
2876 }
2877
2878 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2879 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2880 RVal };
2881 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2882 }
2883
2884 namespace {
2885 struct IncDecSubobjectHandler {
2886 EvalInfo &Info;
2887 const Expr *E;
2888 AccessKinds AccessKind;
2889 APValue *Old;
2890
2891 typedef bool result_type;
2892
checkConst__anona626307c0611::IncDecSubobjectHandler2893 bool checkConst(QualType QT) {
2894 // Assigning to a const object has undefined behavior.
2895 if (QT.isConstQualified()) {
2896 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2897 return false;
2898 }
2899 return true;
2900 }
2901
failed__anona626307c0611::IncDecSubobjectHandler2902 bool failed() { return false; }
found__anona626307c0611::IncDecSubobjectHandler2903 bool found(APValue &Subobj, QualType SubobjType) {
2904 // Stash the old value. Also clear Old, so we don't clobber it later
2905 // if we're post-incrementing a complex.
2906 if (Old) {
2907 *Old = Subobj;
2908 Old = nullptr;
2909 }
2910
2911 switch (Subobj.getKind()) {
2912 case APValue::Int:
2913 return found(Subobj.getInt(), SubobjType);
2914 case APValue::Float:
2915 return found(Subobj.getFloat(), SubobjType);
2916 case APValue::ComplexInt:
2917 return found(Subobj.getComplexIntReal(),
2918 SubobjType->castAs<ComplexType>()->getElementType()
2919 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2920 case APValue::ComplexFloat:
2921 return found(Subobj.getComplexFloatReal(),
2922 SubobjType->castAs<ComplexType>()->getElementType()
2923 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
2924 case APValue::LValue:
2925 return foundPointer(Subobj, SubobjType);
2926 default:
2927 // FIXME: can this happen?
2928 Info.Diag(E);
2929 return false;
2930 }
2931 }
found__anona626307c0611::IncDecSubobjectHandler2932 bool found(APSInt &Value, QualType SubobjType) {
2933 if (!checkConst(SubobjType))
2934 return false;
2935
2936 if (!SubobjType->isIntegerType()) {
2937 // We don't support increment / decrement on integer-cast-to-pointer
2938 // values.
2939 Info.Diag(E);
2940 return false;
2941 }
2942
2943 if (Old) *Old = APValue(Value);
2944
2945 // bool arithmetic promotes to int, and the conversion back to bool
2946 // doesn't reduce mod 2^n, so special-case it.
2947 if (SubobjType->isBooleanType()) {
2948 if (AccessKind == AK_Increment)
2949 Value = 1;
2950 else
2951 Value = !Value;
2952 return true;
2953 }
2954
2955 bool WasNegative = Value.isNegative();
2956 if (AccessKind == AK_Increment) {
2957 ++Value;
2958
2959 if (!WasNegative && Value.isNegative() &&
2960 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2961 APSInt ActualValue(Value, /*IsUnsigned*/true);
2962 HandleOverflow(Info, E, ActualValue, SubobjType);
2963 }
2964 } else {
2965 --Value;
2966
2967 if (WasNegative && !Value.isNegative() &&
2968 isOverflowingIntegerType(Info.Ctx, SubobjType)) {
2969 unsigned BitWidth = Value.getBitWidth();
2970 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
2971 ActualValue.setBit(BitWidth);
2972 HandleOverflow(Info, E, ActualValue, SubobjType);
2973 }
2974 }
2975 return true;
2976 }
found__anona626307c0611::IncDecSubobjectHandler2977 bool found(APFloat &Value, QualType SubobjType) {
2978 if (!checkConst(SubobjType))
2979 return false;
2980
2981 if (Old) *Old = APValue(Value);
2982
2983 APFloat One(Value.getSemantics(), 1);
2984 if (AccessKind == AK_Increment)
2985 Value.add(One, APFloat::rmNearestTiesToEven);
2986 else
2987 Value.subtract(One, APFloat::rmNearestTiesToEven);
2988 return true;
2989 }
foundPointer__anona626307c0611::IncDecSubobjectHandler2990 bool foundPointer(APValue &Subobj, QualType SubobjType) {
2991 if (!checkConst(SubobjType))
2992 return false;
2993
2994 QualType PointeeType;
2995 if (const PointerType *PT = SubobjType->getAs<PointerType>())
2996 PointeeType = PT->getPointeeType();
2997 else {
2998 Info.Diag(E);
2999 return false;
3000 }
3001
3002 LValue LVal;
3003 LVal.setFrom(Info.Ctx, Subobj);
3004 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3005 AccessKind == AK_Increment ? 1 : -1))
3006 return false;
3007 LVal.moveInto(Subobj);
3008 return true;
3009 }
foundString__anona626307c0611::IncDecSubobjectHandler3010 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3011 llvm_unreachable("shouldn't encounter string elements here");
3012 }
3013 };
3014 } // end anonymous namespace
3015
3016 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3017 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3018 QualType LValType, bool IsIncrement, APValue *Old) {
3019 if (LVal.Designator.Invalid)
3020 return false;
3021
3022 if (!Info.getLangOpts().CPlusPlus14) {
3023 Info.Diag(E);
3024 return false;
3025 }
3026
3027 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3028 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3029 IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3030 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3031 }
3032
3033 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3034 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3035 LValue &This) {
3036 if (Object->getType()->isPointerType())
3037 return EvaluatePointer(Object, This, Info);
3038
3039 if (Object->isGLValue())
3040 return EvaluateLValue(Object, This, Info);
3041
3042 if (Object->getType()->isLiteralType(Info.Ctx))
3043 return EvaluateTemporary(Object, This, Info);
3044
3045 Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3046 return false;
3047 }
3048
3049 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3050 /// lvalue referring to the result.
3051 ///
3052 /// \param Info - Information about the ongoing evaluation.
3053 /// \param LV - An lvalue referring to the base of the member pointer.
3054 /// \param RHS - The member pointer expression.
3055 /// \param IncludeMember - Specifies whether the member itself is included in
3056 /// the resulting LValue subobject designator. This is not possible when
3057 /// creating a bound member function.
3058 /// \return The field or method declaration to which the member pointer refers,
3059 /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3060 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3061 QualType LVType,
3062 LValue &LV,
3063 const Expr *RHS,
3064 bool IncludeMember = true) {
3065 MemberPtr MemPtr;
3066 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3067 return nullptr;
3068
3069 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3070 // member value, the behavior is undefined.
3071 if (!MemPtr.getDecl()) {
3072 // FIXME: Specific diagnostic.
3073 Info.Diag(RHS);
3074 return nullptr;
3075 }
3076
3077 if (MemPtr.isDerivedMember()) {
3078 // This is a member of some derived class. Truncate LV appropriately.
3079 // The end of the derived-to-base path for the base object must match the
3080 // derived-to-base path for the member pointer.
3081 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3082 LV.Designator.Entries.size()) {
3083 Info.Diag(RHS);
3084 return nullptr;
3085 }
3086 unsigned PathLengthToMember =
3087 LV.Designator.Entries.size() - MemPtr.Path.size();
3088 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3089 const CXXRecordDecl *LVDecl = getAsBaseClass(
3090 LV.Designator.Entries[PathLengthToMember + I]);
3091 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3092 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3093 Info.Diag(RHS);
3094 return nullptr;
3095 }
3096 }
3097
3098 // Truncate the lvalue to the appropriate derived class.
3099 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3100 PathLengthToMember))
3101 return nullptr;
3102 } else if (!MemPtr.Path.empty()) {
3103 // Extend the LValue path with the member pointer's path.
3104 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3105 MemPtr.Path.size() + IncludeMember);
3106
3107 // Walk down to the appropriate base class.
3108 if (const PointerType *PT = LVType->getAs<PointerType>())
3109 LVType = PT->getPointeeType();
3110 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3111 assert(RD && "member pointer access on non-class-type expression");
3112 // The first class in the path is that of the lvalue.
3113 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3114 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3115 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3116 return nullptr;
3117 RD = Base;
3118 }
3119 // Finally cast to the class containing the member.
3120 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3121 MemPtr.getContainingRecord()))
3122 return nullptr;
3123 }
3124
3125 // Add the member. Note that we cannot build bound member functions here.
3126 if (IncludeMember) {
3127 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3128 if (!HandleLValueMember(Info, RHS, LV, FD))
3129 return nullptr;
3130 } else if (const IndirectFieldDecl *IFD =
3131 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3132 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3133 return nullptr;
3134 } else {
3135 llvm_unreachable("can't construct reference to bound member function");
3136 }
3137 }
3138
3139 return MemPtr.getDecl();
3140 }
3141
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3142 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3143 const BinaryOperator *BO,
3144 LValue &LV,
3145 bool IncludeMember = true) {
3146 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3147
3148 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3149 if (Info.keepEvaluatingAfterFailure()) {
3150 MemberPtr MemPtr;
3151 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3152 }
3153 return nullptr;
3154 }
3155
3156 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3157 BO->getRHS(), IncludeMember);
3158 }
3159
3160 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3161 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3162 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3163 LValue &Result) {
3164 SubobjectDesignator &D = Result.Designator;
3165 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3166 return false;
3167
3168 QualType TargetQT = E->getType();
3169 if (const PointerType *PT = TargetQT->getAs<PointerType>())
3170 TargetQT = PT->getPointeeType();
3171
3172 // Check this cast lands within the final derived-to-base subobject path.
3173 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3174 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3175 << D.MostDerivedType << TargetQT;
3176 return false;
3177 }
3178
3179 // Check the type of the final cast. We don't need to check the path,
3180 // since a cast can only be formed if the path is unique.
3181 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3182 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3183 const CXXRecordDecl *FinalType;
3184 if (NewEntriesSize == D.MostDerivedPathLength)
3185 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3186 else
3187 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3188 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3189 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3190 << D.MostDerivedType << TargetQT;
3191 return false;
3192 }
3193
3194 // Truncate the lvalue to the appropriate derived class.
3195 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3196 }
3197
3198 namespace {
3199 enum EvalStmtResult {
3200 /// Evaluation failed.
3201 ESR_Failed,
3202 /// Hit a 'return' statement.
3203 ESR_Returned,
3204 /// Evaluation succeeded.
3205 ESR_Succeeded,
3206 /// Hit a 'continue' statement.
3207 ESR_Continue,
3208 /// Hit a 'break' statement.
3209 ESR_Break,
3210 /// Still scanning for 'case' or 'default' statement.
3211 ESR_CaseNotFound
3212 };
3213 }
3214
EvaluateDecl(EvalInfo & Info,const Decl * D)3215 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3216 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3217 // We don't need to evaluate the initializer for a static local.
3218 if (!VD->hasLocalStorage())
3219 return true;
3220
3221 LValue Result;
3222 Result.set(VD, Info.CurrentCall->Index);
3223 APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3224
3225 const Expr *InitE = VD->getInit();
3226 if (!InitE) {
3227 Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3228 << false << VD->getType();
3229 Val = APValue();
3230 return false;
3231 }
3232
3233 if (InitE->isValueDependent())
3234 return false;
3235
3236 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3237 // Wipe out any partially-computed value, to allow tracking that this
3238 // evaluation failed.
3239 Val = APValue();
3240 return false;
3241 }
3242 }
3243
3244 return true;
3245 }
3246
3247 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3248 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3249 const Expr *Cond, bool &Result) {
3250 FullExpressionRAII Scope(Info);
3251 if (CondDecl && !EvaluateDecl(Info, CondDecl))
3252 return false;
3253 return EvaluateAsBooleanCondition(Cond, Result, Info);
3254 }
3255
3256 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3257 const Stmt *S,
3258 const SwitchCase *SC = nullptr);
3259
3260 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(APValue & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3261 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
3262 const Stmt *Body,
3263 const SwitchCase *Case = nullptr) {
3264 BlockScopeRAII Scope(Info);
3265 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3266 case ESR_Break:
3267 return ESR_Succeeded;
3268 case ESR_Succeeded:
3269 case ESR_Continue:
3270 return ESR_Continue;
3271 case ESR_Failed:
3272 case ESR_Returned:
3273 case ESR_CaseNotFound:
3274 return ESR;
3275 }
3276 llvm_unreachable("Invalid EvalStmtResult!");
3277 }
3278
3279 /// Evaluate a switch statement.
EvaluateSwitch(APValue & Result,EvalInfo & Info,const SwitchStmt * SS)3280 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
3281 const SwitchStmt *SS) {
3282 BlockScopeRAII Scope(Info);
3283
3284 // Evaluate the switch condition.
3285 APSInt Value;
3286 {
3287 FullExpressionRAII Scope(Info);
3288 if (SS->getConditionVariable() &&
3289 !EvaluateDecl(Info, SS->getConditionVariable()))
3290 return ESR_Failed;
3291 if (!EvaluateInteger(SS->getCond(), Value, Info))
3292 return ESR_Failed;
3293 }
3294
3295 // Find the switch case corresponding to the value of the condition.
3296 // FIXME: Cache this lookup.
3297 const SwitchCase *Found = nullptr;
3298 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3299 SC = SC->getNextSwitchCase()) {
3300 if (isa<DefaultStmt>(SC)) {
3301 Found = SC;
3302 continue;
3303 }
3304
3305 const CaseStmt *CS = cast<CaseStmt>(SC);
3306 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3307 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3308 : LHS;
3309 if (LHS <= Value && Value <= RHS) {
3310 Found = SC;
3311 break;
3312 }
3313 }
3314
3315 if (!Found)
3316 return ESR_Succeeded;
3317
3318 // Search the switch body for the switch case and evaluate it from there.
3319 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3320 case ESR_Break:
3321 return ESR_Succeeded;
3322 case ESR_Succeeded:
3323 case ESR_Continue:
3324 case ESR_Failed:
3325 case ESR_Returned:
3326 return ESR;
3327 case ESR_CaseNotFound:
3328 // This can only happen if the switch case is nested within a statement
3329 // expression. We have no intention of supporting that.
3330 Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3331 return ESR_Failed;
3332 }
3333 llvm_unreachable("Invalid EvalStmtResult!");
3334 }
3335
3336 // Evaluate a statement.
EvaluateStmt(APValue & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3337 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
3338 const Stmt *S, const SwitchCase *Case) {
3339 if (!Info.nextStep(S))
3340 return ESR_Failed;
3341
3342 // If we're hunting down a 'case' or 'default' label, recurse through
3343 // substatements until we hit the label.
3344 if (Case) {
3345 // FIXME: We don't start the lifetime of objects whose initialization we
3346 // jump over. However, such objects must be of class type with a trivial
3347 // default constructor that initialize all subobjects, so must be empty,
3348 // so this almost never matters.
3349 switch (S->getStmtClass()) {
3350 case Stmt::CompoundStmtClass:
3351 // FIXME: Precompute which substatement of a compound statement we
3352 // would jump to, and go straight there rather than performing a
3353 // linear scan each time.
3354 case Stmt::LabelStmtClass:
3355 case Stmt::AttributedStmtClass:
3356 case Stmt::DoStmtClass:
3357 break;
3358
3359 case Stmt::CaseStmtClass:
3360 case Stmt::DefaultStmtClass:
3361 if (Case == S)
3362 Case = nullptr;
3363 break;
3364
3365 case Stmt::IfStmtClass: {
3366 // FIXME: Precompute which side of an 'if' we would jump to, and go
3367 // straight there rather than scanning both sides.
3368 const IfStmt *IS = cast<IfStmt>(S);
3369
3370 // Wrap the evaluation in a block scope, in case it's a DeclStmt
3371 // preceded by our switch label.
3372 BlockScopeRAII Scope(Info);
3373
3374 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3375 if (ESR != ESR_CaseNotFound || !IS->getElse())
3376 return ESR;
3377 return EvaluateStmt(Result, Info, IS->getElse(), Case);
3378 }
3379
3380 case Stmt::WhileStmtClass: {
3381 EvalStmtResult ESR =
3382 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3383 if (ESR != ESR_Continue)
3384 return ESR;
3385 break;
3386 }
3387
3388 case Stmt::ForStmtClass: {
3389 const ForStmt *FS = cast<ForStmt>(S);
3390 EvalStmtResult ESR =
3391 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3392 if (ESR != ESR_Continue)
3393 return ESR;
3394 if (FS->getInc()) {
3395 FullExpressionRAII IncScope(Info);
3396 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3397 return ESR_Failed;
3398 }
3399 break;
3400 }
3401
3402 case Stmt::DeclStmtClass:
3403 // FIXME: If the variable has initialization that can't be jumped over,
3404 // bail out of any immediately-surrounding compound-statement too.
3405 default:
3406 return ESR_CaseNotFound;
3407 }
3408 }
3409
3410 switch (S->getStmtClass()) {
3411 default:
3412 if (const Expr *E = dyn_cast<Expr>(S)) {
3413 // Don't bother evaluating beyond an expression-statement which couldn't
3414 // be evaluated.
3415 FullExpressionRAII Scope(Info);
3416 if (!EvaluateIgnoredValue(Info, E))
3417 return ESR_Failed;
3418 return ESR_Succeeded;
3419 }
3420
3421 Info.Diag(S->getLocStart());
3422 return ESR_Failed;
3423
3424 case Stmt::NullStmtClass:
3425 return ESR_Succeeded;
3426
3427 case Stmt::DeclStmtClass: {
3428 const DeclStmt *DS = cast<DeclStmt>(S);
3429 for (const auto *DclIt : DS->decls()) {
3430 // Each declaration initialization is its own full-expression.
3431 // FIXME: This isn't quite right; if we're performing aggregate
3432 // initialization, each braced subexpression is its own full-expression.
3433 FullExpressionRAII Scope(Info);
3434 if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3435 return ESR_Failed;
3436 }
3437 return ESR_Succeeded;
3438 }
3439
3440 case Stmt::ReturnStmtClass: {
3441 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3442 FullExpressionRAII Scope(Info);
3443 if (RetExpr && !Evaluate(Result, Info, RetExpr))
3444 return ESR_Failed;
3445 return ESR_Returned;
3446 }
3447
3448 case Stmt::CompoundStmtClass: {
3449 BlockScopeRAII Scope(Info);
3450
3451 const CompoundStmt *CS = cast<CompoundStmt>(S);
3452 for (const auto *BI : CS->body()) {
3453 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3454 if (ESR == ESR_Succeeded)
3455 Case = nullptr;
3456 else if (ESR != ESR_CaseNotFound)
3457 return ESR;
3458 }
3459 return Case ? ESR_CaseNotFound : ESR_Succeeded;
3460 }
3461
3462 case Stmt::IfStmtClass: {
3463 const IfStmt *IS = cast<IfStmt>(S);
3464
3465 // Evaluate the condition, as either a var decl or as an expression.
3466 BlockScopeRAII Scope(Info);
3467 bool Cond;
3468 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3469 return ESR_Failed;
3470
3471 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3472 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3473 if (ESR != ESR_Succeeded)
3474 return ESR;
3475 }
3476 return ESR_Succeeded;
3477 }
3478
3479 case Stmt::WhileStmtClass: {
3480 const WhileStmt *WS = cast<WhileStmt>(S);
3481 while (true) {
3482 BlockScopeRAII Scope(Info);
3483 bool Continue;
3484 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3485 Continue))
3486 return ESR_Failed;
3487 if (!Continue)
3488 break;
3489
3490 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3491 if (ESR != ESR_Continue)
3492 return ESR;
3493 }
3494 return ESR_Succeeded;
3495 }
3496
3497 case Stmt::DoStmtClass: {
3498 const DoStmt *DS = cast<DoStmt>(S);
3499 bool Continue;
3500 do {
3501 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3502 if (ESR != ESR_Continue)
3503 return ESR;
3504 Case = nullptr;
3505
3506 FullExpressionRAII CondScope(Info);
3507 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3508 return ESR_Failed;
3509 } while (Continue);
3510 return ESR_Succeeded;
3511 }
3512
3513 case Stmt::ForStmtClass: {
3514 const ForStmt *FS = cast<ForStmt>(S);
3515 BlockScopeRAII Scope(Info);
3516 if (FS->getInit()) {
3517 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3518 if (ESR != ESR_Succeeded)
3519 return ESR;
3520 }
3521 while (true) {
3522 BlockScopeRAII Scope(Info);
3523 bool Continue = true;
3524 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3525 FS->getCond(), Continue))
3526 return ESR_Failed;
3527 if (!Continue)
3528 break;
3529
3530 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3531 if (ESR != ESR_Continue)
3532 return ESR;
3533
3534 if (FS->getInc()) {
3535 FullExpressionRAII IncScope(Info);
3536 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3537 return ESR_Failed;
3538 }
3539 }
3540 return ESR_Succeeded;
3541 }
3542
3543 case Stmt::CXXForRangeStmtClass: {
3544 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3545 BlockScopeRAII Scope(Info);
3546
3547 // Initialize the __range variable.
3548 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3549 if (ESR != ESR_Succeeded)
3550 return ESR;
3551
3552 // Create the __begin and __end iterators.
3553 ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3554 if (ESR != ESR_Succeeded)
3555 return ESR;
3556
3557 while (true) {
3558 // Condition: __begin != __end.
3559 {
3560 bool Continue = true;
3561 FullExpressionRAII CondExpr(Info);
3562 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3563 return ESR_Failed;
3564 if (!Continue)
3565 break;
3566 }
3567
3568 // User's variable declaration, initialized by *__begin.
3569 BlockScopeRAII InnerScope(Info);
3570 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3571 if (ESR != ESR_Succeeded)
3572 return ESR;
3573
3574 // Loop body.
3575 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3576 if (ESR != ESR_Continue)
3577 return ESR;
3578
3579 // Increment: ++__begin
3580 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3581 return ESR_Failed;
3582 }
3583
3584 return ESR_Succeeded;
3585 }
3586
3587 case Stmt::SwitchStmtClass:
3588 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3589
3590 case Stmt::ContinueStmtClass:
3591 return ESR_Continue;
3592
3593 case Stmt::BreakStmtClass:
3594 return ESR_Break;
3595
3596 case Stmt::LabelStmtClass:
3597 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3598
3599 case Stmt::AttributedStmtClass:
3600 // As a general principle, C++11 attributes can be ignored without
3601 // any semantic impact.
3602 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3603 Case);
3604
3605 case Stmt::CaseStmtClass:
3606 case Stmt::DefaultStmtClass:
3607 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3608 }
3609 }
3610
3611 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3612 /// default constructor. If so, we'll fold it whether or not it's marked as
3613 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3614 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3615 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3616 const CXXConstructorDecl *CD,
3617 bool IsValueInitialization) {
3618 if (!CD->isTrivial() || !CD->isDefaultConstructor())
3619 return false;
3620
3621 // Value-initialization does not call a trivial default constructor, so such a
3622 // call is a core constant expression whether or not the constructor is
3623 // constexpr.
3624 if (!CD->isConstexpr() && !IsValueInitialization) {
3625 if (Info.getLangOpts().CPlusPlus11) {
3626 // FIXME: If DiagDecl is an implicitly-declared special member function,
3627 // we should be much more explicit about why it's not constexpr.
3628 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3629 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3630 Info.Note(CD->getLocation(), diag::note_declared_at);
3631 } else {
3632 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3633 }
3634 }
3635 return true;
3636 }
3637
3638 /// CheckConstexprFunction - Check that a function can be called in a constant
3639 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition)3640 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3641 const FunctionDecl *Declaration,
3642 const FunctionDecl *Definition) {
3643 // Potential constant expressions can contain calls to declared, but not yet
3644 // defined, constexpr functions.
3645 if (Info.checkingPotentialConstantExpression() && !Definition &&
3646 Declaration->isConstexpr())
3647 return false;
3648
3649 // Bail out with no diagnostic if the function declaration itself is invalid.
3650 // We will have produced a relevant diagnostic while parsing it.
3651 if (Declaration->isInvalidDecl())
3652 return false;
3653
3654 // Can we evaluate this function call?
3655 if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3656 return true;
3657
3658 if (Info.getLangOpts().CPlusPlus11) {
3659 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3660 // FIXME: If DiagDecl is an implicitly-declared special member function, we
3661 // should be much more explicit about why it's not constexpr.
3662 Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3663 << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3664 << DiagDecl;
3665 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3666 } else {
3667 Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3668 }
3669 return false;
3670 }
3671
3672 /// Determine if a class has any fields that might need to be copied by a
3673 /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)3674 static bool hasFields(const CXXRecordDecl *RD) {
3675 if (!RD || RD->isEmpty())
3676 return false;
3677 for (auto *FD : RD->fields()) {
3678 if (FD->isUnnamedBitfield())
3679 continue;
3680 return true;
3681 }
3682 for (auto &Base : RD->bases())
3683 if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3684 return true;
3685 return false;
3686 }
3687
3688 namespace {
3689 typedef SmallVector<APValue, 8> ArgVector;
3690 }
3691
3692 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3693 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3694 EvalInfo &Info) {
3695 bool Success = true;
3696 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3697 I != E; ++I) {
3698 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3699 // If we're checking for a potential constant expression, evaluate all
3700 // initializers even if some of them fail.
3701 if (!Info.keepEvaluatingAfterFailure())
3702 return false;
3703 Success = false;
3704 }
3705 }
3706 return Success;
3707 }
3708
3709 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result)3710 static bool HandleFunctionCall(SourceLocation CallLoc,
3711 const FunctionDecl *Callee, const LValue *This,
3712 ArrayRef<const Expr*> Args, const Stmt *Body,
3713 EvalInfo &Info, APValue &Result) {
3714 ArgVector ArgValues(Args.size());
3715 if (!EvaluateArgs(Args, ArgValues, Info))
3716 return false;
3717
3718 if (!Info.CheckCallLimit(CallLoc))
3719 return false;
3720
3721 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3722
3723 // For a trivial copy or move assignment, perform an APValue copy. This is
3724 // essential for unions, where the operations performed by the assignment
3725 // operator cannot be represented as statements.
3726 //
3727 // Skip this for non-union classes with no fields; in that case, the defaulted
3728 // copy/move does not actually read the object.
3729 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3730 if (MD && MD->isDefaulted() && MD->isTrivial() &&
3731 (MD->getParent()->isUnion() || hasFields(MD->getParent()))) {
3732 assert(This &&
3733 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3734 LValue RHS;
3735 RHS.setFrom(Info.Ctx, ArgValues[0]);
3736 APValue RHSValue;
3737 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3738 RHS, RHSValue))
3739 return false;
3740 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3741 RHSValue))
3742 return false;
3743 This->moveInto(Result);
3744 return true;
3745 }
3746
3747 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
3748 if (ESR == ESR_Succeeded) {
3749 if (Callee->getReturnType()->isVoidType())
3750 return true;
3751 Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3752 }
3753 return ESR == ESR_Returned;
3754 }
3755
3756 /// Evaluate a constructor call.
HandleConstructorCall(SourceLocation CallLoc,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3757 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3758 ArrayRef<const Expr*> Args,
3759 const CXXConstructorDecl *Definition,
3760 EvalInfo &Info, APValue &Result) {
3761 ArgVector ArgValues(Args.size());
3762 if (!EvaluateArgs(Args, ArgValues, Info))
3763 return false;
3764
3765 if (!Info.CheckCallLimit(CallLoc))
3766 return false;
3767
3768 const CXXRecordDecl *RD = Definition->getParent();
3769 if (RD->getNumVBases()) {
3770 Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3771 return false;
3772 }
3773
3774 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3775
3776 // If it's a delegating constructor, just delegate.
3777 if (Definition->isDelegatingConstructor()) {
3778 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3779 {
3780 FullExpressionRAII InitScope(Info);
3781 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3782 return false;
3783 }
3784 return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3785 }
3786
3787 // For a trivial copy or move constructor, perform an APValue copy. This is
3788 // essential for unions (or classes with anonymous union members), where the
3789 // operations performed by the constructor cannot be represented by
3790 // ctor-initializers.
3791 //
3792 // Skip this for empty non-union classes; we should not perform an
3793 // lvalue-to-rvalue conversion on them because their copy constructor does not
3794 // actually read them.
3795 if (Definition->isDefaulted() &&
3796 ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
3797 (Definition->isMoveConstructor() && Definition->isTrivial())) &&
3798 (Definition->getParent()->isUnion() ||
3799 hasFields(Definition->getParent()))) {
3800 LValue RHS;
3801 RHS.setFrom(Info.Ctx, ArgValues[0]);
3802 return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3803 RHS, Result);
3804 }
3805
3806 // Reserve space for the struct members.
3807 if (!RD->isUnion() && Result.isUninit())
3808 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3809 std::distance(RD->field_begin(), RD->field_end()));
3810
3811 if (RD->isInvalidDecl()) return false;
3812 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3813
3814 // A scope for temporaries lifetime-extended by reference members.
3815 BlockScopeRAII LifetimeExtendedScope(Info);
3816
3817 bool Success = true;
3818 unsigned BasesSeen = 0;
3819 #ifndef NDEBUG
3820 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3821 #endif
3822 for (const auto *I : Definition->inits()) {
3823 LValue Subobject = This;
3824 APValue *Value = &Result;
3825
3826 // Determine the subobject to initialize.
3827 FieldDecl *FD = nullptr;
3828 if (I->isBaseInitializer()) {
3829 QualType BaseType(I->getBaseClass(), 0);
3830 #ifndef NDEBUG
3831 // Non-virtual base classes are initialized in the order in the class
3832 // definition. We have already checked for virtual base classes.
3833 assert(!BaseIt->isVirtual() && "virtual base for literal type");
3834 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3835 "base class initializers not in expected order");
3836 ++BaseIt;
3837 #endif
3838 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3839 BaseType->getAsCXXRecordDecl(), &Layout))
3840 return false;
3841 Value = &Result.getStructBase(BasesSeen++);
3842 } else if ((FD = I->getMember())) {
3843 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3844 return false;
3845 if (RD->isUnion()) {
3846 Result = APValue(FD);
3847 Value = &Result.getUnionValue();
3848 } else {
3849 Value = &Result.getStructField(FD->getFieldIndex());
3850 }
3851 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3852 // Walk the indirect field decl's chain to find the object to initialize,
3853 // and make sure we've initialized every step along it.
3854 for (auto *C : IFD->chain()) {
3855 FD = cast<FieldDecl>(C);
3856 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3857 // Switch the union field if it differs. This happens if we had
3858 // preceding zero-initialization, and we're now initializing a union
3859 // subobject other than the first.
3860 // FIXME: In this case, the values of the other subobjects are
3861 // specified, since zero-initialization sets all padding bits to zero.
3862 if (Value->isUninit() ||
3863 (Value->isUnion() && Value->getUnionField() != FD)) {
3864 if (CD->isUnion())
3865 *Value = APValue(FD);
3866 else
3867 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3868 std::distance(CD->field_begin(), CD->field_end()));
3869 }
3870 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3871 return false;
3872 if (CD->isUnion())
3873 Value = &Value->getUnionValue();
3874 else
3875 Value = &Value->getStructField(FD->getFieldIndex());
3876 }
3877 } else {
3878 llvm_unreachable("unknown base initializer kind");
3879 }
3880
3881 FullExpressionRAII InitScope(Info);
3882 if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3883 (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3884 *Value, FD))) {
3885 // If we're checking for a potential constant expression, evaluate all
3886 // initializers even if some of them fail.
3887 if (!Info.keepEvaluatingAfterFailure())
3888 return false;
3889 Success = false;
3890 }
3891 }
3892
3893 return Success &&
3894 EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
3895 }
3896
3897 //===----------------------------------------------------------------------===//
3898 // Generic Evaluation
3899 //===----------------------------------------------------------------------===//
3900 namespace {
3901
3902 template <class Derived>
3903 class ExprEvaluatorBase
3904 : public ConstStmtVisitor<Derived, bool> {
3905 private:
DerivedSuccess(const APValue & V,const Expr * E)3906 bool DerivedSuccess(const APValue &V, const Expr *E) {
3907 return static_cast<Derived*>(this)->Success(V, E);
3908 }
DerivedZeroInitialization(const Expr * E)3909 bool DerivedZeroInitialization(const Expr *E) {
3910 return static_cast<Derived*>(this)->ZeroInitialization(E);
3911 }
3912
3913 // Check whether a conditional operator with a non-constant condition is a
3914 // potential constant expression. If neither arm is a potential constant
3915 // expression, then the conditional operator is not either.
3916 template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)3917 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
3918 assert(Info.checkingPotentialConstantExpression());
3919
3920 // Speculatively evaluate both arms.
3921 {
3922 SmallVector<PartialDiagnosticAt, 8> Diag;
3923 SpeculativeEvaluationRAII Speculate(Info, &Diag);
3924
3925 StmtVisitorTy::Visit(E->getFalseExpr());
3926 if (Diag.empty())
3927 return;
3928
3929 Diag.clear();
3930 StmtVisitorTy::Visit(E->getTrueExpr());
3931 if (Diag.empty())
3932 return;
3933 }
3934
3935 Error(E, diag::note_constexpr_conditional_never_const);
3936 }
3937
3938
3939 template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)3940 bool HandleConditionalOperator(const ConditionalOperator *E) {
3941 bool BoolResult;
3942 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
3943 if (Info.checkingPotentialConstantExpression())
3944 CheckPotentialConstantConditional(E);
3945 return false;
3946 }
3947
3948 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
3949 return StmtVisitorTy::Visit(EvalExpr);
3950 }
3951
3952 protected:
3953 EvalInfo &Info;
3954 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
3955 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
3956
CCEDiag(const Expr * E,diag::kind D)3957 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
3958 return Info.CCEDiag(E, D);
3959 }
3960
ZeroInitialization(const Expr * E)3961 bool ZeroInitialization(const Expr *E) { return Error(E); }
3962
3963 public:
ExprEvaluatorBase(EvalInfo & Info)3964 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
3965
getEvalInfo()3966 EvalInfo &getEvalInfo() { return Info; }
3967
3968 /// Report an evaluation error. This should only be called when an error is
3969 /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)3970 bool Error(const Expr *E, diag::kind D) {
3971 Info.Diag(E, D);
3972 return false;
3973 }
Error(const Expr * E)3974 bool Error(const Expr *E) {
3975 return Error(E, diag::note_invalid_subexpr_in_const_expr);
3976 }
3977
VisitStmt(const Stmt *)3978 bool VisitStmt(const Stmt *) {
3979 llvm_unreachable("Expression evaluator should not be called on stmts");
3980 }
VisitExpr(const Expr * E)3981 bool VisitExpr(const Expr *E) {
3982 return Error(E);
3983 }
3984
VisitParenExpr(const ParenExpr * E)3985 bool VisitParenExpr(const ParenExpr *E)
3986 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)3987 bool VisitUnaryExtension(const UnaryOperator *E)
3988 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)3989 bool VisitUnaryPlus(const UnaryOperator *E)
3990 { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)3991 bool VisitChooseExpr(const ChooseExpr *E)
3992 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)3993 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
3994 { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)3995 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
3996 { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)3997 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
3998 { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)3999 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4000 // The initializer may not have been parsed yet, or might be erroneous.
4001 if (!E->getExpr())
4002 return Error(E);
4003 return StmtVisitorTy::Visit(E->getExpr());
4004 }
4005 // We cannot create any objects for which cleanups are required, so there is
4006 // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4007 bool VisitExprWithCleanups(const ExprWithCleanups *E)
4008 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4009
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4010 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4011 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4012 return static_cast<Derived*>(this)->VisitCastExpr(E);
4013 }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4014 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4015 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4016 return static_cast<Derived*>(this)->VisitCastExpr(E);
4017 }
4018
VisitBinaryOperator(const BinaryOperator * E)4019 bool VisitBinaryOperator(const BinaryOperator *E) {
4020 switch (E->getOpcode()) {
4021 default:
4022 return Error(E);
4023
4024 case BO_Comma:
4025 VisitIgnoredValue(E->getLHS());
4026 return StmtVisitorTy::Visit(E->getRHS());
4027
4028 case BO_PtrMemD:
4029 case BO_PtrMemI: {
4030 LValue Obj;
4031 if (!HandleMemberPointerAccess(Info, E, Obj))
4032 return false;
4033 APValue Result;
4034 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4035 return false;
4036 return DerivedSuccess(Result, E);
4037 }
4038 }
4039 }
4040
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4041 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4042 // Evaluate and cache the common expression. We treat it as a temporary,
4043 // even though it's not quite the same thing.
4044 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4045 Info, E->getCommon()))
4046 return false;
4047
4048 return HandleConditionalOperator(E);
4049 }
4050
VisitConditionalOperator(const ConditionalOperator * E)4051 bool VisitConditionalOperator(const ConditionalOperator *E) {
4052 bool IsBcpCall = false;
4053 // If the condition (ignoring parens) is a __builtin_constant_p call,
4054 // the result is a constant expression if it can be folded without
4055 // side-effects. This is an important GNU extension. See GCC PR38377
4056 // for discussion.
4057 if (const CallExpr *CallCE =
4058 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4059 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4060 IsBcpCall = true;
4061
4062 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4063 // constant expression; we can't check whether it's potentially foldable.
4064 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4065 return false;
4066
4067 FoldConstant Fold(Info, IsBcpCall);
4068 if (!HandleConditionalOperator(E)) {
4069 Fold.keepDiagnostics();
4070 return false;
4071 }
4072
4073 return true;
4074 }
4075
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4076 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4077 if (APValue *Value = Info.CurrentCall->getTemporary(E))
4078 return DerivedSuccess(*Value, E);
4079
4080 const Expr *Source = E->getSourceExpr();
4081 if (!Source)
4082 return Error(E);
4083 if (Source == E) { // sanity checking.
4084 assert(0 && "OpaqueValueExpr recursively refers to itself");
4085 return Error(E);
4086 }
4087 return StmtVisitorTy::Visit(Source);
4088 }
4089
VisitCallExpr(const CallExpr * E)4090 bool VisitCallExpr(const CallExpr *E) {
4091 const Expr *Callee = E->getCallee()->IgnoreParens();
4092 QualType CalleeType = Callee->getType();
4093
4094 const FunctionDecl *FD = nullptr;
4095 LValue *This = nullptr, ThisVal;
4096 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4097 bool HasQualifier = false;
4098
4099 // Extract function decl and 'this' pointer from the callee.
4100 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4101 const ValueDecl *Member = nullptr;
4102 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4103 // Explicit bound member calls, such as x.f() or p->g();
4104 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4105 return false;
4106 Member = ME->getMemberDecl();
4107 This = &ThisVal;
4108 HasQualifier = ME->hasQualifier();
4109 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4110 // Indirect bound member calls ('.*' or '->*').
4111 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4112 if (!Member) return false;
4113 This = &ThisVal;
4114 } else
4115 return Error(Callee);
4116
4117 FD = dyn_cast<FunctionDecl>(Member);
4118 if (!FD)
4119 return Error(Callee);
4120 } else if (CalleeType->isFunctionPointerType()) {
4121 LValue Call;
4122 if (!EvaluatePointer(Callee, Call, Info))
4123 return false;
4124
4125 if (!Call.getLValueOffset().isZero())
4126 return Error(Callee);
4127 FD = dyn_cast_or_null<FunctionDecl>(
4128 Call.getLValueBase().dyn_cast<const ValueDecl*>());
4129 if (!FD)
4130 return Error(Callee);
4131
4132 // Overloaded operator calls to member functions are represented as normal
4133 // calls with '*this' as the first argument.
4134 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4135 if (MD && !MD->isStatic()) {
4136 // FIXME: When selecting an implicit conversion for an overloaded
4137 // operator delete, we sometimes try to evaluate calls to conversion
4138 // operators without a 'this' parameter!
4139 if (Args.empty())
4140 return Error(E);
4141
4142 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4143 return false;
4144 This = &ThisVal;
4145 Args = Args.slice(1);
4146 }
4147
4148 // Don't call function pointers which have been cast to some other type.
4149 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4150 return Error(E);
4151 } else
4152 return Error(E);
4153
4154 if (This && !This->checkSubobject(Info, E, CSK_This))
4155 return false;
4156
4157 // DR1358 allows virtual constexpr functions in some cases. Don't allow
4158 // calls to such functions in constant expressions.
4159 if (This && !HasQualifier &&
4160 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4161 return Error(E, diag::note_constexpr_virtual_call);
4162
4163 const FunctionDecl *Definition = nullptr;
4164 Stmt *Body = FD->getBody(Definition);
4165 APValue Result;
4166
4167 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4168 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
4169 Info, Result))
4170 return false;
4171
4172 return DerivedSuccess(Result, E);
4173 }
4174
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4175 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4176 return StmtVisitorTy::Visit(E->getInitializer());
4177 }
VisitInitListExpr(const InitListExpr * E)4178 bool VisitInitListExpr(const InitListExpr *E) {
4179 if (E->getNumInits() == 0)
4180 return DerivedZeroInitialization(E);
4181 if (E->getNumInits() == 1)
4182 return StmtVisitorTy::Visit(E->getInit(0));
4183 return Error(E);
4184 }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4185 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4186 return DerivedZeroInitialization(E);
4187 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4188 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4189 return DerivedZeroInitialization(E);
4190 }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4191 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4192 return DerivedZeroInitialization(E);
4193 }
4194
4195 /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4196 bool VisitMemberExpr(const MemberExpr *E) {
4197 assert(!E->isArrow() && "missing call to bound member function?");
4198
4199 APValue Val;
4200 if (!Evaluate(Val, Info, E->getBase()))
4201 return false;
4202
4203 QualType BaseTy = E->getBase()->getType();
4204
4205 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4206 if (!FD) return Error(E);
4207 assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4208 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4209 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4210
4211 CompleteObject Obj(&Val, BaseTy);
4212 SubobjectDesignator Designator(BaseTy);
4213 Designator.addDeclUnchecked(FD);
4214
4215 APValue Result;
4216 return extractSubobject(Info, E, Obj, Designator, Result) &&
4217 DerivedSuccess(Result, E);
4218 }
4219
VisitCastExpr(const CastExpr * E)4220 bool VisitCastExpr(const CastExpr *E) {
4221 switch (E->getCastKind()) {
4222 default:
4223 break;
4224
4225 case CK_AtomicToNonAtomic: {
4226 APValue AtomicVal;
4227 if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4228 return false;
4229 return DerivedSuccess(AtomicVal, E);
4230 }
4231
4232 case CK_NoOp:
4233 case CK_UserDefinedConversion:
4234 return StmtVisitorTy::Visit(E->getSubExpr());
4235
4236 case CK_LValueToRValue: {
4237 LValue LVal;
4238 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4239 return false;
4240 APValue RVal;
4241 // Note, we use the subexpression's type in order to retain cv-qualifiers.
4242 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4243 LVal, RVal))
4244 return false;
4245 return DerivedSuccess(RVal, E);
4246 }
4247 }
4248
4249 return Error(E);
4250 }
4251
VisitUnaryPostInc(const UnaryOperator * UO)4252 bool VisitUnaryPostInc(const UnaryOperator *UO) {
4253 return VisitUnaryPostIncDec(UO);
4254 }
VisitUnaryPostDec(const UnaryOperator * UO)4255 bool VisitUnaryPostDec(const UnaryOperator *UO) {
4256 return VisitUnaryPostIncDec(UO);
4257 }
VisitUnaryPostIncDec(const UnaryOperator * UO)4258 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4259 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4260 return Error(UO);
4261
4262 LValue LVal;
4263 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4264 return false;
4265 APValue RVal;
4266 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4267 UO->isIncrementOp(), &RVal))
4268 return false;
4269 return DerivedSuccess(RVal, UO);
4270 }
4271
VisitStmtExpr(const StmtExpr * E)4272 bool VisitStmtExpr(const StmtExpr *E) {
4273 // We will have checked the full-expressions inside the statement expression
4274 // when they were completed, and don't need to check them again now.
4275 if (Info.checkingForOverflow())
4276 return Error(E);
4277
4278 BlockScopeRAII Scope(Info);
4279 const CompoundStmt *CS = E->getSubStmt();
4280 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4281 BE = CS->body_end();
4282 /**/; ++BI) {
4283 if (BI + 1 == BE) {
4284 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4285 if (!FinalExpr) {
4286 Info.Diag((*BI)->getLocStart(),
4287 diag::note_constexpr_stmt_expr_unsupported);
4288 return false;
4289 }
4290 return this->Visit(FinalExpr);
4291 }
4292
4293 APValue ReturnValue;
4294 EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
4295 if (ESR != ESR_Succeeded) {
4296 // FIXME: If the statement-expression terminated due to 'return',
4297 // 'break', or 'continue', it would be nice to propagate that to
4298 // the outer statement evaluation rather than bailing out.
4299 if (ESR != ESR_Failed)
4300 Info.Diag((*BI)->getLocStart(),
4301 diag::note_constexpr_stmt_expr_unsupported);
4302 return false;
4303 }
4304 }
4305 }
4306
4307 /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4308 void VisitIgnoredValue(const Expr *E) {
4309 EvaluateIgnoredValue(Info, E);
4310 }
4311 };
4312
4313 }
4314
4315 //===----------------------------------------------------------------------===//
4316 // Common base class for lvalue and temporary evaluation.
4317 //===----------------------------------------------------------------------===//
4318 namespace {
4319 template<class Derived>
4320 class LValueExprEvaluatorBase
4321 : public ExprEvaluatorBase<Derived> {
4322 protected:
4323 LValue &Result;
4324 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4325 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4326
Success(APValue::LValueBase B)4327 bool Success(APValue::LValueBase B) {
4328 Result.set(B);
4329 return true;
4330 }
4331
4332 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4333 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4334 ExprEvaluatorBaseTy(Info), Result(Result) {}
4335
Success(const APValue & V,const Expr * E)4336 bool Success(const APValue &V, const Expr *E) {
4337 Result.setFrom(this->Info.Ctx, V);
4338 return true;
4339 }
4340
VisitMemberExpr(const MemberExpr * E)4341 bool VisitMemberExpr(const MemberExpr *E) {
4342 // Handle non-static data members.
4343 QualType BaseTy;
4344 if (E->isArrow()) {
4345 if (!EvaluatePointer(E->getBase(), Result, this->Info))
4346 return false;
4347 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4348 } else if (E->getBase()->isRValue()) {
4349 assert(E->getBase()->getType()->isRecordType());
4350 if (!EvaluateTemporary(E->getBase(), Result, this->Info))
4351 return false;
4352 BaseTy = E->getBase()->getType();
4353 } else {
4354 if (!this->Visit(E->getBase()))
4355 return false;
4356 BaseTy = E->getBase()->getType();
4357 }
4358
4359 const ValueDecl *MD = E->getMemberDecl();
4360 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4361 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4362 FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4363 (void)BaseTy;
4364 if (!HandleLValueMember(this->Info, E, Result, FD))
4365 return false;
4366 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4367 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4368 return false;
4369 } else
4370 return this->Error(E);
4371
4372 if (MD->getType()->isReferenceType()) {
4373 APValue RefValue;
4374 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4375 RefValue))
4376 return false;
4377 return Success(RefValue, E);
4378 }
4379 return true;
4380 }
4381
VisitBinaryOperator(const BinaryOperator * E)4382 bool VisitBinaryOperator(const BinaryOperator *E) {
4383 switch (E->getOpcode()) {
4384 default:
4385 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4386
4387 case BO_PtrMemD:
4388 case BO_PtrMemI:
4389 return HandleMemberPointerAccess(this->Info, E, Result);
4390 }
4391 }
4392
VisitCastExpr(const CastExpr * E)4393 bool VisitCastExpr(const CastExpr *E) {
4394 switch (E->getCastKind()) {
4395 default:
4396 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4397
4398 case CK_DerivedToBase:
4399 case CK_UncheckedDerivedToBase:
4400 if (!this->Visit(E->getSubExpr()))
4401 return false;
4402
4403 // Now figure out the necessary offset to add to the base LV to get from
4404 // the derived class to the base class.
4405 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4406 Result);
4407 }
4408 }
4409 };
4410 }
4411
4412 //===----------------------------------------------------------------------===//
4413 // LValue Evaluation
4414 //
4415 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4416 // function designators (in C), decl references to void objects (in C), and
4417 // temporaries (if building with -Wno-address-of-temporary).
4418 //
4419 // LValue evaluation produces values comprising a base expression of one of the
4420 // following types:
4421 // - Declarations
4422 // * VarDecl
4423 // * FunctionDecl
4424 // - Literals
4425 // * CompoundLiteralExpr in C
4426 // * StringLiteral
4427 // * CXXTypeidExpr
4428 // * PredefinedExpr
4429 // * ObjCStringLiteralExpr
4430 // * ObjCEncodeExpr
4431 // * AddrLabelExpr
4432 // * BlockExpr
4433 // * CallExpr for a MakeStringConstant builtin
4434 // - Locals and temporaries
4435 // * MaterializeTemporaryExpr
4436 // * Any Expr, with a CallIndex indicating the function in which the temporary
4437 // was evaluated, for cases where the MaterializeTemporaryExpr is missing
4438 // from the AST (FIXME).
4439 // * A MaterializeTemporaryExpr that has static storage duration, with no
4440 // CallIndex, for a lifetime-extended temporary.
4441 // plus an offset in bytes.
4442 //===----------------------------------------------------------------------===//
4443 namespace {
4444 class LValueExprEvaluator
4445 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4446 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4447 LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4448 LValueExprEvaluatorBaseTy(Info, Result) {}
4449
4450 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4451 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4452
4453 bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4454 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4455 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4456 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4457 bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4458 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4459 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4460 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4461 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4462 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4463 bool VisitUnaryDeref(const UnaryOperator *E);
4464 bool VisitUnaryReal(const UnaryOperator *E);
4465 bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4466 bool VisitUnaryPreInc(const UnaryOperator *UO) {
4467 return VisitUnaryPreIncDec(UO);
4468 }
VisitUnaryPreDec(const UnaryOperator * UO)4469 bool VisitUnaryPreDec(const UnaryOperator *UO) {
4470 return VisitUnaryPreIncDec(UO);
4471 }
4472 bool VisitBinAssign(const BinaryOperator *BO);
4473 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4474
VisitCastExpr(const CastExpr * E)4475 bool VisitCastExpr(const CastExpr *E) {
4476 switch (E->getCastKind()) {
4477 default:
4478 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4479
4480 case CK_LValueBitCast:
4481 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4482 if (!Visit(E->getSubExpr()))
4483 return false;
4484 Result.Designator.setInvalid();
4485 return true;
4486
4487 case CK_BaseToDerived:
4488 if (!Visit(E->getSubExpr()))
4489 return false;
4490 return HandleBaseToDerivedCast(Info, E, Result);
4491 }
4492 }
4493 };
4494 } // end anonymous namespace
4495
4496 /// Evaluate an expression as an lvalue. This can be legitimately called on
4497 /// expressions which are not glvalues, in two cases:
4498 /// * function designators in C, and
4499 /// * "extern void" objects
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4500 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4501 assert(E->isGLValue() || E->getType()->isFunctionType() ||
4502 E->getType()->isVoidType());
4503 return LValueExprEvaluator(Info, Result).Visit(E);
4504 }
4505
VisitDeclRefExpr(const DeclRefExpr * E)4506 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4507 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4508 return Success(FD);
4509 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4510 return VisitVarDecl(E, VD);
4511 return Error(E);
4512 }
4513
VisitVarDecl(const Expr * E,const VarDecl * VD)4514 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4515 CallStackFrame *Frame = nullptr;
4516 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4517 Frame = Info.CurrentCall;
4518
4519 if (!VD->getType()->isReferenceType()) {
4520 if (Frame) {
4521 Result.set(VD, Frame->Index);
4522 return true;
4523 }
4524 return Success(VD);
4525 }
4526
4527 APValue *V;
4528 if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4529 return false;
4530 if (V->isUninit()) {
4531 if (!Info.checkingPotentialConstantExpression())
4532 Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4533 return false;
4534 }
4535 return Success(*V, E);
4536 }
4537
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4538 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4539 const MaterializeTemporaryExpr *E) {
4540 // Walk through the expression to find the materialized temporary itself.
4541 SmallVector<const Expr *, 2> CommaLHSs;
4542 SmallVector<SubobjectAdjustment, 2> Adjustments;
4543 const Expr *Inner = E->GetTemporaryExpr()->
4544 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4545
4546 // If we passed any comma operators, evaluate their LHSs.
4547 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4548 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4549 return false;
4550
4551 // A materialized temporary with static storage duration can appear within the
4552 // result of a constant expression evaluation, so we need to preserve its
4553 // value for use outside this evaluation.
4554 APValue *Value;
4555 if (E->getStorageDuration() == SD_Static) {
4556 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4557 *Value = APValue();
4558 Result.set(E);
4559 } else {
4560 Value = &Info.CurrentCall->
4561 createTemporary(E, E->getStorageDuration() == SD_Automatic);
4562 Result.set(E, Info.CurrentCall->Index);
4563 }
4564
4565 QualType Type = Inner->getType();
4566
4567 // Materialize the temporary itself.
4568 if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4569 (E->getStorageDuration() == SD_Static &&
4570 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4571 *Value = APValue();
4572 return false;
4573 }
4574
4575 // Adjust our lvalue to refer to the desired subobject.
4576 for (unsigned I = Adjustments.size(); I != 0; /**/) {
4577 --I;
4578 switch (Adjustments[I].Kind) {
4579 case SubobjectAdjustment::DerivedToBaseAdjustment:
4580 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4581 Type, Result))
4582 return false;
4583 Type = Adjustments[I].DerivedToBase.BasePath->getType();
4584 break;
4585
4586 case SubobjectAdjustment::FieldAdjustment:
4587 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4588 return false;
4589 Type = Adjustments[I].Field->getType();
4590 break;
4591
4592 case SubobjectAdjustment::MemberPointerAdjustment:
4593 if (!HandleMemberPointerAccess(this->Info, Type, Result,
4594 Adjustments[I].Ptr.RHS))
4595 return false;
4596 Type = Adjustments[I].Ptr.MPT->getPointeeType();
4597 break;
4598 }
4599 }
4600
4601 return true;
4602 }
4603
4604 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4605 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4606 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4607 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4608 // only see this when folding in C, so there's no standard to follow here.
4609 return Success(E);
4610 }
4611
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4612 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4613 if (!E->isPotentiallyEvaluated())
4614 return Success(E);
4615
4616 Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4617 << E->getExprOperand()->getType()
4618 << E->getExprOperand()->getSourceRange();
4619 return false;
4620 }
4621
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4622 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4623 return Success(E);
4624 }
4625
VisitMemberExpr(const MemberExpr * E)4626 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4627 // Handle static data members.
4628 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4629 VisitIgnoredValue(E->getBase());
4630 return VisitVarDecl(E, VD);
4631 }
4632
4633 // Handle static member functions.
4634 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4635 if (MD->isStatic()) {
4636 VisitIgnoredValue(E->getBase());
4637 return Success(MD);
4638 }
4639 }
4640
4641 // Handle non-static data members.
4642 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4643 }
4644
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4645 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4646 // FIXME: Deal with vectors as array subscript bases.
4647 if (E->getBase()->getType()->isVectorType())
4648 return Error(E);
4649
4650 if (!EvaluatePointer(E->getBase(), Result, Info))
4651 return false;
4652
4653 APSInt Index;
4654 if (!EvaluateInteger(E->getIdx(), Index, Info))
4655 return false;
4656
4657 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4658 getExtValue(Index));
4659 }
4660
VisitUnaryDeref(const UnaryOperator * E)4661 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4662 return EvaluatePointer(E->getSubExpr(), Result, Info);
4663 }
4664
VisitUnaryReal(const UnaryOperator * E)4665 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4666 if (!Visit(E->getSubExpr()))
4667 return false;
4668 // __real is a no-op on scalar lvalues.
4669 if (E->getSubExpr()->getType()->isAnyComplexType())
4670 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4671 return true;
4672 }
4673
VisitUnaryImag(const UnaryOperator * E)4674 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4675 assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4676 "lvalue __imag__ on scalar?");
4677 if (!Visit(E->getSubExpr()))
4678 return false;
4679 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4680 return true;
4681 }
4682
VisitUnaryPreIncDec(const UnaryOperator * UO)4683 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4684 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4685 return Error(UO);
4686
4687 if (!this->Visit(UO->getSubExpr()))
4688 return false;
4689
4690 return handleIncDec(
4691 this->Info, UO, Result, UO->getSubExpr()->getType(),
4692 UO->isIncrementOp(), nullptr);
4693 }
4694
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4695 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4696 const CompoundAssignOperator *CAO) {
4697 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4698 return Error(CAO);
4699
4700 APValue RHS;
4701
4702 // The overall lvalue result is the result of evaluating the LHS.
4703 if (!this->Visit(CAO->getLHS())) {
4704 if (Info.keepEvaluatingAfterFailure())
4705 Evaluate(RHS, this->Info, CAO->getRHS());
4706 return false;
4707 }
4708
4709 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4710 return false;
4711
4712 return handleCompoundAssignment(
4713 this->Info, CAO,
4714 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4715 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4716 }
4717
VisitBinAssign(const BinaryOperator * E)4718 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4719 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4720 return Error(E);
4721
4722 APValue NewVal;
4723
4724 if (!this->Visit(E->getLHS())) {
4725 if (Info.keepEvaluatingAfterFailure())
4726 Evaluate(NewVal, this->Info, E->getRHS());
4727 return false;
4728 }
4729
4730 if (!Evaluate(NewVal, this->Info, E->getRHS()))
4731 return false;
4732
4733 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4734 NewVal);
4735 }
4736
4737 //===----------------------------------------------------------------------===//
4738 // Pointer Evaluation
4739 //===----------------------------------------------------------------------===//
4740
4741 namespace {
4742 class PointerExprEvaluator
4743 : public ExprEvaluatorBase<PointerExprEvaluator> {
4744 LValue &Result;
4745
Success(const Expr * E)4746 bool Success(const Expr *E) {
4747 Result.set(E);
4748 return true;
4749 }
4750 public:
4751
PointerExprEvaluator(EvalInfo & info,LValue & Result)4752 PointerExprEvaluator(EvalInfo &info, LValue &Result)
4753 : ExprEvaluatorBaseTy(info), Result(Result) {}
4754
Success(const APValue & V,const Expr * E)4755 bool Success(const APValue &V, const Expr *E) {
4756 Result.setFrom(Info.Ctx, V);
4757 return true;
4758 }
ZeroInitialization(const Expr * E)4759 bool ZeroInitialization(const Expr *E) {
4760 return Success((Expr*)nullptr);
4761 }
4762
4763 bool VisitBinaryOperator(const BinaryOperator *E);
4764 bool VisitCastExpr(const CastExpr* E);
4765 bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)4766 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4767 { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)4768 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4769 { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)4770 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4771 { return Success(E); }
4772 bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)4773 bool VisitBlockExpr(const BlockExpr *E) {
4774 if (!E->getBlockDecl()->hasCaptures())
4775 return Success(E);
4776 return Error(E);
4777 }
VisitCXXThisExpr(const CXXThisExpr * E)4778 bool VisitCXXThisExpr(const CXXThisExpr *E) {
4779 // Can't look at 'this' when checking a potential constant expression.
4780 if (Info.checkingPotentialConstantExpression())
4781 return false;
4782 if (!Info.CurrentCall->This) {
4783 if (Info.getLangOpts().CPlusPlus11)
4784 Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4785 else
4786 Info.Diag(E);
4787 return false;
4788 }
4789 Result = *Info.CurrentCall->This;
4790 return true;
4791 }
4792
4793 // FIXME: Missing: @protocol, @selector
4794 };
4795 } // end anonymous namespace
4796
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)4797 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4798 assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4799 return PointerExprEvaluator(Info, Result).Visit(E);
4800 }
4801
VisitBinaryOperator(const BinaryOperator * E)4802 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4803 if (E->getOpcode() != BO_Add &&
4804 E->getOpcode() != BO_Sub)
4805 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4806
4807 const Expr *PExp = E->getLHS();
4808 const Expr *IExp = E->getRHS();
4809 if (IExp->getType()->isPointerType())
4810 std::swap(PExp, IExp);
4811
4812 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4813 if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4814 return false;
4815
4816 llvm::APSInt Offset;
4817 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4818 return false;
4819
4820 int64_t AdditionalOffset = getExtValue(Offset);
4821 if (E->getOpcode() == BO_Sub)
4822 AdditionalOffset = -AdditionalOffset;
4823
4824 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4825 return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4826 AdditionalOffset);
4827 }
4828
VisitUnaryAddrOf(const UnaryOperator * E)4829 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4830 return EvaluateLValue(E->getSubExpr(), Result, Info);
4831 }
4832
VisitCastExpr(const CastExpr * E)4833 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4834 const Expr* SubExpr = E->getSubExpr();
4835
4836 switch (E->getCastKind()) {
4837 default:
4838 break;
4839
4840 case CK_BitCast:
4841 case CK_CPointerToObjCPointerCast:
4842 case CK_BlockPointerToObjCPointerCast:
4843 case CK_AnyPointerToBlockPointerCast:
4844 case CK_AddressSpaceConversion:
4845 if (!Visit(SubExpr))
4846 return false;
4847 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4848 // permitted in constant expressions in C++11. Bitcasts from cv void* are
4849 // also static_casts, but we disallow them as a resolution to DR1312.
4850 if (!E->getType()->isVoidPointerType()) {
4851 Result.Designator.setInvalid();
4852 if (SubExpr->getType()->isVoidPointerType())
4853 CCEDiag(E, diag::note_constexpr_invalid_cast)
4854 << 3 << SubExpr->getType();
4855 else
4856 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4857 }
4858 return true;
4859
4860 case CK_DerivedToBase:
4861 case CK_UncheckedDerivedToBase:
4862 if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4863 return false;
4864 if (!Result.Base && Result.Offset.isZero())
4865 return true;
4866
4867 // Now figure out the necessary offset to add to the base LV to get from
4868 // the derived class to the base class.
4869 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4870 castAs<PointerType>()->getPointeeType(),
4871 Result);
4872
4873 case CK_BaseToDerived:
4874 if (!Visit(E->getSubExpr()))
4875 return false;
4876 if (!Result.Base && Result.Offset.isZero())
4877 return true;
4878 return HandleBaseToDerivedCast(Info, E, Result);
4879
4880 case CK_NullToPointer:
4881 VisitIgnoredValue(E->getSubExpr());
4882 return ZeroInitialization(E);
4883
4884 case CK_IntegralToPointer: {
4885 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4886
4887 APValue Value;
4888 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
4889 break;
4890
4891 if (Value.isInt()) {
4892 unsigned Size = Info.Ctx.getTypeSize(E->getType());
4893 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
4894 Result.Base = (Expr*)nullptr;
4895 Result.Offset = CharUnits::fromQuantity(N);
4896 Result.CallIndex = 0;
4897 Result.Designator.setInvalid();
4898 return true;
4899 } else {
4900 // Cast is of an lvalue, no need to change value.
4901 Result.setFrom(Info.Ctx, Value);
4902 return true;
4903 }
4904 }
4905 case CK_ArrayToPointerDecay:
4906 if (SubExpr->isGLValue()) {
4907 if (!EvaluateLValue(SubExpr, Result, Info))
4908 return false;
4909 } else {
4910 Result.set(SubExpr, Info.CurrentCall->Index);
4911 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
4912 Info, Result, SubExpr))
4913 return false;
4914 }
4915 // The result is a pointer to the first element of the array.
4916 if (const ConstantArrayType *CAT
4917 = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
4918 Result.addArray(Info, E, CAT);
4919 else
4920 Result.Designator.setInvalid();
4921 return true;
4922
4923 case CK_FunctionToPointerDecay:
4924 return EvaluateLValue(SubExpr, Result, Info);
4925 }
4926
4927 return ExprEvaluatorBaseTy::VisitCastExpr(E);
4928 }
4929
GetAlignOfType(EvalInfo & Info,QualType T)4930 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
4931 // C++ [expr.alignof]p3:
4932 // When alignof is applied to a reference type, the result is the
4933 // alignment of the referenced type.
4934 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
4935 T = Ref->getPointeeType();
4936
4937 // __alignof is defined to return the preferred alignment.
4938 return Info.Ctx.toCharUnitsFromBits(
4939 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
4940 }
4941
GetAlignOfExpr(EvalInfo & Info,const Expr * E)4942 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
4943 E = E->IgnoreParens();
4944
4945 // The kinds of expressions that we have special-case logic here for
4946 // should be kept up to date with the special checks for those
4947 // expressions in Sema.
4948
4949 // alignof decl is always accepted, even if it doesn't make sense: we default
4950 // to 1 in those cases.
4951 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4952 return Info.Ctx.getDeclAlign(DRE->getDecl(),
4953 /*RefAsPointee*/true);
4954
4955 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
4956 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
4957 /*RefAsPointee*/true);
4958
4959 return GetAlignOfType(Info, E->getType());
4960 }
4961
VisitCallExpr(const CallExpr * E)4962 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
4963 if (IsStringLiteralCall(E))
4964 return Success(E);
4965
4966 switch (E->getBuiltinCallee()) {
4967 case Builtin::BI__builtin_addressof:
4968 return EvaluateLValue(E->getArg(0), Result, Info);
4969 case Builtin::BI__builtin_assume_aligned: {
4970 // We need to be very careful here because: if the pointer does not have the
4971 // asserted alignment, then the behavior is undefined, and undefined
4972 // behavior is non-constant.
4973 if (!EvaluatePointer(E->getArg(0), Result, Info))
4974 return false;
4975
4976 LValue OffsetResult(Result);
4977 APSInt Alignment;
4978 if (!EvaluateInteger(E->getArg(1), Alignment, Info))
4979 return false;
4980 CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
4981
4982 if (E->getNumArgs() > 2) {
4983 APSInt Offset;
4984 if (!EvaluateInteger(E->getArg(2), Offset, Info))
4985 return false;
4986
4987 int64_t AdditionalOffset = -getExtValue(Offset);
4988 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
4989 }
4990
4991 // If there is a base object, then it must have the correct alignment.
4992 if (OffsetResult.Base) {
4993 CharUnits BaseAlignment;
4994 if (const ValueDecl *VD =
4995 OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
4996 BaseAlignment = Info.Ctx.getDeclAlign(VD);
4997 } else {
4998 BaseAlignment =
4999 GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5000 }
5001
5002 if (BaseAlignment < Align) {
5003 Result.Designator.setInvalid();
5004 // FIXME: Quantities here cast to integers because the plural modifier
5005 // does not work on APSInts yet.
5006 CCEDiag(E->getArg(0),
5007 diag::note_constexpr_baa_insufficient_alignment) << 0
5008 << (int) BaseAlignment.getQuantity()
5009 << (unsigned) getExtValue(Alignment);
5010 return false;
5011 }
5012 }
5013
5014 // The offset must also have the correct alignment.
5015 if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
5016 Result.Designator.setInvalid();
5017 APSInt Offset(64, false);
5018 Offset = OffsetResult.Offset.getQuantity();
5019
5020 if (OffsetResult.Base)
5021 CCEDiag(E->getArg(0),
5022 diag::note_constexpr_baa_insufficient_alignment) << 1
5023 << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5024 else
5025 CCEDiag(E->getArg(0),
5026 diag::note_constexpr_baa_value_insufficient_alignment)
5027 << Offset << (unsigned) getExtValue(Alignment);
5028
5029 return false;
5030 }
5031
5032 return true;
5033 }
5034 default:
5035 return ExprEvaluatorBaseTy::VisitCallExpr(E);
5036 }
5037 }
5038
5039 //===----------------------------------------------------------------------===//
5040 // Member Pointer Evaluation
5041 //===----------------------------------------------------------------------===//
5042
5043 namespace {
5044 class MemberPointerExprEvaluator
5045 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5046 MemberPtr &Result;
5047
Success(const ValueDecl * D)5048 bool Success(const ValueDecl *D) {
5049 Result = MemberPtr(D);
5050 return true;
5051 }
5052 public:
5053
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)5054 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5055 : ExprEvaluatorBaseTy(Info), Result(Result) {}
5056
Success(const APValue & V,const Expr * E)5057 bool Success(const APValue &V, const Expr *E) {
5058 Result.setFrom(V);
5059 return true;
5060 }
ZeroInitialization(const Expr * E)5061 bool ZeroInitialization(const Expr *E) {
5062 return Success((const ValueDecl*)nullptr);
5063 }
5064
5065 bool VisitCastExpr(const CastExpr *E);
5066 bool VisitUnaryAddrOf(const UnaryOperator *E);
5067 };
5068 } // end anonymous namespace
5069
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)5070 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5071 EvalInfo &Info) {
5072 assert(E->isRValue() && E->getType()->isMemberPointerType());
5073 return MemberPointerExprEvaluator(Info, Result).Visit(E);
5074 }
5075
VisitCastExpr(const CastExpr * E)5076 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5077 switch (E->getCastKind()) {
5078 default:
5079 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5080
5081 case CK_NullToMemberPointer:
5082 VisitIgnoredValue(E->getSubExpr());
5083 return ZeroInitialization(E);
5084
5085 case CK_BaseToDerivedMemberPointer: {
5086 if (!Visit(E->getSubExpr()))
5087 return false;
5088 if (E->path_empty())
5089 return true;
5090 // Base-to-derived member pointer casts store the path in derived-to-base
5091 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5092 // the wrong end of the derived->base arc, so stagger the path by one class.
5093 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5094 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5095 PathI != PathE; ++PathI) {
5096 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5097 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5098 if (!Result.castToDerived(Derived))
5099 return Error(E);
5100 }
5101 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5102 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5103 return Error(E);
5104 return true;
5105 }
5106
5107 case CK_DerivedToBaseMemberPointer:
5108 if (!Visit(E->getSubExpr()))
5109 return false;
5110 for (CastExpr::path_const_iterator PathI = E->path_begin(),
5111 PathE = E->path_end(); PathI != PathE; ++PathI) {
5112 assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5113 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5114 if (!Result.castToBase(Base))
5115 return Error(E);
5116 }
5117 return true;
5118 }
5119 }
5120
VisitUnaryAddrOf(const UnaryOperator * E)5121 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5122 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5123 // member can be formed.
5124 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5125 }
5126
5127 //===----------------------------------------------------------------------===//
5128 // Record Evaluation
5129 //===----------------------------------------------------------------------===//
5130
5131 namespace {
5132 class RecordExprEvaluator
5133 : public ExprEvaluatorBase<RecordExprEvaluator> {
5134 const LValue &This;
5135 APValue &Result;
5136 public:
5137
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)5138 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5139 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5140
Success(const APValue & V,const Expr * E)5141 bool Success(const APValue &V, const Expr *E) {
5142 Result = V;
5143 return true;
5144 }
5145 bool ZeroInitialization(const Expr *E);
5146
5147 bool VisitCastExpr(const CastExpr *E);
5148 bool VisitInitListExpr(const InitListExpr *E);
5149 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5150 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5151 };
5152 }
5153
5154 /// Perform zero-initialization on an object of non-union class type.
5155 /// C++11 [dcl.init]p5:
5156 /// To zero-initialize an object or reference of type T means:
5157 /// [...]
5158 /// -- if T is a (possibly cv-qualified) non-union class type,
5159 /// each non-static data member and each base-class subobject is
5160 /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)5161 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5162 const RecordDecl *RD,
5163 const LValue &This, APValue &Result) {
5164 assert(!RD->isUnion() && "Expected non-union class type");
5165 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5166 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5167 std::distance(RD->field_begin(), RD->field_end()));
5168
5169 if (RD->isInvalidDecl()) return false;
5170 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5171
5172 if (CD) {
5173 unsigned Index = 0;
5174 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5175 End = CD->bases_end(); I != End; ++I, ++Index) {
5176 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5177 LValue Subobject = This;
5178 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5179 return false;
5180 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5181 Result.getStructBase(Index)))
5182 return false;
5183 }
5184 }
5185
5186 for (const auto *I : RD->fields()) {
5187 // -- if T is a reference type, no initialization is performed.
5188 if (I->getType()->isReferenceType())
5189 continue;
5190
5191 LValue Subobject = This;
5192 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5193 return false;
5194
5195 ImplicitValueInitExpr VIE(I->getType());
5196 if (!EvaluateInPlace(
5197 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5198 return false;
5199 }
5200
5201 return true;
5202 }
5203
ZeroInitialization(const Expr * E)5204 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
5205 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5206 if (RD->isInvalidDecl()) return false;
5207 if (RD->isUnion()) {
5208 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5209 // object's first non-static named data member is zero-initialized
5210 RecordDecl::field_iterator I = RD->field_begin();
5211 if (I == RD->field_end()) {
5212 Result = APValue((const FieldDecl*)nullptr);
5213 return true;
5214 }
5215
5216 LValue Subobject = This;
5217 if (!HandleLValueMember(Info, E, Subobject, *I))
5218 return false;
5219 Result = APValue(*I);
5220 ImplicitValueInitExpr VIE(I->getType());
5221 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5222 }
5223
5224 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5225 Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5226 return false;
5227 }
5228
5229 return HandleClassZeroInitialization(Info, E, RD, This, Result);
5230 }
5231
VisitCastExpr(const CastExpr * E)5232 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5233 switch (E->getCastKind()) {
5234 default:
5235 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5236
5237 case CK_ConstructorConversion:
5238 return Visit(E->getSubExpr());
5239
5240 case CK_DerivedToBase:
5241 case CK_UncheckedDerivedToBase: {
5242 APValue DerivedObject;
5243 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5244 return false;
5245 if (!DerivedObject.isStruct())
5246 return Error(E->getSubExpr());
5247
5248 // Derived-to-base rvalue conversion: just slice off the derived part.
5249 APValue *Value = &DerivedObject;
5250 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5251 for (CastExpr::path_const_iterator PathI = E->path_begin(),
5252 PathE = E->path_end(); PathI != PathE; ++PathI) {
5253 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5254 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5255 Value = &Value->getStructBase(getBaseIndex(RD, Base));
5256 RD = Base;
5257 }
5258 Result = *Value;
5259 return true;
5260 }
5261 }
5262 }
5263
VisitInitListExpr(const InitListExpr * E)5264 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5265 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5266 if (RD->isInvalidDecl()) return false;
5267 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5268
5269 if (RD->isUnion()) {
5270 const FieldDecl *Field = E->getInitializedFieldInUnion();
5271 Result = APValue(Field);
5272 if (!Field)
5273 return true;
5274
5275 // If the initializer list for a union does not contain any elements, the
5276 // first element of the union is value-initialized.
5277 // FIXME: The element should be initialized from an initializer list.
5278 // Is this difference ever observable for initializer lists which
5279 // we don't build?
5280 ImplicitValueInitExpr VIE(Field->getType());
5281 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5282
5283 LValue Subobject = This;
5284 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5285 return false;
5286
5287 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5288 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5289 isa<CXXDefaultInitExpr>(InitExpr));
5290
5291 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5292 }
5293
5294 assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5295 "initializer list for class with base classes");
5296 Result = APValue(APValue::UninitStruct(), 0,
5297 std::distance(RD->field_begin(), RD->field_end()));
5298 unsigned ElementNo = 0;
5299 bool Success = true;
5300 for (const auto *Field : RD->fields()) {
5301 // Anonymous bit-fields are not considered members of the class for
5302 // purposes of aggregate initialization.
5303 if (Field->isUnnamedBitfield())
5304 continue;
5305
5306 LValue Subobject = This;
5307
5308 bool HaveInit = ElementNo < E->getNumInits();
5309
5310 // FIXME: Diagnostics here should point to the end of the initializer
5311 // list, not the start.
5312 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5313 Subobject, Field, &Layout))
5314 return false;
5315
5316 // Perform an implicit value-initialization for members beyond the end of
5317 // the initializer list.
5318 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5319 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5320
5321 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5322 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5323 isa<CXXDefaultInitExpr>(Init));
5324
5325 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5326 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5327 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5328 FieldVal, Field))) {
5329 if (!Info.keepEvaluatingAfterFailure())
5330 return false;
5331 Success = false;
5332 }
5333 }
5334
5335 return Success;
5336 }
5337
VisitCXXConstructExpr(const CXXConstructExpr * E)5338 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5339 const CXXConstructorDecl *FD = E->getConstructor();
5340 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5341
5342 bool ZeroInit = E->requiresZeroInitialization();
5343 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5344 // If we've already performed zero-initialization, we're already done.
5345 if (!Result.isUninit())
5346 return true;
5347
5348 // We can get here in two different ways:
5349 // 1) We're performing value-initialization, and should zero-initialize
5350 // the object, or
5351 // 2) We're performing default-initialization of an object with a trivial
5352 // constexpr default constructor, in which case we should start the
5353 // lifetimes of all the base subobjects (there can be no data member
5354 // subobjects in this case) per [basic.life]p1.
5355 // Either way, ZeroInitialization is appropriate.
5356 return ZeroInitialization(E);
5357 }
5358
5359 const FunctionDecl *Definition = nullptr;
5360 FD->getBody(Definition);
5361
5362 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5363 return false;
5364
5365 // Avoid materializing a temporary for an elidable copy/move constructor.
5366 if (E->isElidable() && !ZeroInit)
5367 if (const MaterializeTemporaryExpr *ME
5368 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5369 return Visit(ME->GetTemporaryExpr());
5370
5371 if (ZeroInit && !ZeroInitialization(E))
5372 return false;
5373
5374 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5375 return HandleConstructorCall(E->getExprLoc(), This, Args,
5376 cast<CXXConstructorDecl>(Definition), Info,
5377 Result);
5378 }
5379
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5380 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5381 const CXXStdInitializerListExpr *E) {
5382 const ConstantArrayType *ArrayType =
5383 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5384
5385 LValue Array;
5386 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5387 return false;
5388
5389 // Get a pointer to the first element of the array.
5390 Array.addArray(Info, E, ArrayType);
5391
5392 // FIXME: Perform the checks on the field types in SemaInit.
5393 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5394 RecordDecl::field_iterator Field = Record->field_begin();
5395 if (Field == Record->field_end())
5396 return Error(E);
5397
5398 // Start pointer.
5399 if (!Field->getType()->isPointerType() ||
5400 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5401 ArrayType->getElementType()))
5402 return Error(E);
5403
5404 // FIXME: What if the initializer_list type has base classes, etc?
5405 Result = APValue(APValue::UninitStruct(), 0, 2);
5406 Array.moveInto(Result.getStructField(0));
5407
5408 if (++Field == Record->field_end())
5409 return Error(E);
5410
5411 if (Field->getType()->isPointerType() &&
5412 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5413 ArrayType->getElementType())) {
5414 // End pointer.
5415 if (!HandleLValueArrayAdjustment(Info, E, Array,
5416 ArrayType->getElementType(),
5417 ArrayType->getSize().getZExtValue()))
5418 return false;
5419 Array.moveInto(Result.getStructField(1));
5420 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5421 // Length.
5422 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5423 else
5424 return Error(E);
5425
5426 if (++Field != Record->field_end())
5427 return Error(E);
5428
5429 return true;
5430 }
5431
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5432 static bool EvaluateRecord(const Expr *E, const LValue &This,
5433 APValue &Result, EvalInfo &Info) {
5434 assert(E->isRValue() && E->getType()->isRecordType() &&
5435 "can't evaluate expression as a record rvalue");
5436 return RecordExprEvaluator(Info, This, Result).Visit(E);
5437 }
5438
5439 //===----------------------------------------------------------------------===//
5440 // Temporary Evaluation
5441 //
5442 // Temporaries are represented in the AST as rvalues, but generally behave like
5443 // lvalues. The full-object of which the temporary is a subobject is implicitly
5444 // materialized so that a reference can bind to it.
5445 //===----------------------------------------------------------------------===//
5446 namespace {
5447 class TemporaryExprEvaluator
5448 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5449 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5450 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5451 LValueExprEvaluatorBaseTy(Info, Result) {}
5452
5453 /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5454 bool VisitConstructExpr(const Expr *E) {
5455 Result.set(E, Info.CurrentCall->Index);
5456 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5457 Info, Result, E);
5458 }
5459
VisitCastExpr(const CastExpr * E)5460 bool VisitCastExpr(const CastExpr *E) {
5461 switch (E->getCastKind()) {
5462 default:
5463 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5464
5465 case CK_ConstructorConversion:
5466 return VisitConstructExpr(E->getSubExpr());
5467 }
5468 }
VisitInitListExpr(const InitListExpr * E)5469 bool VisitInitListExpr(const InitListExpr *E) {
5470 return VisitConstructExpr(E);
5471 }
VisitCXXConstructExpr(const CXXConstructExpr * E)5472 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5473 return VisitConstructExpr(E);
5474 }
VisitCallExpr(const CallExpr * E)5475 bool VisitCallExpr(const CallExpr *E) {
5476 return VisitConstructExpr(E);
5477 }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5478 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5479 return VisitConstructExpr(E);
5480 }
5481 };
5482 } // end anonymous namespace
5483
5484 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5485 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5486 assert(E->isRValue() && E->getType()->isRecordType());
5487 return TemporaryExprEvaluator(Info, Result).Visit(E);
5488 }
5489
5490 //===----------------------------------------------------------------------===//
5491 // Vector Evaluation
5492 //===----------------------------------------------------------------------===//
5493
5494 namespace {
5495 class VectorExprEvaluator
5496 : public ExprEvaluatorBase<VectorExprEvaluator> {
5497 APValue &Result;
5498 public:
5499
VectorExprEvaluator(EvalInfo & info,APValue & Result)5500 VectorExprEvaluator(EvalInfo &info, APValue &Result)
5501 : ExprEvaluatorBaseTy(info), Result(Result) {}
5502
Success(const ArrayRef<APValue> & V,const Expr * E)5503 bool Success(const ArrayRef<APValue> &V, const Expr *E) {
5504 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5505 // FIXME: remove this APValue copy.
5506 Result = APValue(V.data(), V.size());
5507 return true;
5508 }
Success(const APValue & V,const Expr * E)5509 bool Success(const APValue &V, const Expr *E) {
5510 assert(V.isVector());
5511 Result = V;
5512 return true;
5513 }
5514 bool ZeroInitialization(const Expr *E);
5515
VisitUnaryReal(const UnaryOperator * E)5516 bool VisitUnaryReal(const UnaryOperator *E)
5517 { return Visit(E->getSubExpr()); }
5518 bool VisitCastExpr(const CastExpr* E);
5519 bool VisitInitListExpr(const InitListExpr *E);
5520 bool VisitUnaryImag(const UnaryOperator *E);
5521 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5522 // binary comparisons, binary and/or/xor,
5523 // shufflevector, ExtVectorElementExpr
5524 };
5525 } // end anonymous namespace
5526
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5527 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5528 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5529 return VectorExprEvaluator(Info, Result).Visit(E);
5530 }
5531
VisitCastExpr(const CastExpr * E)5532 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
5533 const VectorType *VTy = E->getType()->castAs<VectorType>();
5534 unsigned NElts = VTy->getNumElements();
5535
5536 const Expr *SE = E->getSubExpr();
5537 QualType SETy = SE->getType();
5538
5539 switch (E->getCastKind()) {
5540 case CK_VectorSplat: {
5541 APValue Val = APValue();
5542 if (SETy->isIntegerType()) {
5543 APSInt IntResult;
5544 if (!EvaluateInteger(SE, IntResult, Info))
5545 return false;
5546 Val = APValue(IntResult);
5547 } else if (SETy->isRealFloatingType()) {
5548 APFloat F(0.0);
5549 if (!EvaluateFloat(SE, F, Info))
5550 return false;
5551 Val = APValue(F);
5552 } else {
5553 return Error(E);
5554 }
5555
5556 // Splat and create vector APValue.
5557 SmallVector<APValue, 4> Elts(NElts, Val);
5558 return Success(Elts, E);
5559 }
5560 case CK_BitCast: {
5561 // Evaluate the operand into an APInt we can extract from.
5562 llvm::APInt SValInt;
5563 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5564 return false;
5565 // Extract the elements
5566 QualType EltTy = VTy->getElementType();
5567 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5568 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5569 SmallVector<APValue, 4> Elts;
5570 if (EltTy->isRealFloatingType()) {
5571 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5572 unsigned FloatEltSize = EltSize;
5573 if (&Sem == &APFloat::x87DoubleExtended)
5574 FloatEltSize = 80;
5575 for (unsigned i = 0; i < NElts; i++) {
5576 llvm::APInt Elt;
5577 if (BigEndian)
5578 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5579 else
5580 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5581 Elts.push_back(APValue(APFloat(Sem, Elt)));
5582 }
5583 } else if (EltTy->isIntegerType()) {
5584 for (unsigned i = 0; i < NElts; i++) {
5585 llvm::APInt Elt;
5586 if (BigEndian)
5587 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5588 else
5589 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5590 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5591 }
5592 } else {
5593 return Error(E);
5594 }
5595 return Success(Elts, E);
5596 }
5597 default:
5598 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5599 }
5600 }
5601
5602 bool
VisitInitListExpr(const InitListExpr * E)5603 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5604 const VectorType *VT = E->getType()->castAs<VectorType>();
5605 unsigned NumInits = E->getNumInits();
5606 unsigned NumElements = VT->getNumElements();
5607
5608 QualType EltTy = VT->getElementType();
5609 SmallVector<APValue, 4> Elements;
5610
5611 // The number of initializers can be less than the number of
5612 // vector elements. For OpenCL, this can be due to nested vector
5613 // initialization. For GCC compatibility, missing trailing elements
5614 // should be initialized with zeroes.
5615 unsigned CountInits = 0, CountElts = 0;
5616 while (CountElts < NumElements) {
5617 // Handle nested vector initialization.
5618 if (CountInits < NumInits
5619 && E->getInit(CountInits)->getType()->isVectorType()) {
5620 APValue v;
5621 if (!EvaluateVector(E->getInit(CountInits), v, Info))
5622 return Error(E);
5623 unsigned vlen = v.getVectorLength();
5624 for (unsigned j = 0; j < vlen; j++)
5625 Elements.push_back(v.getVectorElt(j));
5626 CountElts += vlen;
5627 } else if (EltTy->isIntegerType()) {
5628 llvm::APSInt sInt(32);
5629 if (CountInits < NumInits) {
5630 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5631 return false;
5632 } else // trailing integer zero.
5633 sInt = Info.Ctx.MakeIntValue(0, EltTy);
5634 Elements.push_back(APValue(sInt));
5635 CountElts++;
5636 } else {
5637 llvm::APFloat f(0.0);
5638 if (CountInits < NumInits) {
5639 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5640 return false;
5641 } else // trailing float zero.
5642 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5643 Elements.push_back(APValue(f));
5644 CountElts++;
5645 }
5646 CountInits++;
5647 }
5648 return Success(Elements, E);
5649 }
5650
5651 bool
ZeroInitialization(const Expr * E)5652 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5653 const VectorType *VT = E->getType()->getAs<VectorType>();
5654 QualType EltTy = VT->getElementType();
5655 APValue ZeroElement;
5656 if (EltTy->isIntegerType())
5657 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5658 else
5659 ZeroElement =
5660 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5661
5662 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5663 return Success(Elements, E);
5664 }
5665
VisitUnaryImag(const UnaryOperator * E)5666 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5667 VisitIgnoredValue(E->getSubExpr());
5668 return ZeroInitialization(E);
5669 }
5670
5671 //===----------------------------------------------------------------------===//
5672 // Array Evaluation
5673 //===----------------------------------------------------------------------===//
5674
5675 namespace {
5676 class ArrayExprEvaluator
5677 : public ExprEvaluatorBase<ArrayExprEvaluator> {
5678 const LValue &This;
5679 APValue &Result;
5680 public:
5681
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)5682 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5683 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5684
Success(const APValue & V,const Expr * E)5685 bool Success(const APValue &V, const Expr *E) {
5686 assert((V.isArray() || V.isLValue()) &&
5687 "expected array or string literal");
5688 Result = V;
5689 return true;
5690 }
5691
ZeroInitialization(const Expr * E)5692 bool ZeroInitialization(const Expr *E) {
5693 const ConstantArrayType *CAT =
5694 Info.Ctx.getAsConstantArrayType(E->getType());
5695 if (!CAT)
5696 return Error(E);
5697
5698 Result = APValue(APValue::UninitArray(), 0,
5699 CAT->getSize().getZExtValue());
5700 if (!Result.hasArrayFiller()) return true;
5701
5702 // Zero-initialize all elements.
5703 LValue Subobject = This;
5704 Subobject.addArray(Info, E, CAT);
5705 ImplicitValueInitExpr VIE(CAT->getElementType());
5706 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5707 }
5708
5709 bool VisitInitListExpr(const InitListExpr *E);
5710 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5711 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5712 const LValue &Subobject,
5713 APValue *Value, QualType Type);
5714 };
5715 } // end anonymous namespace
5716
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5717 static bool EvaluateArray(const Expr *E, const LValue &This,
5718 APValue &Result, EvalInfo &Info) {
5719 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5720 return ArrayExprEvaluator(Info, This, Result).Visit(E);
5721 }
5722
VisitInitListExpr(const InitListExpr * E)5723 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5724 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5725 if (!CAT)
5726 return Error(E);
5727
5728 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5729 // an appropriately-typed string literal enclosed in braces.
5730 if (E->isStringLiteralInit()) {
5731 LValue LV;
5732 if (!EvaluateLValue(E->getInit(0), LV, Info))
5733 return false;
5734 APValue Val;
5735 LV.moveInto(Val);
5736 return Success(Val, E);
5737 }
5738
5739 bool Success = true;
5740
5741 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5742 "zero-initialized array shouldn't have any initialized elts");
5743 APValue Filler;
5744 if (Result.isArray() && Result.hasArrayFiller())
5745 Filler = Result.getArrayFiller();
5746
5747 unsigned NumEltsToInit = E->getNumInits();
5748 unsigned NumElts = CAT->getSize().getZExtValue();
5749 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5750
5751 // If the initializer might depend on the array index, run it for each
5752 // array element. For now, just whitelist non-class value-initialization.
5753 if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5754 NumEltsToInit = NumElts;
5755
5756 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5757
5758 // If the array was previously zero-initialized, preserve the
5759 // zero-initialized values.
5760 if (!Filler.isUninit()) {
5761 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5762 Result.getArrayInitializedElt(I) = Filler;
5763 if (Result.hasArrayFiller())
5764 Result.getArrayFiller() = Filler;
5765 }
5766
5767 LValue Subobject = This;
5768 Subobject.addArray(Info, E, CAT);
5769 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5770 const Expr *Init =
5771 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5772 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5773 Info, Subobject, Init) ||
5774 !HandleLValueArrayAdjustment(Info, Init, Subobject,
5775 CAT->getElementType(), 1)) {
5776 if (!Info.keepEvaluatingAfterFailure())
5777 return false;
5778 Success = false;
5779 }
5780 }
5781
5782 if (!Result.hasArrayFiller())
5783 return Success;
5784
5785 // If we get here, we have a trivial filler, which we can just evaluate
5786 // once and splat over the rest of the array elements.
5787 assert(FillerExpr && "no array filler for incomplete init list");
5788 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5789 FillerExpr) && Success;
5790 }
5791
VisitCXXConstructExpr(const CXXConstructExpr * E)5792 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5793 return VisitCXXConstructExpr(E, This, &Result, E->getType());
5794 }
5795
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)5796 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5797 const LValue &Subobject,
5798 APValue *Value,
5799 QualType Type) {
5800 bool HadZeroInit = !Value->isUninit();
5801
5802 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5803 unsigned N = CAT->getSize().getZExtValue();
5804
5805 // Preserve the array filler if we had prior zero-initialization.
5806 APValue Filler =
5807 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5808 : APValue();
5809
5810 *Value = APValue(APValue::UninitArray(), N, N);
5811
5812 if (HadZeroInit)
5813 for (unsigned I = 0; I != N; ++I)
5814 Value->getArrayInitializedElt(I) = Filler;
5815
5816 // Initialize the elements.
5817 LValue ArrayElt = Subobject;
5818 ArrayElt.addArray(Info, E, CAT);
5819 for (unsigned I = 0; I != N; ++I)
5820 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5821 CAT->getElementType()) ||
5822 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5823 CAT->getElementType(), 1))
5824 return false;
5825
5826 return true;
5827 }
5828
5829 if (!Type->isRecordType())
5830 return Error(E);
5831
5832 const CXXConstructorDecl *FD = E->getConstructor();
5833
5834 bool ZeroInit = E->requiresZeroInitialization();
5835 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5836 if (HadZeroInit)
5837 return true;
5838
5839 // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5840 ImplicitValueInitExpr VIE(Type);
5841 return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5842 }
5843
5844 const FunctionDecl *Definition = nullptr;
5845 FD->getBody(Definition);
5846
5847 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5848 return false;
5849
5850 if (ZeroInit && !HadZeroInit) {
5851 ImplicitValueInitExpr VIE(Type);
5852 if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5853 return false;
5854 }
5855
5856 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5857 return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5858 cast<CXXConstructorDecl>(Definition),
5859 Info, *Value);
5860 }
5861
5862 //===----------------------------------------------------------------------===//
5863 // Integer Evaluation
5864 //
5865 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5866 // types and back in constant folding. Integer values are thus represented
5867 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5868 //===----------------------------------------------------------------------===//
5869
5870 namespace {
5871 class IntExprEvaluator
5872 : public ExprEvaluatorBase<IntExprEvaluator> {
5873 APValue &Result;
5874 public:
IntExprEvaluator(EvalInfo & info,APValue & result)5875 IntExprEvaluator(EvalInfo &info, APValue &result)
5876 : ExprEvaluatorBaseTy(info), Result(result) {}
5877
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)5878 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
5879 assert(E->getType()->isIntegralOrEnumerationType() &&
5880 "Invalid evaluation result.");
5881 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
5882 "Invalid evaluation result.");
5883 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5884 "Invalid evaluation result.");
5885 Result = APValue(SI);
5886 return true;
5887 }
Success(const llvm::APSInt & SI,const Expr * E)5888 bool Success(const llvm::APSInt &SI, const Expr *E) {
5889 return Success(SI, E, Result);
5890 }
5891
Success(const llvm::APInt & I,const Expr * E,APValue & Result)5892 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
5893 assert(E->getType()->isIntegralOrEnumerationType() &&
5894 "Invalid evaluation result.");
5895 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
5896 "Invalid evaluation result.");
5897 Result = APValue(APSInt(I));
5898 Result.getInt().setIsUnsigned(
5899 E->getType()->isUnsignedIntegerOrEnumerationType());
5900 return true;
5901 }
Success(const llvm::APInt & I,const Expr * E)5902 bool Success(const llvm::APInt &I, const Expr *E) {
5903 return Success(I, E, Result);
5904 }
5905
Success(uint64_t Value,const Expr * E,APValue & Result)5906 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
5907 assert(E->getType()->isIntegralOrEnumerationType() &&
5908 "Invalid evaluation result.");
5909 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
5910 return true;
5911 }
Success(uint64_t Value,const Expr * E)5912 bool Success(uint64_t Value, const Expr *E) {
5913 return Success(Value, E, Result);
5914 }
5915
Success(CharUnits Size,const Expr * E)5916 bool Success(CharUnits Size, const Expr *E) {
5917 return Success(Size.getQuantity(), E);
5918 }
5919
Success(const APValue & V,const Expr * E)5920 bool Success(const APValue &V, const Expr *E) {
5921 if (V.isLValue() || V.isAddrLabelDiff()) {
5922 Result = V;
5923 return true;
5924 }
5925 return Success(V.getInt(), E);
5926 }
5927
ZeroInitialization(const Expr * E)5928 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
5929
5930 //===--------------------------------------------------------------------===//
5931 // Visitor Methods
5932 //===--------------------------------------------------------------------===//
5933
VisitIntegerLiteral(const IntegerLiteral * E)5934 bool VisitIntegerLiteral(const IntegerLiteral *E) {
5935 return Success(E->getValue(), E);
5936 }
VisitCharacterLiteral(const CharacterLiteral * E)5937 bool VisitCharacterLiteral(const CharacterLiteral *E) {
5938 return Success(E->getValue(), E);
5939 }
5940
5941 bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)5942 bool VisitDeclRefExpr(const DeclRefExpr *E) {
5943 if (CheckReferencedDecl(E, E->getDecl()))
5944 return true;
5945
5946 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
5947 }
VisitMemberExpr(const MemberExpr * E)5948 bool VisitMemberExpr(const MemberExpr *E) {
5949 if (CheckReferencedDecl(E, E->getMemberDecl())) {
5950 VisitIgnoredValue(E->getBase());
5951 return true;
5952 }
5953
5954 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
5955 }
5956
5957 bool VisitCallExpr(const CallExpr *E);
5958 bool VisitBinaryOperator(const BinaryOperator *E);
5959 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
5960 bool VisitUnaryOperator(const UnaryOperator *E);
5961
5962 bool VisitCastExpr(const CastExpr* E);
5963 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
5964
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)5965 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
5966 return Success(E->getValue(), E);
5967 }
5968
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)5969 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
5970 return Success(E->getValue(), E);
5971 }
5972
5973 // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)5974 bool VisitGNUNullExpr(const GNUNullExpr *E) {
5975 return ZeroInitialization(E);
5976 }
5977
VisitTypeTraitExpr(const TypeTraitExpr * E)5978 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
5979 return Success(E->getValue(), E);
5980 }
5981
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)5982 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
5983 return Success(E->getValue(), E);
5984 }
5985
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)5986 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
5987 return Success(E->getValue(), E);
5988 }
5989
5990 bool VisitUnaryReal(const UnaryOperator *E);
5991 bool VisitUnaryImag(const UnaryOperator *E);
5992
5993 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
5994 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
5995
5996 private:
5997 static QualType GetObjectType(APValue::LValueBase B);
5998 bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
5999 // FIXME: Missing: array subscript of vector, member of vector
6000 };
6001 } // end anonymous namespace
6002
6003 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6004 /// produce either the integer value or a pointer.
6005 ///
6006 /// GCC has a heinous extension which folds casts between pointer types and
6007 /// pointer-sized integral types. We support this by allowing the evaluation of
6008 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6009 /// Some simple arithmetic on such values is supported (they are treated much
6010 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)6011 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6012 EvalInfo &Info) {
6013 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6014 return IntExprEvaluator(Info, Result).Visit(E);
6015 }
6016
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)6017 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6018 APValue Val;
6019 if (!EvaluateIntegerOrLValue(E, Val, Info))
6020 return false;
6021 if (!Val.isInt()) {
6022 // FIXME: It would be better to produce the diagnostic for casting
6023 // a pointer to an integer.
6024 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6025 return false;
6026 }
6027 Result = Val.getInt();
6028 return true;
6029 }
6030
6031 /// Check whether the given declaration can be directly converted to an integral
6032 /// rvalue. If not, no diagnostic is produced; there are other things we can
6033 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)6034 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6035 // Enums are integer constant exprs.
6036 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6037 // Check for signedness/width mismatches between E type and ECD value.
6038 bool SameSign = (ECD->getInitVal().isSigned()
6039 == E->getType()->isSignedIntegerOrEnumerationType());
6040 bool SameWidth = (ECD->getInitVal().getBitWidth()
6041 == Info.Ctx.getIntWidth(E->getType()));
6042 if (SameSign && SameWidth)
6043 return Success(ECD->getInitVal(), E);
6044 else {
6045 // Get rid of mismatch (otherwise Success assertions will fail)
6046 // by computing a new value matching the type of E.
6047 llvm::APSInt Val = ECD->getInitVal();
6048 if (!SameSign)
6049 Val.setIsSigned(!ECD->getInitVal().isSigned());
6050 if (!SameWidth)
6051 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6052 return Success(Val, E);
6053 }
6054 }
6055 return false;
6056 }
6057
6058 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6059 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E)6060 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
6061 // The following enum mimics the values returned by GCC.
6062 // FIXME: Does GCC differ between lvalue and rvalue references here?
6063 enum gcc_type_class {
6064 no_type_class = -1,
6065 void_type_class, integer_type_class, char_type_class,
6066 enumeral_type_class, boolean_type_class,
6067 pointer_type_class, reference_type_class, offset_type_class,
6068 real_type_class, complex_type_class,
6069 function_type_class, method_type_class,
6070 record_type_class, union_type_class,
6071 array_type_class, string_type_class,
6072 lang_type_class
6073 };
6074
6075 // If no argument was supplied, default to "no_type_class". This isn't
6076 // ideal, however it is what gcc does.
6077 if (E->getNumArgs() == 0)
6078 return no_type_class;
6079
6080 QualType ArgTy = E->getArg(0)->getType();
6081 if (ArgTy->isVoidType())
6082 return void_type_class;
6083 else if (ArgTy->isEnumeralType())
6084 return enumeral_type_class;
6085 else if (ArgTy->isBooleanType())
6086 return boolean_type_class;
6087 else if (ArgTy->isCharType())
6088 return string_type_class; // gcc doesn't appear to use char_type_class
6089 else if (ArgTy->isIntegerType())
6090 return integer_type_class;
6091 else if (ArgTy->isPointerType())
6092 return pointer_type_class;
6093 else if (ArgTy->isReferenceType())
6094 return reference_type_class;
6095 else if (ArgTy->isRealType())
6096 return real_type_class;
6097 else if (ArgTy->isComplexType())
6098 return complex_type_class;
6099 else if (ArgTy->isFunctionType())
6100 return function_type_class;
6101 else if (ArgTy->isStructureOrClassType())
6102 return record_type_class;
6103 else if (ArgTy->isUnionType())
6104 return union_type_class;
6105 else if (ArgTy->isArrayType())
6106 return array_type_class;
6107 else if (ArgTy->isUnionType())
6108 return union_type_class;
6109 else // FIXME: offset_type_class, method_type_class, & lang_type_class?
6110 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6111 }
6112
6113 /// EvaluateBuiltinConstantPForLValue - Determine the result of
6114 /// __builtin_constant_p when applied to the given lvalue.
6115 ///
6116 /// An lvalue is only "constant" if it is a pointer or reference to the first
6117 /// character of a string literal.
6118 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)6119 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6120 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6121 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6122 }
6123
6124 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6125 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)6126 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6127 QualType ArgType = Arg->getType();
6128
6129 // __builtin_constant_p always has one operand. The rules which gcc follows
6130 // are not precisely documented, but are as follows:
6131 //
6132 // - If the operand is of integral, floating, complex or enumeration type,
6133 // and can be folded to a known value of that type, it returns 1.
6134 // - If the operand and can be folded to a pointer to the first character
6135 // of a string literal (or such a pointer cast to an integral type), it
6136 // returns 1.
6137 //
6138 // Otherwise, it returns 0.
6139 //
6140 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6141 // its support for this does not currently work.
6142 if (ArgType->isIntegralOrEnumerationType()) {
6143 Expr::EvalResult Result;
6144 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6145 return false;
6146
6147 APValue &V = Result.Val;
6148 if (V.getKind() == APValue::Int)
6149 return true;
6150
6151 return EvaluateBuiltinConstantPForLValue(V);
6152 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6153 return Arg->isEvaluatable(Ctx);
6154 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6155 LValue LV;
6156 Expr::EvalStatus Status;
6157 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6158 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6159 : EvaluatePointer(Arg, LV, Info)) &&
6160 !Status.HasSideEffects)
6161 return EvaluateBuiltinConstantPForLValue(LV);
6162 }
6163
6164 // Anything else isn't considered to be sufficiently constant.
6165 return false;
6166 }
6167
6168 /// Retrieves the "underlying object type" of the given expression,
6169 /// as used by __builtin_object_size.
GetObjectType(APValue::LValueBase B)6170 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
6171 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6172 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6173 return VD->getType();
6174 } else if (const Expr *E = B.get<const Expr*>()) {
6175 if (isa<CompoundLiteralExpr>(E))
6176 return E->getType();
6177 }
6178
6179 return QualType();
6180 }
6181
TryEvaluateBuiltinObjectSize(const CallExpr * E)6182 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
6183 LValue Base;
6184
6185 {
6186 // The operand of __builtin_object_size is never evaluated for side-effects.
6187 // If there are any, but we can determine the pointed-to object anyway, then
6188 // ignore the side-effects.
6189 SpeculativeEvaluationRAII SpeculativeEval(Info);
6190 if (!EvaluatePointer(E->getArg(0), Base, Info))
6191 return false;
6192 }
6193
6194 if (!Base.getLValueBase()) {
6195 // It is not possible to determine which objects ptr points to at compile time,
6196 // __builtin_object_size should return (size_t) -1 for type 0 or 1
6197 // and (size_t) 0 for type 2 or 3.
6198 llvm::APSInt TypeIntVaue;
6199 const Expr *ExprType = E->getArg(1);
6200 if (!ExprType->EvaluateAsInt(TypeIntVaue, Info.Ctx))
6201 return false;
6202 if (TypeIntVaue == 0 || TypeIntVaue == 1)
6203 return Success(-1, E);
6204 if (TypeIntVaue == 2 || TypeIntVaue == 3)
6205 return Success(0, E);
6206 return Error(E);
6207 }
6208
6209 QualType T = GetObjectType(Base.getLValueBase());
6210 if (T.isNull() ||
6211 T->isIncompleteType() ||
6212 T->isFunctionType() ||
6213 T->isVariablyModifiedType() ||
6214 T->isDependentType())
6215 return Error(E);
6216
6217 CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
6218 CharUnits Offset = Base.getLValueOffset();
6219
6220 if (!Offset.isNegative() && Offset <= Size)
6221 Size -= Offset;
6222 else
6223 Size = CharUnits::Zero();
6224 return Success(Size, E);
6225 }
6226
VisitCallExpr(const CallExpr * E)6227 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6228 switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6229 default:
6230 return ExprEvaluatorBaseTy::VisitCallExpr(E);
6231
6232 case Builtin::BI__builtin_object_size: {
6233 if (TryEvaluateBuiltinObjectSize(E))
6234 return true;
6235
6236 // If evaluating the argument has side-effects, we can't determine the size
6237 // of the object, and so we lower it to unknown now. CodeGen relies on us to
6238 // handle all cases where the expression has side-effects.
6239 if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
6240 if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
6241 return Success(-1ULL, E);
6242 return Success(0, E);
6243 }
6244
6245 // Expression had no side effects, but we couldn't statically determine the
6246 // size of the referenced object.
6247 switch (Info.EvalMode) {
6248 case EvalInfo::EM_ConstantExpression:
6249 case EvalInfo::EM_PotentialConstantExpression:
6250 case EvalInfo::EM_ConstantFold:
6251 case EvalInfo::EM_EvaluateForOverflow:
6252 case EvalInfo::EM_IgnoreSideEffects:
6253 return Error(E);
6254 case EvalInfo::EM_ConstantExpressionUnevaluated:
6255 case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6256 return Success(-1ULL, E);
6257 }
6258 }
6259
6260 case Builtin::BI__builtin_bswap16:
6261 case Builtin::BI__builtin_bswap32:
6262 case Builtin::BI__builtin_bswap64: {
6263 APSInt Val;
6264 if (!EvaluateInteger(E->getArg(0), Val, Info))
6265 return false;
6266
6267 return Success(Val.byteSwap(), E);
6268 }
6269
6270 case Builtin::BI__builtin_classify_type:
6271 return Success(EvaluateBuiltinClassifyType(E), E);
6272
6273 // FIXME: BI__builtin_clrsb
6274 // FIXME: BI__builtin_clrsbl
6275 // FIXME: BI__builtin_clrsbll
6276
6277 case Builtin::BI__builtin_clz:
6278 case Builtin::BI__builtin_clzl:
6279 case Builtin::BI__builtin_clzll:
6280 case Builtin::BI__builtin_clzs: {
6281 APSInt Val;
6282 if (!EvaluateInteger(E->getArg(0), Val, Info))
6283 return false;
6284 if (!Val)
6285 return Error(E);
6286
6287 return Success(Val.countLeadingZeros(), E);
6288 }
6289
6290 case Builtin::BI__builtin_constant_p:
6291 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6292
6293 case Builtin::BI__builtin_ctz:
6294 case Builtin::BI__builtin_ctzl:
6295 case Builtin::BI__builtin_ctzll:
6296 case Builtin::BI__builtin_ctzs: {
6297 APSInt Val;
6298 if (!EvaluateInteger(E->getArg(0), Val, Info))
6299 return false;
6300 if (!Val)
6301 return Error(E);
6302
6303 return Success(Val.countTrailingZeros(), E);
6304 }
6305
6306 case Builtin::BI__builtin_eh_return_data_regno: {
6307 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6308 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6309 return Success(Operand, E);
6310 }
6311
6312 case Builtin::BI__builtin_expect:
6313 return Visit(E->getArg(0));
6314
6315 case Builtin::BI__builtin_ffs:
6316 case Builtin::BI__builtin_ffsl:
6317 case Builtin::BI__builtin_ffsll: {
6318 APSInt Val;
6319 if (!EvaluateInteger(E->getArg(0), Val, Info))
6320 return false;
6321
6322 unsigned N = Val.countTrailingZeros();
6323 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6324 }
6325
6326 case Builtin::BI__builtin_fpclassify: {
6327 APFloat Val(0.0);
6328 if (!EvaluateFloat(E->getArg(5), Val, Info))
6329 return false;
6330 unsigned Arg;
6331 switch (Val.getCategory()) {
6332 case APFloat::fcNaN: Arg = 0; break;
6333 case APFloat::fcInfinity: Arg = 1; break;
6334 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6335 case APFloat::fcZero: Arg = 4; break;
6336 }
6337 return Visit(E->getArg(Arg));
6338 }
6339
6340 case Builtin::BI__builtin_isinf_sign: {
6341 APFloat Val(0.0);
6342 return EvaluateFloat(E->getArg(0), Val, Info) &&
6343 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6344 }
6345
6346 case Builtin::BI__builtin_isinf: {
6347 APFloat Val(0.0);
6348 return EvaluateFloat(E->getArg(0), Val, Info) &&
6349 Success(Val.isInfinity() ? 1 : 0, E);
6350 }
6351
6352 case Builtin::BI__builtin_isfinite: {
6353 APFloat Val(0.0);
6354 return EvaluateFloat(E->getArg(0), Val, Info) &&
6355 Success(Val.isFinite() ? 1 : 0, E);
6356 }
6357
6358 case Builtin::BI__builtin_isnan: {
6359 APFloat Val(0.0);
6360 return EvaluateFloat(E->getArg(0), Val, Info) &&
6361 Success(Val.isNaN() ? 1 : 0, E);
6362 }
6363
6364 case Builtin::BI__builtin_isnormal: {
6365 APFloat Val(0.0);
6366 return EvaluateFloat(E->getArg(0), Val, Info) &&
6367 Success(Val.isNormal() ? 1 : 0, E);
6368 }
6369
6370 case Builtin::BI__builtin_parity:
6371 case Builtin::BI__builtin_parityl:
6372 case Builtin::BI__builtin_parityll: {
6373 APSInt Val;
6374 if (!EvaluateInteger(E->getArg(0), Val, Info))
6375 return false;
6376
6377 return Success(Val.countPopulation() % 2, E);
6378 }
6379
6380 case Builtin::BI__builtin_popcount:
6381 case Builtin::BI__builtin_popcountl:
6382 case Builtin::BI__builtin_popcountll: {
6383 APSInt Val;
6384 if (!EvaluateInteger(E->getArg(0), Val, Info))
6385 return false;
6386
6387 return Success(Val.countPopulation(), E);
6388 }
6389
6390 case Builtin::BIstrlen:
6391 // A call to strlen is not a constant expression.
6392 if (Info.getLangOpts().CPlusPlus11)
6393 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6394 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6395 else
6396 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6397 // Fall through.
6398 case Builtin::BI__builtin_strlen: {
6399 // As an extension, we support __builtin_strlen() as a constant expression,
6400 // and support folding strlen() to a constant.
6401 LValue String;
6402 if (!EvaluatePointer(E->getArg(0), String, Info))
6403 return false;
6404
6405 // Fast path: if it's a string literal, search the string value.
6406 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6407 String.getLValueBase().dyn_cast<const Expr *>())) {
6408 // The string literal may have embedded null characters. Find the first
6409 // one and truncate there.
6410 StringRef Str = S->getBytes();
6411 int64_t Off = String.Offset.getQuantity();
6412 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6413 S->getCharByteWidth() == 1) {
6414 Str = Str.substr(Off);
6415
6416 StringRef::size_type Pos = Str.find(0);
6417 if (Pos != StringRef::npos)
6418 Str = Str.substr(0, Pos);
6419
6420 return Success(Str.size(), E);
6421 }
6422
6423 // Fall through to slow path to issue appropriate diagnostic.
6424 }
6425
6426 // Slow path: scan the bytes of the string looking for the terminating 0.
6427 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6428 for (uint64_t Strlen = 0; /**/; ++Strlen) {
6429 APValue Char;
6430 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6431 !Char.isInt())
6432 return false;
6433 if (!Char.getInt())
6434 return Success(Strlen, E);
6435 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6436 return false;
6437 }
6438 }
6439
6440 case Builtin::BI__atomic_always_lock_free:
6441 case Builtin::BI__atomic_is_lock_free:
6442 case Builtin::BI__c11_atomic_is_lock_free: {
6443 APSInt SizeVal;
6444 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6445 return false;
6446
6447 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6448 // of two less than the maximum inline atomic width, we know it is
6449 // lock-free. If the size isn't a power of two, or greater than the
6450 // maximum alignment where we promote atomics, we know it is not lock-free
6451 // (at least not in the sense of atomic_is_lock_free). Otherwise,
6452 // the answer can only be determined at runtime; for example, 16-byte
6453 // atomics have lock-free implementations on some, but not all,
6454 // x86-64 processors.
6455
6456 // Check power-of-two.
6457 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6458 if (Size.isPowerOfTwo()) {
6459 // Check against inlining width.
6460 unsigned InlineWidthBits =
6461 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6462 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6463 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6464 Size == CharUnits::One() ||
6465 E->getArg(1)->isNullPointerConstant(Info.Ctx,
6466 Expr::NPC_NeverValueDependent))
6467 // OK, we will inline appropriately-aligned operations of this size,
6468 // and _Atomic(T) is appropriately-aligned.
6469 return Success(1, E);
6470
6471 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6472 castAs<PointerType>()->getPointeeType();
6473 if (!PointeeType->isIncompleteType() &&
6474 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6475 // OK, we will inline operations on this object.
6476 return Success(1, E);
6477 }
6478 }
6479 }
6480
6481 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6482 Success(0, E) : Error(E);
6483 }
6484 }
6485 }
6486
HasSameBase(const LValue & A,const LValue & B)6487 static bool HasSameBase(const LValue &A, const LValue &B) {
6488 if (!A.getLValueBase())
6489 return !B.getLValueBase();
6490 if (!B.getLValueBase())
6491 return false;
6492
6493 if (A.getLValueBase().getOpaqueValue() !=
6494 B.getLValueBase().getOpaqueValue()) {
6495 const Decl *ADecl = GetLValueBaseDecl(A);
6496 if (!ADecl)
6497 return false;
6498 const Decl *BDecl = GetLValueBaseDecl(B);
6499 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6500 return false;
6501 }
6502
6503 return IsGlobalLValue(A.getLValueBase()) ||
6504 A.getLValueCallIndex() == B.getLValueCallIndex();
6505 }
6506
6507 /// \brief Determine whether this is a pointer past the end of the complete
6508 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)6509 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
6510 const LValue &LV) {
6511 // A null pointer can be viewed as being "past the end" but we don't
6512 // choose to look at it that way here.
6513 if (!LV.getLValueBase())
6514 return false;
6515
6516 // If the designator is valid and refers to a subobject, we're not pointing
6517 // past the end.
6518 if (!LV.getLValueDesignator().Invalid &&
6519 !LV.getLValueDesignator().isOnePastTheEnd())
6520 return false;
6521
6522 // We're a past-the-end pointer if we point to the byte after the object,
6523 // no matter what our type or path is.
6524 auto Size = Ctx.getTypeSizeInChars(getType(LV.getLValueBase()));
6525 return LV.getLValueOffset() == Size;
6526 }
6527
6528 namespace {
6529
6530 /// \brief Data recursive integer evaluator of certain binary operators.
6531 ///
6532 /// We use a data recursive algorithm for binary operators so that we are able
6533 /// to handle extreme cases of chained binary operators without causing stack
6534 /// overflow.
6535 class DataRecursiveIntBinOpEvaluator {
6536 struct EvalResult {
6537 APValue Val;
6538 bool Failed;
6539
EvalResult__anona626307c1311::DataRecursiveIntBinOpEvaluator::EvalResult6540 EvalResult() : Failed(false) { }
6541
swap__anona626307c1311::DataRecursiveIntBinOpEvaluator::EvalResult6542 void swap(EvalResult &RHS) {
6543 Val.swap(RHS.Val);
6544 Failed = RHS.Failed;
6545 RHS.Failed = false;
6546 }
6547 };
6548
6549 struct Job {
6550 const Expr *E;
6551 EvalResult LHSResult; // meaningful only for binary operator expression.
6552 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6553
Job__anona626307c1311::DataRecursiveIntBinOpEvaluator::Job6554 Job() : StoredInfo(nullptr) {}
startSpeculativeEval__anona626307c1311::DataRecursiveIntBinOpEvaluator::Job6555 void startSpeculativeEval(EvalInfo &Info) {
6556 OldEvalStatus = Info.EvalStatus;
6557 Info.EvalStatus.Diag = nullptr;
6558 StoredInfo = &Info;
6559 }
~Job__anona626307c1311::DataRecursiveIntBinOpEvaluator::Job6560 ~Job() {
6561 if (StoredInfo) {
6562 StoredInfo->EvalStatus = OldEvalStatus;
6563 }
6564 }
6565 private:
6566 EvalInfo *StoredInfo; // non-null if status changed.
6567 Expr::EvalStatus OldEvalStatus;
6568 };
6569
6570 SmallVector<Job, 16> Queue;
6571
6572 IntExprEvaluator &IntEval;
6573 EvalInfo &Info;
6574 APValue &FinalResult;
6575
6576 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)6577 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6578 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6579
6580 /// \brief True if \param E is a binary operator that we are going to handle
6581 /// data recursively.
6582 /// We handle binary operators that are comma, logical, or that have operands
6583 /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)6584 static bool shouldEnqueue(const BinaryOperator *E) {
6585 return E->getOpcode() == BO_Comma ||
6586 E->isLogicalOp() ||
6587 (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6588 E->getRHS()->getType()->isIntegralOrEnumerationType());
6589 }
6590
Traverse(const BinaryOperator * E)6591 bool Traverse(const BinaryOperator *E) {
6592 enqueue(E);
6593 EvalResult PrevResult;
6594 while (!Queue.empty())
6595 process(PrevResult);
6596
6597 if (PrevResult.Failed) return false;
6598
6599 FinalResult.swap(PrevResult.Val);
6600 return true;
6601 }
6602
6603 private:
Success(uint64_t Value,const Expr * E,APValue & Result)6604 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6605 return IntEval.Success(Value, E, Result);
6606 }
Success(const APSInt & Value,const Expr * E,APValue & Result)6607 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6608 return IntEval.Success(Value, E, Result);
6609 }
Error(const Expr * E)6610 bool Error(const Expr *E) {
6611 return IntEval.Error(E);
6612 }
Error(const Expr * E,diag::kind D)6613 bool Error(const Expr *E, diag::kind D) {
6614 return IntEval.Error(E, D);
6615 }
6616
CCEDiag(const Expr * E,diag::kind D)6617 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6618 return Info.CCEDiag(E, D);
6619 }
6620
6621 // \brief Returns true if visiting the RHS is necessary, false otherwise.
6622 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6623 bool &SuppressRHSDiags);
6624
6625 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6626 const BinaryOperator *E, APValue &Result);
6627
EvaluateExpr(const Expr * E,EvalResult & Result)6628 void EvaluateExpr(const Expr *E, EvalResult &Result) {
6629 Result.Failed = !Evaluate(Result.Val, Info, E);
6630 if (Result.Failed)
6631 Result.Val = APValue();
6632 }
6633
6634 void process(EvalResult &Result);
6635
enqueue(const Expr * E)6636 void enqueue(const Expr *E) {
6637 E = E->IgnoreParens();
6638 Queue.resize(Queue.size()+1);
6639 Queue.back().E = E;
6640 Queue.back().Kind = Job::AnyExprKind;
6641 }
6642 };
6643
6644 }
6645
6646 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)6647 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6648 bool &SuppressRHSDiags) {
6649 if (E->getOpcode() == BO_Comma) {
6650 // Ignore LHS but note if we could not evaluate it.
6651 if (LHSResult.Failed)
6652 return Info.noteSideEffect();
6653 return true;
6654 }
6655
6656 if (E->isLogicalOp()) {
6657 bool LHSAsBool;
6658 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
6659 // We were able to evaluate the LHS, see if we can get away with not
6660 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
6661 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
6662 Success(LHSAsBool, E, LHSResult.Val);
6663 return false; // Ignore RHS
6664 }
6665 } else {
6666 LHSResult.Failed = true;
6667
6668 // Since we weren't able to evaluate the left hand side, it
6669 // must have had side effects.
6670 if (!Info.noteSideEffect())
6671 return false;
6672
6673 // We can't evaluate the LHS; however, sometimes the result
6674 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6675 // Don't ignore RHS and suppress diagnostics from this arm.
6676 SuppressRHSDiags = true;
6677 }
6678
6679 return true;
6680 }
6681
6682 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6683 E->getRHS()->getType()->isIntegralOrEnumerationType());
6684
6685 if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
6686 return false; // Ignore RHS;
6687
6688 return true;
6689 }
6690
6691 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)6692 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6693 const BinaryOperator *E, APValue &Result) {
6694 if (E->getOpcode() == BO_Comma) {
6695 if (RHSResult.Failed)
6696 return false;
6697 Result = RHSResult.Val;
6698 return true;
6699 }
6700
6701 if (E->isLogicalOp()) {
6702 bool lhsResult, rhsResult;
6703 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
6704 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
6705
6706 if (LHSIsOK) {
6707 if (RHSIsOK) {
6708 if (E->getOpcode() == BO_LOr)
6709 return Success(lhsResult || rhsResult, E, Result);
6710 else
6711 return Success(lhsResult && rhsResult, E, Result);
6712 }
6713 } else {
6714 if (RHSIsOK) {
6715 // We can't evaluate the LHS; however, sometimes the result
6716 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
6717 if (rhsResult == (E->getOpcode() == BO_LOr))
6718 return Success(rhsResult, E, Result);
6719 }
6720 }
6721
6722 return false;
6723 }
6724
6725 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6726 E->getRHS()->getType()->isIntegralOrEnumerationType());
6727
6728 if (LHSResult.Failed || RHSResult.Failed)
6729 return false;
6730
6731 const APValue &LHSVal = LHSResult.Val;
6732 const APValue &RHSVal = RHSResult.Val;
6733
6734 // Handle cases like (unsigned long)&a + 4.
6735 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
6736 Result = LHSVal;
6737 CharUnits AdditionalOffset =
6738 CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
6739 if (E->getOpcode() == BO_Add)
6740 Result.getLValueOffset() += AdditionalOffset;
6741 else
6742 Result.getLValueOffset() -= AdditionalOffset;
6743 return true;
6744 }
6745
6746 // Handle cases like 4 + (unsigned long)&a
6747 if (E->getOpcode() == BO_Add &&
6748 RHSVal.isLValue() && LHSVal.isInt()) {
6749 Result = RHSVal;
6750 Result.getLValueOffset() +=
6751 CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
6752 return true;
6753 }
6754
6755 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
6756 // Handle (intptr_t)&&A - (intptr_t)&&B.
6757 if (!LHSVal.getLValueOffset().isZero() ||
6758 !RHSVal.getLValueOffset().isZero())
6759 return false;
6760 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
6761 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
6762 if (!LHSExpr || !RHSExpr)
6763 return false;
6764 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6765 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6766 if (!LHSAddrExpr || !RHSAddrExpr)
6767 return false;
6768 // Make sure both labels come from the same function.
6769 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6770 RHSAddrExpr->getLabel()->getDeclContext())
6771 return false;
6772 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6773 return true;
6774 }
6775
6776 // All the remaining cases expect both operands to be an integer
6777 if (!LHSVal.isInt() || !RHSVal.isInt())
6778 return Error(E);
6779
6780 // Set up the width and signedness manually, in case it can't be deduced
6781 // from the operation we're performing.
6782 // FIXME: Don't do this in the cases where we can deduce it.
6783 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
6784 E->getType()->isUnsignedIntegerOrEnumerationType());
6785 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
6786 RHSVal.getInt(), Value))
6787 return false;
6788 return Success(Value, E, Result);
6789 }
6790
process(EvalResult & Result)6791 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
6792 Job &job = Queue.back();
6793
6794 switch (job.Kind) {
6795 case Job::AnyExprKind: {
6796 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
6797 if (shouldEnqueue(Bop)) {
6798 job.Kind = Job::BinOpKind;
6799 enqueue(Bop->getLHS());
6800 return;
6801 }
6802 }
6803
6804 EvaluateExpr(job.E, Result);
6805 Queue.pop_back();
6806 return;
6807 }
6808
6809 case Job::BinOpKind: {
6810 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6811 bool SuppressRHSDiags = false;
6812 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
6813 Queue.pop_back();
6814 return;
6815 }
6816 if (SuppressRHSDiags)
6817 job.startSpeculativeEval(Info);
6818 job.LHSResult.swap(Result);
6819 job.Kind = Job::BinOpVisitedLHSKind;
6820 enqueue(Bop->getRHS());
6821 return;
6822 }
6823
6824 case Job::BinOpVisitedLHSKind: {
6825 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
6826 EvalResult RHS;
6827 RHS.swap(Result);
6828 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
6829 Queue.pop_back();
6830 return;
6831 }
6832 }
6833
6834 llvm_unreachable("Invalid Job::Kind!");
6835 }
6836
VisitBinaryOperator(const BinaryOperator * E)6837 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
6838 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
6839 return Error(E);
6840
6841 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
6842 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
6843
6844 QualType LHSTy = E->getLHS()->getType();
6845 QualType RHSTy = E->getRHS()->getType();
6846
6847 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
6848 ComplexValue LHS, RHS;
6849 bool LHSOK;
6850 if (E->isAssignmentOp()) {
6851 LValue LV;
6852 EvaluateLValue(E->getLHS(), LV, Info);
6853 LHSOK = false;
6854 } else if (LHSTy->isRealFloatingType()) {
6855 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
6856 if (LHSOK) {
6857 LHS.makeComplexFloat();
6858 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
6859 }
6860 } else {
6861 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
6862 }
6863 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6864 return false;
6865
6866 if (E->getRHS()->getType()->isRealFloatingType()) {
6867 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
6868 return false;
6869 RHS.makeComplexFloat();
6870 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
6871 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
6872 return false;
6873
6874 if (LHS.isComplexFloat()) {
6875 APFloat::cmpResult CR_r =
6876 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
6877 APFloat::cmpResult CR_i =
6878 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
6879
6880 if (E->getOpcode() == BO_EQ)
6881 return Success((CR_r == APFloat::cmpEqual &&
6882 CR_i == APFloat::cmpEqual), E);
6883 else {
6884 assert(E->getOpcode() == BO_NE &&
6885 "Invalid complex comparison.");
6886 return Success(((CR_r == APFloat::cmpGreaterThan ||
6887 CR_r == APFloat::cmpLessThan ||
6888 CR_r == APFloat::cmpUnordered) ||
6889 (CR_i == APFloat::cmpGreaterThan ||
6890 CR_i == APFloat::cmpLessThan ||
6891 CR_i == APFloat::cmpUnordered)), E);
6892 }
6893 } else {
6894 if (E->getOpcode() == BO_EQ)
6895 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
6896 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
6897 else {
6898 assert(E->getOpcode() == BO_NE &&
6899 "Invalid compex comparison.");
6900 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
6901 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
6902 }
6903 }
6904 }
6905
6906 if (LHSTy->isRealFloatingType() &&
6907 RHSTy->isRealFloatingType()) {
6908 APFloat RHS(0.0), LHS(0.0);
6909
6910 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
6911 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
6912 return false;
6913
6914 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
6915 return false;
6916
6917 APFloat::cmpResult CR = LHS.compare(RHS);
6918
6919 switch (E->getOpcode()) {
6920 default:
6921 llvm_unreachable("Invalid binary operator!");
6922 case BO_LT:
6923 return Success(CR == APFloat::cmpLessThan, E);
6924 case BO_GT:
6925 return Success(CR == APFloat::cmpGreaterThan, E);
6926 case BO_LE:
6927 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
6928 case BO_GE:
6929 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
6930 E);
6931 case BO_EQ:
6932 return Success(CR == APFloat::cmpEqual, E);
6933 case BO_NE:
6934 return Success(CR == APFloat::cmpGreaterThan
6935 || CR == APFloat::cmpLessThan
6936 || CR == APFloat::cmpUnordered, E);
6937 }
6938 }
6939
6940 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
6941 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
6942 LValue LHSValue, RHSValue;
6943
6944 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
6945 if (!LHSOK && Info.keepEvaluatingAfterFailure())
6946 return false;
6947
6948 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
6949 return false;
6950
6951 // Reject differing bases from the normal codepath; we special-case
6952 // comparisons to null.
6953 if (!HasSameBase(LHSValue, RHSValue)) {
6954 if (E->getOpcode() == BO_Sub) {
6955 // Handle &&A - &&B.
6956 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
6957 return false;
6958 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
6959 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
6960 if (!LHSExpr || !RHSExpr)
6961 return false;
6962 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
6963 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
6964 if (!LHSAddrExpr || !RHSAddrExpr)
6965 return false;
6966 // Make sure both labels come from the same function.
6967 if (LHSAddrExpr->getLabel()->getDeclContext() !=
6968 RHSAddrExpr->getLabel()->getDeclContext())
6969 return false;
6970 Result = APValue(LHSAddrExpr, RHSAddrExpr);
6971 return true;
6972 }
6973 // Inequalities and subtractions between unrelated pointers have
6974 // unspecified or undefined behavior.
6975 if (!E->isEqualityOp())
6976 return Error(E);
6977 // A constant address may compare equal to the address of a symbol.
6978 // The one exception is that address of an object cannot compare equal
6979 // to a null pointer constant.
6980 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
6981 (!RHSValue.Base && !RHSValue.Offset.isZero()))
6982 return Error(E);
6983 // It's implementation-defined whether distinct literals will have
6984 // distinct addresses. In clang, the result of such a comparison is
6985 // unspecified, so it is not a constant expression. However, we do know
6986 // that the address of a literal will be non-null.
6987 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
6988 LHSValue.Base && RHSValue.Base)
6989 return Error(E);
6990 // We can't tell whether weak symbols will end up pointing to the same
6991 // object.
6992 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
6993 return Error(E);
6994 // We can't compare the address of the start of one object with the
6995 // past-the-end address of another object, per C++ DR1652.
6996 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
6997 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
6998 (RHSValue.Base && RHSValue.Offset.isZero() &&
6999 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7000 return Error(E);
7001 // We can't tell whether an object is at the same address as another
7002 // zero sized object.
7003 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7004 (LHSValue.Base && isZeroSized(RHSValue)))
7005 return Error(E);
7006 // Pointers with different bases cannot represent the same object.
7007 // (Note that clang defaults to -fmerge-all-constants, which can
7008 // lead to inconsistent results for comparisons involving the address
7009 // of a constant; this generally doesn't matter in practice.)
7010 return Success(E->getOpcode() == BO_NE, E);
7011 }
7012
7013 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7014 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7015
7016 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7017 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7018
7019 if (E->getOpcode() == BO_Sub) {
7020 // C++11 [expr.add]p6:
7021 // Unless both pointers point to elements of the same array object, or
7022 // one past the last element of the array object, the behavior is
7023 // undefined.
7024 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7025 !AreElementsOfSameArray(getType(LHSValue.Base),
7026 LHSDesignator, RHSDesignator))
7027 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7028
7029 QualType Type = E->getLHS()->getType();
7030 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7031
7032 CharUnits ElementSize;
7033 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7034 return false;
7035
7036 // As an extension, a type may have zero size (empty struct or union in
7037 // C, array of zero length). Pointer subtraction in such cases has
7038 // undefined behavior, so is not constant.
7039 if (ElementSize.isZero()) {
7040 Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7041 << ElementType;
7042 return false;
7043 }
7044
7045 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7046 // and produce incorrect results when it overflows. Such behavior
7047 // appears to be non-conforming, but is common, so perhaps we should
7048 // assume the standard intended for such cases to be undefined behavior
7049 // and check for them.
7050
7051 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7052 // overflow in the final conversion to ptrdiff_t.
7053 APSInt LHS(
7054 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7055 APSInt RHS(
7056 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7057 APSInt ElemSize(
7058 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7059 APSInt TrueResult = (LHS - RHS) / ElemSize;
7060 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7061
7062 if (Result.extend(65) != TrueResult)
7063 HandleOverflow(Info, E, TrueResult, E->getType());
7064 return Success(Result, E);
7065 }
7066
7067 // C++11 [expr.rel]p3:
7068 // Pointers to void (after pointer conversions) can be compared, with a
7069 // result defined as follows: If both pointers represent the same
7070 // address or are both the null pointer value, the result is true if the
7071 // operator is <= or >= and false otherwise; otherwise the result is
7072 // unspecified.
7073 // We interpret this as applying to pointers to *cv* void.
7074 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7075 E->isRelationalOp())
7076 CCEDiag(E, diag::note_constexpr_void_comparison);
7077
7078 // C++11 [expr.rel]p2:
7079 // - If two pointers point to non-static data members of the same object,
7080 // or to subobjects or array elements fo such members, recursively, the
7081 // pointer to the later declared member compares greater provided the
7082 // two members have the same access control and provided their class is
7083 // not a union.
7084 // [...]
7085 // - Otherwise pointer comparisons are unspecified.
7086 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7087 E->isRelationalOp()) {
7088 bool WasArrayIndex;
7089 unsigned Mismatch =
7090 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7091 RHSDesignator, WasArrayIndex);
7092 // At the point where the designators diverge, the comparison has a
7093 // specified value if:
7094 // - we are comparing array indices
7095 // - we are comparing fields of a union, or fields with the same access
7096 // Otherwise, the result is unspecified and thus the comparison is not a
7097 // constant expression.
7098 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7099 Mismatch < RHSDesignator.Entries.size()) {
7100 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7101 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7102 if (!LF && !RF)
7103 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7104 else if (!LF)
7105 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7106 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7107 << RF->getParent() << RF;
7108 else if (!RF)
7109 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7110 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7111 << LF->getParent() << LF;
7112 else if (!LF->getParent()->isUnion() &&
7113 LF->getAccess() != RF->getAccess())
7114 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7115 << LF << LF->getAccess() << RF << RF->getAccess()
7116 << LF->getParent();
7117 }
7118 }
7119
7120 // The comparison here must be unsigned, and performed with the same
7121 // width as the pointer.
7122 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7123 uint64_t CompareLHS = LHSOffset.getQuantity();
7124 uint64_t CompareRHS = RHSOffset.getQuantity();
7125 assert(PtrSize <= 64 && "Unexpected pointer width");
7126 uint64_t Mask = ~0ULL >> (64 - PtrSize);
7127 CompareLHS &= Mask;
7128 CompareRHS &= Mask;
7129
7130 // If there is a base and this is a relational operator, we can only
7131 // compare pointers within the object in question; otherwise, the result
7132 // depends on where the object is located in memory.
7133 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7134 QualType BaseTy = getType(LHSValue.Base);
7135 if (BaseTy->isIncompleteType())
7136 return Error(E);
7137 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7138 uint64_t OffsetLimit = Size.getQuantity();
7139 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7140 return Error(E);
7141 }
7142
7143 switch (E->getOpcode()) {
7144 default: llvm_unreachable("missing comparison operator");
7145 case BO_LT: return Success(CompareLHS < CompareRHS, E);
7146 case BO_GT: return Success(CompareLHS > CompareRHS, E);
7147 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7148 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7149 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7150 case BO_NE: return Success(CompareLHS != CompareRHS, E);
7151 }
7152 }
7153 }
7154
7155 if (LHSTy->isMemberPointerType()) {
7156 assert(E->isEqualityOp() && "unexpected member pointer operation");
7157 assert(RHSTy->isMemberPointerType() && "invalid comparison");
7158
7159 MemberPtr LHSValue, RHSValue;
7160
7161 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7162 if (!LHSOK && Info.keepEvaluatingAfterFailure())
7163 return false;
7164
7165 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7166 return false;
7167
7168 // C++11 [expr.eq]p2:
7169 // If both operands are null, they compare equal. Otherwise if only one is
7170 // null, they compare unequal.
7171 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7172 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7173 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7174 }
7175
7176 // Otherwise if either is a pointer to a virtual member function, the
7177 // result is unspecified.
7178 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7179 if (MD->isVirtual())
7180 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7181 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7182 if (MD->isVirtual())
7183 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7184
7185 // Otherwise they compare equal if and only if they would refer to the
7186 // same member of the same most derived object or the same subobject if
7187 // they were dereferenced with a hypothetical object of the associated
7188 // class type.
7189 bool Equal = LHSValue == RHSValue;
7190 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7191 }
7192
7193 if (LHSTy->isNullPtrType()) {
7194 assert(E->isComparisonOp() && "unexpected nullptr operation");
7195 assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7196 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7197 // are compared, the result is true of the operator is <=, >= or ==, and
7198 // false otherwise.
7199 BinaryOperator::Opcode Opcode = E->getOpcode();
7200 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7201 }
7202
7203 assert((!LHSTy->isIntegralOrEnumerationType() ||
7204 !RHSTy->isIntegralOrEnumerationType()) &&
7205 "DataRecursiveIntBinOpEvaluator should have handled integral types");
7206 // We can't continue from here for non-integral types.
7207 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7208 }
7209
7210 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7211 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)7212 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7213 const UnaryExprOrTypeTraitExpr *E) {
7214 switch(E->getKind()) {
7215 case UETT_AlignOf: {
7216 if (E->isArgumentType())
7217 return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7218 else
7219 return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7220 }
7221
7222 case UETT_VecStep: {
7223 QualType Ty = E->getTypeOfArgument();
7224
7225 if (Ty->isVectorType()) {
7226 unsigned n = Ty->castAs<VectorType>()->getNumElements();
7227
7228 // The vec_step built-in functions that take a 3-component
7229 // vector return 4. (OpenCL 1.1 spec 6.11.12)
7230 if (n == 3)
7231 n = 4;
7232
7233 return Success(n, E);
7234 } else
7235 return Success(1, E);
7236 }
7237
7238 case UETT_SizeOf: {
7239 QualType SrcTy = E->getTypeOfArgument();
7240 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7241 // the result is the size of the referenced type."
7242 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7243 SrcTy = Ref->getPointeeType();
7244
7245 CharUnits Sizeof;
7246 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7247 return false;
7248 return Success(Sizeof, E);
7249 }
7250 }
7251
7252 llvm_unreachable("unknown expr/type trait");
7253 }
7254
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7255 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7256 CharUnits Result;
7257 unsigned n = OOE->getNumComponents();
7258 if (n == 0)
7259 return Error(OOE);
7260 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7261 for (unsigned i = 0; i != n; ++i) {
7262 OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
7263 switch (ON.getKind()) {
7264 case OffsetOfExpr::OffsetOfNode::Array: {
7265 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7266 APSInt IdxResult;
7267 if (!EvaluateInteger(Idx, IdxResult, Info))
7268 return false;
7269 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7270 if (!AT)
7271 return Error(OOE);
7272 CurrentType = AT->getElementType();
7273 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7274 Result += IdxResult.getSExtValue() * ElementSize;
7275 break;
7276 }
7277
7278 case OffsetOfExpr::OffsetOfNode::Field: {
7279 FieldDecl *MemberDecl = ON.getField();
7280 const RecordType *RT = CurrentType->getAs<RecordType>();
7281 if (!RT)
7282 return Error(OOE);
7283 RecordDecl *RD = RT->getDecl();
7284 if (RD->isInvalidDecl()) return false;
7285 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7286 unsigned i = MemberDecl->getFieldIndex();
7287 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7288 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7289 CurrentType = MemberDecl->getType().getNonReferenceType();
7290 break;
7291 }
7292
7293 case OffsetOfExpr::OffsetOfNode::Identifier:
7294 llvm_unreachable("dependent __builtin_offsetof");
7295
7296 case OffsetOfExpr::OffsetOfNode::Base: {
7297 CXXBaseSpecifier *BaseSpec = ON.getBase();
7298 if (BaseSpec->isVirtual())
7299 return Error(OOE);
7300
7301 // Find the layout of the class whose base we are looking into.
7302 const RecordType *RT = CurrentType->getAs<RecordType>();
7303 if (!RT)
7304 return Error(OOE);
7305 RecordDecl *RD = RT->getDecl();
7306 if (RD->isInvalidDecl()) return false;
7307 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7308
7309 // Find the base class itself.
7310 CurrentType = BaseSpec->getType();
7311 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7312 if (!BaseRT)
7313 return Error(OOE);
7314
7315 // Add the offset to the base.
7316 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7317 break;
7318 }
7319 }
7320 }
7321 return Success(Result, OOE);
7322 }
7323
VisitUnaryOperator(const UnaryOperator * E)7324 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7325 switch (E->getOpcode()) {
7326 default:
7327 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7328 // See C99 6.6p3.
7329 return Error(E);
7330 case UO_Extension:
7331 // FIXME: Should extension allow i-c-e extension expressions in its scope?
7332 // If so, we could clear the diagnostic ID.
7333 return Visit(E->getSubExpr());
7334 case UO_Plus:
7335 // The result is just the value.
7336 return Visit(E->getSubExpr());
7337 case UO_Minus: {
7338 if (!Visit(E->getSubExpr()))
7339 return false;
7340 if (!Result.isInt()) return Error(E);
7341 const APSInt &Value = Result.getInt();
7342 if (Value.isSigned() && Value.isMinSignedValue())
7343 HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7344 E->getType());
7345 return Success(-Value, E);
7346 }
7347 case UO_Not: {
7348 if (!Visit(E->getSubExpr()))
7349 return false;
7350 if (!Result.isInt()) return Error(E);
7351 return Success(~Result.getInt(), E);
7352 }
7353 case UO_LNot: {
7354 bool bres;
7355 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7356 return false;
7357 return Success(!bres, E);
7358 }
7359 }
7360 }
7361
7362 /// HandleCast - This is used to evaluate implicit or explicit casts where the
7363 /// result type is integer.
VisitCastExpr(const CastExpr * E)7364 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7365 const Expr *SubExpr = E->getSubExpr();
7366 QualType DestType = E->getType();
7367 QualType SrcType = SubExpr->getType();
7368
7369 switch (E->getCastKind()) {
7370 case CK_BaseToDerived:
7371 case CK_DerivedToBase:
7372 case CK_UncheckedDerivedToBase:
7373 case CK_Dynamic:
7374 case CK_ToUnion:
7375 case CK_ArrayToPointerDecay:
7376 case CK_FunctionToPointerDecay:
7377 case CK_NullToPointer:
7378 case CK_NullToMemberPointer:
7379 case CK_BaseToDerivedMemberPointer:
7380 case CK_DerivedToBaseMemberPointer:
7381 case CK_ReinterpretMemberPointer:
7382 case CK_ConstructorConversion:
7383 case CK_IntegralToPointer:
7384 case CK_ToVoid:
7385 case CK_VectorSplat:
7386 case CK_IntegralToFloating:
7387 case CK_FloatingCast:
7388 case CK_CPointerToObjCPointerCast:
7389 case CK_BlockPointerToObjCPointerCast:
7390 case CK_AnyPointerToBlockPointerCast:
7391 case CK_ObjCObjectLValueCast:
7392 case CK_FloatingRealToComplex:
7393 case CK_FloatingComplexToReal:
7394 case CK_FloatingComplexCast:
7395 case CK_FloatingComplexToIntegralComplex:
7396 case CK_IntegralRealToComplex:
7397 case CK_IntegralComplexCast:
7398 case CK_IntegralComplexToFloatingComplex:
7399 case CK_BuiltinFnToFnPtr:
7400 case CK_ZeroToOCLEvent:
7401 case CK_NonAtomicToAtomic:
7402 case CK_AddressSpaceConversion:
7403 llvm_unreachable("invalid cast kind for integral value");
7404
7405 case CK_BitCast:
7406 case CK_Dependent:
7407 case CK_LValueBitCast:
7408 case CK_ARCProduceObject:
7409 case CK_ARCConsumeObject:
7410 case CK_ARCReclaimReturnedObject:
7411 case CK_ARCExtendBlockObject:
7412 case CK_CopyAndAutoreleaseBlockObject:
7413 return Error(E);
7414
7415 case CK_UserDefinedConversion:
7416 case CK_LValueToRValue:
7417 case CK_AtomicToNonAtomic:
7418 case CK_NoOp:
7419 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7420
7421 case CK_MemberPointerToBoolean:
7422 case CK_PointerToBoolean:
7423 case CK_IntegralToBoolean:
7424 case CK_FloatingToBoolean:
7425 case CK_FloatingComplexToBoolean:
7426 case CK_IntegralComplexToBoolean: {
7427 bool BoolResult;
7428 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7429 return false;
7430 return Success(BoolResult, E);
7431 }
7432
7433 case CK_IntegralCast: {
7434 if (!Visit(SubExpr))
7435 return false;
7436
7437 if (!Result.isInt()) {
7438 // Allow casts of address-of-label differences if they are no-ops
7439 // or narrowing. (The narrowing case isn't actually guaranteed to
7440 // be constant-evaluatable except in some narrow cases which are hard
7441 // to detect here. We let it through on the assumption the user knows
7442 // what they are doing.)
7443 if (Result.isAddrLabelDiff())
7444 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7445 // Only allow casts of lvalues if they are lossless.
7446 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7447 }
7448
7449 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7450 Result.getInt()), E);
7451 }
7452
7453 case CK_PointerToIntegral: {
7454 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7455
7456 LValue LV;
7457 if (!EvaluatePointer(SubExpr, LV, Info))
7458 return false;
7459
7460 if (LV.getLValueBase()) {
7461 // Only allow based lvalue casts if they are lossless.
7462 // FIXME: Allow a larger integer size than the pointer size, and allow
7463 // narrowing back down to pointer width in subsequent integral casts.
7464 // FIXME: Check integer type's active bits, not its type size.
7465 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7466 return Error(E);
7467
7468 LV.Designator.setInvalid();
7469 LV.moveInto(Result);
7470 return true;
7471 }
7472
7473 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
7474 SrcType);
7475 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7476 }
7477
7478 case CK_IntegralComplexToReal: {
7479 ComplexValue C;
7480 if (!EvaluateComplex(SubExpr, C, Info))
7481 return false;
7482 return Success(C.getComplexIntReal(), E);
7483 }
7484
7485 case CK_FloatingToIntegral: {
7486 APFloat F(0.0);
7487 if (!EvaluateFloat(SubExpr, F, Info))
7488 return false;
7489
7490 APSInt Value;
7491 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7492 return false;
7493 return Success(Value, E);
7494 }
7495 }
7496
7497 llvm_unreachable("unknown cast resulting in integral value");
7498 }
7499
VisitUnaryReal(const UnaryOperator * E)7500 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7501 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7502 ComplexValue LV;
7503 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7504 return false;
7505 if (!LV.isComplexInt())
7506 return Error(E);
7507 return Success(LV.getComplexIntReal(), E);
7508 }
7509
7510 return Visit(E->getSubExpr());
7511 }
7512
VisitUnaryImag(const UnaryOperator * E)7513 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7514 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7515 ComplexValue LV;
7516 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7517 return false;
7518 if (!LV.isComplexInt())
7519 return Error(E);
7520 return Success(LV.getComplexIntImag(), E);
7521 }
7522
7523 VisitIgnoredValue(E->getSubExpr());
7524 return Success(0, E);
7525 }
7526
VisitSizeOfPackExpr(const SizeOfPackExpr * E)7527 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7528 return Success(E->getPackLength(), E);
7529 }
7530
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)7531 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7532 return Success(E->getValue(), E);
7533 }
7534
7535 //===----------------------------------------------------------------------===//
7536 // Float Evaluation
7537 //===----------------------------------------------------------------------===//
7538
7539 namespace {
7540 class FloatExprEvaluator
7541 : public ExprEvaluatorBase<FloatExprEvaluator> {
7542 APFloat &Result;
7543 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)7544 FloatExprEvaluator(EvalInfo &info, APFloat &result)
7545 : ExprEvaluatorBaseTy(info), Result(result) {}
7546
Success(const APValue & V,const Expr * e)7547 bool Success(const APValue &V, const Expr *e) {
7548 Result = V.getFloat();
7549 return true;
7550 }
7551
ZeroInitialization(const Expr * E)7552 bool ZeroInitialization(const Expr *E) {
7553 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7554 return true;
7555 }
7556
7557 bool VisitCallExpr(const CallExpr *E);
7558
7559 bool VisitUnaryOperator(const UnaryOperator *E);
7560 bool VisitBinaryOperator(const BinaryOperator *E);
7561 bool VisitFloatingLiteral(const FloatingLiteral *E);
7562 bool VisitCastExpr(const CastExpr *E);
7563
7564 bool VisitUnaryReal(const UnaryOperator *E);
7565 bool VisitUnaryImag(const UnaryOperator *E);
7566
7567 // FIXME: Missing: array subscript of vector, member of vector
7568 };
7569 } // end anonymous namespace
7570
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)7571 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7572 assert(E->isRValue() && E->getType()->isRealFloatingType());
7573 return FloatExprEvaluator(Info, Result).Visit(E);
7574 }
7575
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)7576 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7577 QualType ResultTy,
7578 const Expr *Arg,
7579 bool SNaN,
7580 llvm::APFloat &Result) {
7581 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7582 if (!S) return false;
7583
7584 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7585
7586 llvm::APInt fill;
7587
7588 // Treat empty strings as if they were zero.
7589 if (S->getString().empty())
7590 fill = llvm::APInt(32, 0);
7591 else if (S->getString().getAsInteger(0, fill))
7592 return false;
7593
7594 if (Context.getTargetInfo().isNan2008()) {
7595 if (SNaN)
7596 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7597 else
7598 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7599 } else {
7600 // Prior to IEEE 754-2008, architectures were allowed to choose whether
7601 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
7602 // a different encoding to what became a standard in 2008, and for pre-
7603 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
7604 // sNaN. This is now known as "legacy NaN" encoding.
7605 if (SNaN)
7606 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7607 else
7608 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7609 }
7610
7611 return true;
7612 }
7613
VisitCallExpr(const CallExpr * E)7614 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7615 switch (E->getBuiltinCallee()) {
7616 default:
7617 return ExprEvaluatorBaseTy::VisitCallExpr(E);
7618
7619 case Builtin::BI__builtin_huge_val:
7620 case Builtin::BI__builtin_huge_valf:
7621 case Builtin::BI__builtin_huge_vall:
7622 case Builtin::BI__builtin_inf:
7623 case Builtin::BI__builtin_inff:
7624 case Builtin::BI__builtin_infl: {
7625 const llvm::fltSemantics &Sem =
7626 Info.Ctx.getFloatTypeSemantics(E->getType());
7627 Result = llvm::APFloat::getInf(Sem);
7628 return true;
7629 }
7630
7631 case Builtin::BI__builtin_nans:
7632 case Builtin::BI__builtin_nansf:
7633 case Builtin::BI__builtin_nansl:
7634 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7635 true, Result))
7636 return Error(E);
7637 return true;
7638
7639 case Builtin::BI__builtin_nan:
7640 case Builtin::BI__builtin_nanf:
7641 case Builtin::BI__builtin_nanl:
7642 // If this is __builtin_nan() turn this into a nan, otherwise we
7643 // can't constant fold it.
7644 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7645 false, Result))
7646 return Error(E);
7647 return true;
7648
7649 case Builtin::BI__builtin_fabs:
7650 case Builtin::BI__builtin_fabsf:
7651 case Builtin::BI__builtin_fabsl:
7652 if (!EvaluateFloat(E->getArg(0), Result, Info))
7653 return false;
7654
7655 if (Result.isNegative())
7656 Result.changeSign();
7657 return true;
7658
7659 // FIXME: Builtin::BI__builtin_powi
7660 // FIXME: Builtin::BI__builtin_powif
7661 // FIXME: Builtin::BI__builtin_powil
7662
7663 case Builtin::BI__builtin_copysign:
7664 case Builtin::BI__builtin_copysignf:
7665 case Builtin::BI__builtin_copysignl: {
7666 APFloat RHS(0.);
7667 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
7668 !EvaluateFloat(E->getArg(1), RHS, Info))
7669 return false;
7670 Result.copySign(RHS);
7671 return true;
7672 }
7673 }
7674 }
7675
VisitUnaryReal(const UnaryOperator * E)7676 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7677 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7678 ComplexValue CV;
7679 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7680 return false;
7681 Result = CV.FloatReal;
7682 return true;
7683 }
7684
7685 return Visit(E->getSubExpr());
7686 }
7687
VisitUnaryImag(const UnaryOperator * E)7688 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7689 if (E->getSubExpr()->getType()->isAnyComplexType()) {
7690 ComplexValue CV;
7691 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
7692 return false;
7693 Result = CV.FloatImag;
7694 return true;
7695 }
7696
7697 VisitIgnoredValue(E->getSubExpr());
7698 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
7699 Result = llvm::APFloat::getZero(Sem);
7700 return true;
7701 }
7702
VisitUnaryOperator(const UnaryOperator * E)7703 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7704 switch (E->getOpcode()) {
7705 default: return Error(E);
7706 case UO_Plus:
7707 return EvaluateFloat(E->getSubExpr(), Result, Info);
7708 case UO_Minus:
7709 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
7710 return false;
7711 Result.changeSign();
7712 return true;
7713 }
7714 }
7715
VisitBinaryOperator(const BinaryOperator * E)7716 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7717 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7718 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7719
7720 APFloat RHS(0.0);
7721 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
7722 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7723 return false;
7724 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
7725 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
7726 }
7727
VisitFloatingLiteral(const FloatingLiteral * E)7728 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
7729 Result = E->getValue();
7730 return true;
7731 }
7732
VisitCastExpr(const CastExpr * E)7733 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
7734 const Expr* SubExpr = E->getSubExpr();
7735
7736 switch (E->getCastKind()) {
7737 default:
7738 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7739
7740 case CK_IntegralToFloating: {
7741 APSInt IntResult;
7742 return EvaluateInteger(SubExpr, IntResult, Info) &&
7743 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
7744 E->getType(), Result);
7745 }
7746
7747 case CK_FloatingCast: {
7748 if (!Visit(SubExpr))
7749 return false;
7750 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
7751 Result);
7752 }
7753
7754 case CK_FloatingComplexToReal: {
7755 ComplexValue V;
7756 if (!EvaluateComplex(SubExpr, V, Info))
7757 return false;
7758 Result = V.getComplexFloatReal();
7759 return true;
7760 }
7761 }
7762 }
7763
7764 //===----------------------------------------------------------------------===//
7765 // Complex Evaluation (for float and integer)
7766 //===----------------------------------------------------------------------===//
7767
7768 namespace {
7769 class ComplexExprEvaluator
7770 : public ExprEvaluatorBase<ComplexExprEvaluator> {
7771 ComplexValue &Result;
7772
7773 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)7774 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
7775 : ExprEvaluatorBaseTy(info), Result(Result) {}
7776
Success(const APValue & V,const Expr * e)7777 bool Success(const APValue &V, const Expr *e) {
7778 Result.setFrom(V);
7779 return true;
7780 }
7781
7782 bool ZeroInitialization(const Expr *E);
7783
7784 //===--------------------------------------------------------------------===//
7785 // Visitor Methods
7786 //===--------------------------------------------------------------------===//
7787
7788 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
7789 bool VisitCastExpr(const CastExpr *E);
7790 bool VisitBinaryOperator(const BinaryOperator *E);
7791 bool VisitUnaryOperator(const UnaryOperator *E);
7792 bool VisitInitListExpr(const InitListExpr *E);
7793 };
7794 } // end anonymous namespace
7795
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)7796 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
7797 EvalInfo &Info) {
7798 assert(E->isRValue() && E->getType()->isAnyComplexType());
7799 return ComplexExprEvaluator(Info, Result).Visit(E);
7800 }
7801
ZeroInitialization(const Expr * E)7802 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
7803 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
7804 if (ElemTy->isRealFloatingType()) {
7805 Result.makeComplexFloat();
7806 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
7807 Result.FloatReal = Zero;
7808 Result.FloatImag = Zero;
7809 } else {
7810 Result.makeComplexInt();
7811 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
7812 Result.IntReal = Zero;
7813 Result.IntImag = Zero;
7814 }
7815 return true;
7816 }
7817
VisitImaginaryLiteral(const ImaginaryLiteral * E)7818 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
7819 const Expr* SubExpr = E->getSubExpr();
7820
7821 if (SubExpr->getType()->isRealFloatingType()) {
7822 Result.makeComplexFloat();
7823 APFloat &Imag = Result.FloatImag;
7824 if (!EvaluateFloat(SubExpr, Imag, Info))
7825 return false;
7826
7827 Result.FloatReal = APFloat(Imag.getSemantics());
7828 return true;
7829 } else {
7830 assert(SubExpr->getType()->isIntegerType() &&
7831 "Unexpected imaginary literal.");
7832
7833 Result.makeComplexInt();
7834 APSInt &Imag = Result.IntImag;
7835 if (!EvaluateInteger(SubExpr, Imag, Info))
7836 return false;
7837
7838 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
7839 return true;
7840 }
7841 }
7842
VisitCastExpr(const CastExpr * E)7843 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
7844
7845 switch (E->getCastKind()) {
7846 case CK_BitCast:
7847 case CK_BaseToDerived:
7848 case CK_DerivedToBase:
7849 case CK_UncheckedDerivedToBase:
7850 case CK_Dynamic:
7851 case CK_ToUnion:
7852 case CK_ArrayToPointerDecay:
7853 case CK_FunctionToPointerDecay:
7854 case CK_NullToPointer:
7855 case CK_NullToMemberPointer:
7856 case CK_BaseToDerivedMemberPointer:
7857 case CK_DerivedToBaseMemberPointer:
7858 case CK_MemberPointerToBoolean:
7859 case CK_ReinterpretMemberPointer:
7860 case CK_ConstructorConversion:
7861 case CK_IntegralToPointer:
7862 case CK_PointerToIntegral:
7863 case CK_PointerToBoolean:
7864 case CK_ToVoid:
7865 case CK_VectorSplat:
7866 case CK_IntegralCast:
7867 case CK_IntegralToBoolean:
7868 case CK_IntegralToFloating:
7869 case CK_FloatingToIntegral:
7870 case CK_FloatingToBoolean:
7871 case CK_FloatingCast:
7872 case CK_CPointerToObjCPointerCast:
7873 case CK_BlockPointerToObjCPointerCast:
7874 case CK_AnyPointerToBlockPointerCast:
7875 case CK_ObjCObjectLValueCast:
7876 case CK_FloatingComplexToReal:
7877 case CK_FloatingComplexToBoolean:
7878 case CK_IntegralComplexToReal:
7879 case CK_IntegralComplexToBoolean:
7880 case CK_ARCProduceObject:
7881 case CK_ARCConsumeObject:
7882 case CK_ARCReclaimReturnedObject:
7883 case CK_ARCExtendBlockObject:
7884 case CK_CopyAndAutoreleaseBlockObject:
7885 case CK_BuiltinFnToFnPtr:
7886 case CK_ZeroToOCLEvent:
7887 case CK_NonAtomicToAtomic:
7888 case CK_AddressSpaceConversion:
7889 llvm_unreachable("invalid cast kind for complex value");
7890
7891 case CK_LValueToRValue:
7892 case CK_AtomicToNonAtomic:
7893 case CK_NoOp:
7894 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7895
7896 case CK_Dependent:
7897 case CK_LValueBitCast:
7898 case CK_UserDefinedConversion:
7899 return Error(E);
7900
7901 case CK_FloatingRealToComplex: {
7902 APFloat &Real = Result.FloatReal;
7903 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
7904 return false;
7905
7906 Result.makeComplexFloat();
7907 Result.FloatImag = APFloat(Real.getSemantics());
7908 return true;
7909 }
7910
7911 case CK_FloatingComplexCast: {
7912 if (!Visit(E->getSubExpr()))
7913 return false;
7914
7915 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7916 QualType From
7917 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7918
7919 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
7920 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
7921 }
7922
7923 case CK_FloatingComplexToIntegralComplex: {
7924 if (!Visit(E->getSubExpr()))
7925 return false;
7926
7927 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7928 QualType From
7929 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7930 Result.makeComplexInt();
7931 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
7932 To, Result.IntReal) &&
7933 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
7934 To, Result.IntImag);
7935 }
7936
7937 case CK_IntegralRealToComplex: {
7938 APSInt &Real = Result.IntReal;
7939 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
7940 return false;
7941
7942 Result.makeComplexInt();
7943 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
7944 return true;
7945 }
7946
7947 case CK_IntegralComplexCast: {
7948 if (!Visit(E->getSubExpr()))
7949 return false;
7950
7951 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
7952 QualType From
7953 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
7954
7955 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
7956 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
7957 return true;
7958 }
7959
7960 case CK_IntegralComplexToFloatingComplex: {
7961 if (!Visit(E->getSubExpr()))
7962 return false;
7963
7964 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
7965 QualType From
7966 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
7967 Result.makeComplexFloat();
7968 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
7969 To, Result.FloatReal) &&
7970 HandleIntToFloatCast(Info, E, From, Result.IntImag,
7971 To, Result.FloatImag);
7972 }
7973 }
7974
7975 llvm_unreachable("unknown cast resulting in complex value");
7976 }
7977
VisitBinaryOperator(const BinaryOperator * E)7978 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7979 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
7980 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7981
7982 // Track whether the LHS or RHS is real at the type system level. When this is
7983 // the case we can simplify our evaluation strategy.
7984 bool LHSReal = false, RHSReal = false;
7985
7986 bool LHSOK;
7987 if (E->getLHS()->getType()->isRealFloatingType()) {
7988 LHSReal = true;
7989 APFloat &Real = Result.FloatReal;
7990 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
7991 if (LHSOK) {
7992 Result.makeComplexFloat();
7993 Result.FloatImag = APFloat(Real.getSemantics());
7994 }
7995 } else {
7996 LHSOK = Visit(E->getLHS());
7997 }
7998 if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7999 return false;
8000
8001 ComplexValue RHS;
8002 if (E->getRHS()->getType()->isRealFloatingType()) {
8003 RHSReal = true;
8004 APFloat &Real = RHS.FloatReal;
8005 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8006 return false;
8007 RHS.makeComplexFloat();
8008 RHS.FloatImag = APFloat(Real.getSemantics());
8009 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8010 return false;
8011
8012 assert(!(LHSReal && RHSReal) &&
8013 "Cannot have both operands of a complex operation be real.");
8014 switch (E->getOpcode()) {
8015 default: return Error(E);
8016 case BO_Add:
8017 if (Result.isComplexFloat()) {
8018 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8019 APFloat::rmNearestTiesToEven);
8020 if (LHSReal)
8021 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8022 else if (!RHSReal)
8023 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8024 APFloat::rmNearestTiesToEven);
8025 } else {
8026 Result.getComplexIntReal() += RHS.getComplexIntReal();
8027 Result.getComplexIntImag() += RHS.getComplexIntImag();
8028 }
8029 break;
8030 case BO_Sub:
8031 if (Result.isComplexFloat()) {
8032 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8033 APFloat::rmNearestTiesToEven);
8034 if (LHSReal) {
8035 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8036 Result.getComplexFloatImag().changeSign();
8037 } else if (!RHSReal) {
8038 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8039 APFloat::rmNearestTiesToEven);
8040 }
8041 } else {
8042 Result.getComplexIntReal() -= RHS.getComplexIntReal();
8043 Result.getComplexIntImag() -= RHS.getComplexIntImag();
8044 }
8045 break;
8046 case BO_Mul:
8047 if (Result.isComplexFloat()) {
8048 // This is an implementation of complex multiplication according to the
8049 // constraints laid out in C11 Annex G. The implemantion uses the
8050 // following naming scheme:
8051 // (a + ib) * (c + id)
8052 ComplexValue LHS = Result;
8053 APFloat &A = LHS.getComplexFloatReal();
8054 APFloat &B = LHS.getComplexFloatImag();
8055 APFloat &C = RHS.getComplexFloatReal();
8056 APFloat &D = RHS.getComplexFloatImag();
8057 APFloat &ResR = Result.getComplexFloatReal();
8058 APFloat &ResI = Result.getComplexFloatImag();
8059 if (LHSReal) {
8060 assert(!RHSReal && "Cannot have two real operands for a complex op!");
8061 ResR = A * C;
8062 ResI = A * D;
8063 } else if (RHSReal) {
8064 ResR = C * A;
8065 ResI = C * B;
8066 } else {
8067 // In the fully general case, we need to handle NaNs and infinities
8068 // robustly.
8069 APFloat AC = A * C;
8070 APFloat BD = B * D;
8071 APFloat AD = A * D;
8072 APFloat BC = B * C;
8073 ResR = AC - BD;
8074 ResI = AD + BC;
8075 if (ResR.isNaN() && ResI.isNaN()) {
8076 bool Recalc = false;
8077 if (A.isInfinity() || B.isInfinity()) {
8078 A = APFloat::copySign(
8079 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8080 B = APFloat::copySign(
8081 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8082 if (C.isNaN())
8083 C = APFloat::copySign(APFloat(C.getSemantics()), C);
8084 if (D.isNaN())
8085 D = APFloat::copySign(APFloat(D.getSemantics()), D);
8086 Recalc = true;
8087 }
8088 if (C.isInfinity() || D.isInfinity()) {
8089 C = APFloat::copySign(
8090 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8091 D = APFloat::copySign(
8092 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8093 if (A.isNaN())
8094 A = APFloat::copySign(APFloat(A.getSemantics()), A);
8095 if (B.isNaN())
8096 B = APFloat::copySign(APFloat(B.getSemantics()), B);
8097 Recalc = true;
8098 }
8099 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8100 AD.isInfinity() || BC.isInfinity())) {
8101 if (A.isNaN())
8102 A = APFloat::copySign(APFloat(A.getSemantics()), A);
8103 if (B.isNaN())
8104 B = APFloat::copySign(APFloat(B.getSemantics()), B);
8105 if (C.isNaN())
8106 C = APFloat::copySign(APFloat(C.getSemantics()), C);
8107 if (D.isNaN())
8108 D = APFloat::copySign(APFloat(D.getSemantics()), D);
8109 Recalc = true;
8110 }
8111 if (Recalc) {
8112 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8113 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8114 }
8115 }
8116 }
8117 } else {
8118 ComplexValue LHS = Result;
8119 Result.getComplexIntReal() =
8120 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8121 LHS.getComplexIntImag() * RHS.getComplexIntImag());
8122 Result.getComplexIntImag() =
8123 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8124 LHS.getComplexIntImag() * RHS.getComplexIntReal());
8125 }
8126 break;
8127 case BO_Div:
8128 if (Result.isComplexFloat()) {
8129 // This is an implementation of complex division according to the
8130 // constraints laid out in C11 Annex G. The implemantion uses the
8131 // following naming scheme:
8132 // (a + ib) / (c + id)
8133 ComplexValue LHS = Result;
8134 APFloat &A = LHS.getComplexFloatReal();
8135 APFloat &B = LHS.getComplexFloatImag();
8136 APFloat &C = RHS.getComplexFloatReal();
8137 APFloat &D = RHS.getComplexFloatImag();
8138 APFloat &ResR = Result.getComplexFloatReal();
8139 APFloat &ResI = Result.getComplexFloatImag();
8140 if (RHSReal) {
8141 ResR = A / C;
8142 ResI = B / C;
8143 } else {
8144 if (LHSReal) {
8145 // No real optimizations we can do here, stub out with zero.
8146 B = APFloat::getZero(A.getSemantics());
8147 }
8148 int DenomLogB = 0;
8149 APFloat MaxCD = maxnum(abs(C), abs(D));
8150 if (MaxCD.isFinite()) {
8151 DenomLogB = ilogb(MaxCD);
8152 C = scalbn(C, -DenomLogB);
8153 D = scalbn(D, -DenomLogB);
8154 }
8155 APFloat Denom = C * C + D * D;
8156 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
8157 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
8158 if (ResR.isNaN() && ResI.isNaN()) {
8159 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8160 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8161 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8162 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8163 D.isFinite()) {
8164 A = APFloat::copySign(
8165 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8166 B = APFloat::copySign(
8167 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8168 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8169 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8170 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8171 C = APFloat::copySign(
8172 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8173 D = APFloat::copySign(
8174 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8175 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8176 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8177 }
8178 }
8179 }
8180 } else {
8181 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8182 return Error(E, diag::note_expr_divide_by_zero);
8183
8184 ComplexValue LHS = Result;
8185 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8186 RHS.getComplexIntImag() * RHS.getComplexIntImag();
8187 Result.getComplexIntReal() =
8188 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8189 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8190 Result.getComplexIntImag() =
8191 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8192 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8193 }
8194 break;
8195 }
8196
8197 return true;
8198 }
8199
VisitUnaryOperator(const UnaryOperator * E)8200 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8201 // Get the operand value into 'Result'.
8202 if (!Visit(E->getSubExpr()))
8203 return false;
8204
8205 switch (E->getOpcode()) {
8206 default:
8207 return Error(E);
8208 case UO_Extension:
8209 return true;
8210 case UO_Plus:
8211 // The result is always just the subexpr.
8212 return true;
8213 case UO_Minus:
8214 if (Result.isComplexFloat()) {
8215 Result.getComplexFloatReal().changeSign();
8216 Result.getComplexFloatImag().changeSign();
8217 }
8218 else {
8219 Result.getComplexIntReal() = -Result.getComplexIntReal();
8220 Result.getComplexIntImag() = -Result.getComplexIntImag();
8221 }
8222 return true;
8223 case UO_Not:
8224 if (Result.isComplexFloat())
8225 Result.getComplexFloatImag().changeSign();
8226 else
8227 Result.getComplexIntImag() = -Result.getComplexIntImag();
8228 return true;
8229 }
8230 }
8231
VisitInitListExpr(const InitListExpr * E)8232 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8233 if (E->getNumInits() == 2) {
8234 if (E->getType()->isComplexType()) {
8235 Result.makeComplexFloat();
8236 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8237 return false;
8238 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8239 return false;
8240 } else {
8241 Result.makeComplexInt();
8242 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8243 return false;
8244 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8245 return false;
8246 }
8247 return true;
8248 }
8249 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8250 }
8251
8252 //===----------------------------------------------------------------------===//
8253 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8254 // implicit conversion.
8255 //===----------------------------------------------------------------------===//
8256
8257 namespace {
8258 class AtomicExprEvaluator :
8259 public ExprEvaluatorBase<AtomicExprEvaluator> {
8260 APValue &Result;
8261 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)8262 AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8263 : ExprEvaluatorBaseTy(Info), Result(Result) {}
8264
Success(const APValue & V,const Expr * E)8265 bool Success(const APValue &V, const Expr *E) {
8266 Result = V;
8267 return true;
8268 }
8269
ZeroInitialization(const Expr * E)8270 bool ZeroInitialization(const Expr *E) {
8271 ImplicitValueInitExpr VIE(
8272 E->getType()->castAs<AtomicType>()->getValueType());
8273 return Evaluate(Result, Info, &VIE);
8274 }
8275
VisitCastExpr(const CastExpr * E)8276 bool VisitCastExpr(const CastExpr *E) {
8277 switch (E->getCastKind()) {
8278 default:
8279 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8280 case CK_NonAtomicToAtomic:
8281 return Evaluate(Result, Info, E->getSubExpr());
8282 }
8283 }
8284 };
8285 } // end anonymous namespace
8286
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)8287 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8288 assert(E->isRValue() && E->getType()->isAtomicType());
8289 return AtomicExprEvaluator(Info, Result).Visit(E);
8290 }
8291
8292 //===----------------------------------------------------------------------===//
8293 // Void expression evaluation, primarily for a cast to void on the LHS of a
8294 // comma operator
8295 //===----------------------------------------------------------------------===//
8296
8297 namespace {
8298 class VoidExprEvaluator
8299 : public ExprEvaluatorBase<VoidExprEvaluator> {
8300 public:
VoidExprEvaluator(EvalInfo & Info)8301 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8302
Success(const APValue & V,const Expr * e)8303 bool Success(const APValue &V, const Expr *e) { return true; }
8304
VisitCastExpr(const CastExpr * E)8305 bool VisitCastExpr(const CastExpr *E) {
8306 switch (E->getCastKind()) {
8307 default:
8308 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8309 case CK_ToVoid:
8310 VisitIgnoredValue(E->getSubExpr());
8311 return true;
8312 }
8313 }
8314
VisitCallExpr(const CallExpr * E)8315 bool VisitCallExpr(const CallExpr *E) {
8316 switch (E->getBuiltinCallee()) {
8317 default:
8318 return ExprEvaluatorBaseTy::VisitCallExpr(E);
8319 case Builtin::BI__assume:
8320 case Builtin::BI__builtin_assume:
8321 // The argument is not evaluated!
8322 return true;
8323 }
8324 }
8325 };
8326 } // end anonymous namespace
8327
EvaluateVoid(const Expr * E,EvalInfo & Info)8328 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8329 assert(E->isRValue() && E->getType()->isVoidType());
8330 return VoidExprEvaluator(Info).Visit(E);
8331 }
8332
8333 //===----------------------------------------------------------------------===//
8334 // Top level Expr::EvaluateAsRValue method.
8335 //===----------------------------------------------------------------------===//
8336
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)8337 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
8338 // In C, function designators are not lvalues, but we evaluate them as if they
8339 // are.
8340 QualType T = E->getType();
8341 if (E->isGLValue() || T->isFunctionType()) {
8342 LValue LV;
8343 if (!EvaluateLValue(E, LV, Info))
8344 return false;
8345 LV.moveInto(Result);
8346 } else if (T->isVectorType()) {
8347 if (!EvaluateVector(E, Result, Info))
8348 return false;
8349 } else if (T->isIntegralOrEnumerationType()) {
8350 if (!IntExprEvaluator(Info, Result).Visit(E))
8351 return false;
8352 } else if (T->hasPointerRepresentation()) {
8353 LValue LV;
8354 if (!EvaluatePointer(E, LV, Info))
8355 return false;
8356 LV.moveInto(Result);
8357 } else if (T->isRealFloatingType()) {
8358 llvm::APFloat F(0.0);
8359 if (!EvaluateFloat(E, F, Info))
8360 return false;
8361 Result = APValue(F);
8362 } else if (T->isAnyComplexType()) {
8363 ComplexValue C;
8364 if (!EvaluateComplex(E, C, Info))
8365 return false;
8366 C.moveInto(Result);
8367 } else if (T->isMemberPointerType()) {
8368 MemberPtr P;
8369 if (!EvaluateMemberPointer(E, P, Info))
8370 return false;
8371 P.moveInto(Result);
8372 return true;
8373 } else if (T->isArrayType()) {
8374 LValue LV;
8375 LV.set(E, Info.CurrentCall->Index);
8376 APValue &Value = Info.CurrentCall->createTemporary(E, false);
8377 if (!EvaluateArray(E, LV, Value, Info))
8378 return false;
8379 Result = Value;
8380 } else if (T->isRecordType()) {
8381 LValue LV;
8382 LV.set(E, Info.CurrentCall->Index);
8383 APValue &Value = Info.CurrentCall->createTemporary(E, false);
8384 if (!EvaluateRecord(E, LV, Value, Info))
8385 return false;
8386 Result = Value;
8387 } else if (T->isVoidType()) {
8388 if (!Info.getLangOpts().CPlusPlus11)
8389 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8390 << E->getType();
8391 if (!EvaluateVoid(E, Info))
8392 return false;
8393 } else if (T->isAtomicType()) {
8394 if (!EvaluateAtomic(E, Result, Info))
8395 return false;
8396 } else if (Info.getLangOpts().CPlusPlus11) {
8397 Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8398 return false;
8399 } else {
8400 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8401 return false;
8402 }
8403
8404 return true;
8405 }
8406
8407 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8408 /// cases, the in-place evaluation is essential, since later initializers for
8409 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)8410 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8411 const Expr *E, bool AllowNonLiteralTypes) {
8412 assert(!E->isValueDependent());
8413
8414 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8415 return false;
8416
8417 if (E->isRValue()) {
8418 // Evaluate arrays and record types in-place, so that later initializers can
8419 // refer to earlier-initialized members of the object.
8420 if (E->getType()->isArrayType())
8421 return EvaluateArray(E, This, Result, Info);
8422 else if (E->getType()->isRecordType())
8423 return EvaluateRecord(E, This, Result, Info);
8424 }
8425
8426 // For any other type, in-place evaluation is unimportant.
8427 return Evaluate(Result, Info, E);
8428 }
8429
8430 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8431 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)8432 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8433 if (E->getType().isNull())
8434 return false;
8435
8436 if (!CheckLiteralType(Info, E))
8437 return false;
8438
8439 if (!::Evaluate(Result, Info, E))
8440 return false;
8441
8442 if (E->isGLValue()) {
8443 LValue LV;
8444 LV.setFrom(Info.Ctx, Result);
8445 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8446 return false;
8447 }
8448
8449 // Check this core constant expression is a constant expression.
8450 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8451 }
8452
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)8453 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8454 const ASTContext &Ctx, bool &IsConst) {
8455 // Fast-path evaluations of integer literals, since we sometimes see files
8456 // containing vast quantities of these.
8457 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8458 Result.Val = APValue(APSInt(L->getValue(),
8459 L->getType()->isUnsignedIntegerType()));
8460 IsConst = true;
8461 return true;
8462 }
8463
8464 // This case should be rare, but we need to check it before we check on
8465 // the type below.
8466 if (Exp->getType().isNull()) {
8467 IsConst = false;
8468 return true;
8469 }
8470
8471 // FIXME: Evaluating values of large array and record types can cause
8472 // performance problems. Only do so in C++11 for now.
8473 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8474 Exp->getType()->isRecordType()) &&
8475 !Ctx.getLangOpts().CPlusPlus11) {
8476 IsConst = false;
8477 return true;
8478 }
8479 return false;
8480 }
8481
8482
8483 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
8484 /// any crazy technique (that has nothing to do with language standards) that
8485 /// we want to. If this function returns true, it returns the folded constant
8486 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8487 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const8488 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8489 bool IsConst;
8490 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8491 return IsConst;
8492
8493 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8494 return ::EvaluateAsRValue(Info, this, Result.Val);
8495 }
8496
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const8497 bool Expr::EvaluateAsBooleanCondition(bool &Result,
8498 const ASTContext &Ctx) const {
8499 EvalResult Scratch;
8500 return EvaluateAsRValue(Scratch, Ctx) &&
8501 HandleConversionToBool(Scratch.Val, Result);
8502 }
8503
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const8504 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8505 SideEffectsKind AllowSideEffects) const {
8506 if (!getType()->isIntegralOrEnumerationType())
8507 return false;
8508
8509 EvalResult ExprResult;
8510 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8511 (!AllowSideEffects && ExprResult.HasSideEffects))
8512 return false;
8513
8514 Result = ExprResult.Val.getInt();
8515 return true;
8516 }
8517
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const8518 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8519 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8520
8521 LValue LV;
8522 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8523 !CheckLValueConstantExpression(Info, getExprLoc(),
8524 Ctx.getLValueReferenceType(getType()), LV))
8525 return false;
8526
8527 LV.moveInto(Result.Val);
8528 return true;
8529 }
8530
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const8531 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8532 const VarDecl *VD,
8533 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8534 // FIXME: Evaluating initializers for large array and record types can cause
8535 // performance problems. Only do so in C++11 for now.
8536 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8537 !Ctx.getLangOpts().CPlusPlus11)
8538 return false;
8539
8540 Expr::EvalStatus EStatus;
8541 EStatus.Diag = &Notes;
8542
8543 EvalInfo InitInfo(Ctx, EStatus, EvalInfo::EM_ConstantFold);
8544 InitInfo.setEvaluatingDecl(VD, Value);
8545
8546 LValue LVal;
8547 LVal.set(VD);
8548
8549 // C++11 [basic.start.init]p2:
8550 // Variables with static storage duration or thread storage duration shall be
8551 // zero-initialized before any other initialization takes place.
8552 // This behavior is not present in C.
8553 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8554 !VD->getType()->isReferenceType()) {
8555 ImplicitValueInitExpr VIE(VD->getType());
8556 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8557 /*AllowNonLiteralTypes=*/true))
8558 return false;
8559 }
8560
8561 if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8562 /*AllowNonLiteralTypes=*/true) ||
8563 EStatus.HasSideEffects)
8564 return false;
8565
8566 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8567 Value);
8568 }
8569
8570 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8571 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx) const8572 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
8573 EvalResult Result;
8574 return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
8575 }
8576
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const8577 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8578 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8579 EvalResult EvalResult;
8580 EvalResult.Diag = Diag;
8581 bool Result = EvaluateAsRValue(EvalResult, Ctx);
8582 (void)Result;
8583 assert(Result && "Could not evaluate expression");
8584 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8585
8586 return EvalResult.Val.getInt();
8587 }
8588
EvaluateForOverflow(const ASTContext & Ctx) const8589 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8590 bool IsConst;
8591 EvalResult EvalResult;
8592 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8593 EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8594 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8595 }
8596 }
8597
isGlobalLValue() const8598 bool Expr::EvalResult::isGlobalLValue() const {
8599 assert(Val.isLValue());
8600 return IsGlobalLValue(Val.getLValueBase());
8601 }
8602
8603
8604 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8605 /// an integer constant expression.
8606
8607 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8608 /// comma, etc
8609
8610 // CheckICE - This function does the fundamental ICE checking: the returned
8611 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8612 // and a (possibly null) SourceLocation indicating the location of the problem.
8613 //
8614 // Note that to reduce code duplication, this helper does no evaluation
8615 // itself; the caller checks whether the expression is evaluatable, and
8616 // in the rare cases where CheckICE actually cares about the evaluated
8617 // value, it calls into Evalute.
8618
8619 namespace {
8620
8621 enum ICEKind {
8622 /// This expression is an ICE.
8623 IK_ICE,
8624 /// This expression is not an ICE, but if it isn't evaluated, it's
8625 /// a legal subexpression for an ICE. This return value is used to handle
8626 /// the comma operator in C99 mode, and non-constant subexpressions.
8627 IK_ICEIfUnevaluated,
8628 /// This expression is not an ICE, and is not a legal subexpression for one.
8629 IK_NotICE
8630 };
8631
8632 struct ICEDiag {
8633 ICEKind Kind;
8634 SourceLocation Loc;
8635
ICEDiag__anona626307c1911::ICEDiag8636 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
8637 };
8638
8639 }
8640
NoDiag()8641 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
8642
Worst(ICEDiag A,ICEDiag B)8643 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
8644
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)8645 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
8646 Expr::EvalResult EVResult;
8647 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
8648 !EVResult.Val.isInt())
8649 return ICEDiag(IK_NotICE, E->getLocStart());
8650
8651 return NoDiag();
8652 }
8653
CheckICE(const Expr * E,const ASTContext & Ctx)8654 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
8655 assert(!E->isValueDependent() && "Should not see value dependent exprs!");
8656 if (!E->getType()->isIntegralOrEnumerationType())
8657 return ICEDiag(IK_NotICE, E->getLocStart());
8658
8659 switch (E->getStmtClass()) {
8660 #define ABSTRACT_STMT(Node)
8661 #define STMT(Node, Base) case Expr::Node##Class:
8662 #define EXPR(Node, Base)
8663 #include "clang/AST/StmtNodes.inc"
8664 case Expr::PredefinedExprClass:
8665 case Expr::FloatingLiteralClass:
8666 case Expr::ImaginaryLiteralClass:
8667 case Expr::StringLiteralClass:
8668 case Expr::ArraySubscriptExprClass:
8669 case Expr::MemberExprClass:
8670 case Expr::CompoundAssignOperatorClass:
8671 case Expr::CompoundLiteralExprClass:
8672 case Expr::ExtVectorElementExprClass:
8673 case Expr::DesignatedInitExprClass:
8674 case Expr::ImplicitValueInitExprClass:
8675 case Expr::ParenListExprClass:
8676 case Expr::VAArgExprClass:
8677 case Expr::AddrLabelExprClass:
8678 case Expr::StmtExprClass:
8679 case Expr::CXXMemberCallExprClass:
8680 case Expr::CUDAKernelCallExprClass:
8681 case Expr::CXXDynamicCastExprClass:
8682 case Expr::CXXTypeidExprClass:
8683 case Expr::CXXUuidofExprClass:
8684 case Expr::MSPropertyRefExprClass:
8685 case Expr::CXXNullPtrLiteralExprClass:
8686 case Expr::UserDefinedLiteralClass:
8687 case Expr::CXXThisExprClass:
8688 case Expr::CXXThrowExprClass:
8689 case Expr::CXXNewExprClass:
8690 case Expr::CXXDeleteExprClass:
8691 case Expr::CXXPseudoDestructorExprClass:
8692 case Expr::UnresolvedLookupExprClass:
8693 case Expr::TypoExprClass:
8694 case Expr::DependentScopeDeclRefExprClass:
8695 case Expr::CXXConstructExprClass:
8696 case Expr::CXXStdInitializerListExprClass:
8697 case Expr::CXXBindTemporaryExprClass:
8698 case Expr::ExprWithCleanupsClass:
8699 case Expr::CXXTemporaryObjectExprClass:
8700 case Expr::CXXUnresolvedConstructExprClass:
8701 case Expr::CXXDependentScopeMemberExprClass:
8702 case Expr::UnresolvedMemberExprClass:
8703 case Expr::ObjCStringLiteralClass:
8704 case Expr::ObjCBoxedExprClass:
8705 case Expr::ObjCArrayLiteralClass:
8706 case Expr::ObjCDictionaryLiteralClass:
8707 case Expr::ObjCEncodeExprClass:
8708 case Expr::ObjCMessageExprClass:
8709 case Expr::ObjCSelectorExprClass:
8710 case Expr::ObjCProtocolExprClass:
8711 case Expr::ObjCIvarRefExprClass:
8712 case Expr::ObjCPropertyRefExprClass:
8713 case Expr::ObjCSubscriptRefExprClass:
8714 case Expr::ObjCIsaExprClass:
8715 case Expr::ShuffleVectorExprClass:
8716 case Expr::ConvertVectorExprClass:
8717 case Expr::BlockExprClass:
8718 case Expr::NoStmtClass:
8719 case Expr::OpaqueValueExprClass:
8720 case Expr::PackExpansionExprClass:
8721 case Expr::SubstNonTypeTemplateParmPackExprClass:
8722 case Expr::FunctionParmPackExprClass:
8723 case Expr::AsTypeExprClass:
8724 case Expr::ObjCIndirectCopyRestoreExprClass:
8725 case Expr::MaterializeTemporaryExprClass:
8726 case Expr::PseudoObjectExprClass:
8727 case Expr::AtomicExprClass:
8728 case Expr::LambdaExprClass:
8729 case Expr::CXXFoldExprClass:
8730 return ICEDiag(IK_NotICE, E->getLocStart());
8731
8732 case Expr::InitListExprClass: {
8733 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
8734 // form "T x = { a };" is equivalent to "T x = a;".
8735 // Unless we're initializing a reference, T is a scalar as it is known to be
8736 // of integral or enumeration type.
8737 if (E->isRValue())
8738 if (cast<InitListExpr>(E)->getNumInits() == 1)
8739 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
8740 return ICEDiag(IK_NotICE, E->getLocStart());
8741 }
8742
8743 case Expr::SizeOfPackExprClass:
8744 case Expr::GNUNullExprClass:
8745 // GCC considers the GNU __null value to be an integral constant expression.
8746 return NoDiag();
8747
8748 case Expr::SubstNonTypeTemplateParmExprClass:
8749 return
8750 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
8751
8752 case Expr::ParenExprClass:
8753 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
8754 case Expr::GenericSelectionExprClass:
8755 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
8756 case Expr::IntegerLiteralClass:
8757 case Expr::CharacterLiteralClass:
8758 case Expr::ObjCBoolLiteralExprClass:
8759 case Expr::CXXBoolLiteralExprClass:
8760 case Expr::CXXScalarValueInitExprClass:
8761 case Expr::TypeTraitExprClass:
8762 case Expr::ArrayTypeTraitExprClass:
8763 case Expr::ExpressionTraitExprClass:
8764 case Expr::CXXNoexceptExprClass:
8765 return NoDiag();
8766 case Expr::CallExprClass:
8767 case Expr::CXXOperatorCallExprClass: {
8768 // C99 6.6/3 allows function calls within unevaluated subexpressions of
8769 // constant expressions, but they can never be ICEs because an ICE cannot
8770 // contain an operand of (pointer to) function type.
8771 const CallExpr *CE = cast<CallExpr>(E);
8772 if (CE->getBuiltinCallee())
8773 return CheckEvalInICE(E, Ctx);
8774 return ICEDiag(IK_NotICE, E->getLocStart());
8775 }
8776 case Expr::DeclRefExprClass: {
8777 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
8778 return NoDiag();
8779 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
8780 if (Ctx.getLangOpts().CPlusPlus &&
8781 D && IsConstNonVolatile(D->getType())) {
8782 // Parameter variables are never constants. Without this check,
8783 // getAnyInitializer() can find a default argument, which leads
8784 // to chaos.
8785 if (isa<ParmVarDecl>(D))
8786 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8787
8788 // C++ 7.1.5.1p2
8789 // A variable of non-volatile const-qualified integral or enumeration
8790 // type initialized by an ICE can be used in ICEs.
8791 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
8792 if (!Dcl->getType()->isIntegralOrEnumerationType())
8793 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8794
8795 const VarDecl *VD;
8796 // Look for a declaration of this variable that has an initializer, and
8797 // check whether it is an ICE.
8798 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
8799 return NoDiag();
8800 else
8801 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
8802 }
8803 }
8804 return ICEDiag(IK_NotICE, E->getLocStart());
8805 }
8806 case Expr::UnaryOperatorClass: {
8807 const UnaryOperator *Exp = cast<UnaryOperator>(E);
8808 switch (Exp->getOpcode()) {
8809 case UO_PostInc:
8810 case UO_PostDec:
8811 case UO_PreInc:
8812 case UO_PreDec:
8813 case UO_AddrOf:
8814 case UO_Deref:
8815 // C99 6.6/3 allows increment and decrement within unevaluated
8816 // subexpressions of constant expressions, but they can never be ICEs
8817 // because an ICE cannot contain an lvalue operand.
8818 return ICEDiag(IK_NotICE, E->getLocStart());
8819 case UO_Extension:
8820 case UO_LNot:
8821 case UO_Plus:
8822 case UO_Minus:
8823 case UO_Not:
8824 case UO_Real:
8825 case UO_Imag:
8826 return CheckICE(Exp->getSubExpr(), Ctx);
8827 }
8828
8829 // OffsetOf falls through here.
8830 }
8831 case Expr::OffsetOfExprClass: {
8832 // Note that per C99, offsetof must be an ICE. And AFAIK, using
8833 // EvaluateAsRValue matches the proposed gcc behavior for cases like
8834 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
8835 // compliance: we should warn earlier for offsetof expressions with
8836 // array subscripts that aren't ICEs, and if the array subscripts
8837 // are ICEs, the value of the offsetof must be an integer constant.
8838 return CheckEvalInICE(E, Ctx);
8839 }
8840 case Expr::UnaryExprOrTypeTraitExprClass: {
8841 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
8842 if ((Exp->getKind() == UETT_SizeOf) &&
8843 Exp->getTypeOfArgument()->isVariableArrayType())
8844 return ICEDiag(IK_NotICE, E->getLocStart());
8845 return NoDiag();
8846 }
8847 case Expr::BinaryOperatorClass: {
8848 const BinaryOperator *Exp = cast<BinaryOperator>(E);
8849 switch (Exp->getOpcode()) {
8850 case BO_PtrMemD:
8851 case BO_PtrMemI:
8852 case BO_Assign:
8853 case BO_MulAssign:
8854 case BO_DivAssign:
8855 case BO_RemAssign:
8856 case BO_AddAssign:
8857 case BO_SubAssign:
8858 case BO_ShlAssign:
8859 case BO_ShrAssign:
8860 case BO_AndAssign:
8861 case BO_XorAssign:
8862 case BO_OrAssign:
8863 // C99 6.6/3 allows assignments within unevaluated subexpressions of
8864 // constant expressions, but they can never be ICEs because an ICE cannot
8865 // contain an lvalue operand.
8866 return ICEDiag(IK_NotICE, E->getLocStart());
8867
8868 case BO_Mul:
8869 case BO_Div:
8870 case BO_Rem:
8871 case BO_Add:
8872 case BO_Sub:
8873 case BO_Shl:
8874 case BO_Shr:
8875 case BO_LT:
8876 case BO_GT:
8877 case BO_LE:
8878 case BO_GE:
8879 case BO_EQ:
8880 case BO_NE:
8881 case BO_And:
8882 case BO_Xor:
8883 case BO_Or:
8884 case BO_Comma: {
8885 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8886 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8887 if (Exp->getOpcode() == BO_Div ||
8888 Exp->getOpcode() == BO_Rem) {
8889 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
8890 // we don't evaluate one.
8891 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
8892 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
8893 if (REval == 0)
8894 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8895 if (REval.isSigned() && REval.isAllOnesValue()) {
8896 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
8897 if (LEval.isMinSignedValue())
8898 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8899 }
8900 }
8901 }
8902 if (Exp->getOpcode() == BO_Comma) {
8903 if (Ctx.getLangOpts().C99) {
8904 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
8905 // if it isn't evaluated.
8906 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
8907 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
8908 } else {
8909 // In both C89 and C++, commas in ICEs are illegal.
8910 return ICEDiag(IK_NotICE, E->getLocStart());
8911 }
8912 }
8913 return Worst(LHSResult, RHSResult);
8914 }
8915 case BO_LAnd:
8916 case BO_LOr: {
8917 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
8918 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
8919 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
8920 // Rare case where the RHS has a comma "side-effect"; we need
8921 // to actually check the condition to see whether the side
8922 // with the comma is evaluated.
8923 if ((Exp->getOpcode() == BO_LAnd) !=
8924 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
8925 return RHSResult;
8926 return NoDiag();
8927 }
8928
8929 return Worst(LHSResult, RHSResult);
8930 }
8931 }
8932 }
8933 case Expr::ImplicitCastExprClass:
8934 case Expr::CStyleCastExprClass:
8935 case Expr::CXXFunctionalCastExprClass:
8936 case Expr::CXXStaticCastExprClass:
8937 case Expr::CXXReinterpretCastExprClass:
8938 case Expr::CXXConstCastExprClass:
8939 case Expr::ObjCBridgedCastExprClass: {
8940 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
8941 if (isa<ExplicitCastExpr>(E)) {
8942 if (const FloatingLiteral *FL
8943 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
8944 unsigned DestWidth = Ctx.getIntWidth(E->getType());
8945 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
8946 APSInt IgnoredVal(DestWidth, !DestSigned);
8947 bool Ignored;
8948 // If the value does not fit in the destination type, the behavior is
8949 // undefined, so we are not required to treat it as a constant
8950 // expression.
8951 if (FL->getValue().convertToInteger(IgnoredVal,
8952 llvm::APFloat::rmTowardZero,
8953 &Ignored) & APFloat::opInvalidOp)
8954 return ICEDiag(IK_NotICE, E->getLocStart());
8955 return NoDiag();
8956 }
8957 }
8958 switch (cast<CastExpr>(E)->getCastKind()) {
8959 case CK_LValueToRValue:
8960 case CK_AtomicToNonAtomic:
8961 case CK_NonAtomicToAtomic:
8962 case CK_NoOp:
8963 case CK_IntegralToBoolean:
8964 case CK_IntegralCast:
8965 return CheckICE(SubExpr, Ctx);
8966 default:
8967 return ICEDiag(IK_NotICE, E->getLocStart());
8968 }
8969 }
8970 case Expr::BinaryConditionalOperatorClass: {
8971 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
8972 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
8973 if (CommonResult.Kind == IK_NotICE) return CommonResult;
8974 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8975 if (FalseResult.Kind == IK_NotICE) return FalseResult;
8976 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
8977 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
8978 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
8979 return FalseResult;
8980 }
8981 case Expr::ConditionalOperatorClass: {
8982 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
8983 // If the condition (ignoring parens) is a __builtin_constant_p call,
8984 // then only the true side is actually considered in an integer constant
8985 // expression, and it is fully evaluated. This is an important GNU
8986 // extension. See GCC PR38377 for discussion.
8987 if (const CallExpr *CallCE
8988 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
8989 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
8990 return CheckEvalInICE(E, Ctx);
8991 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
8992 if (CondResult.Kind == IK_NotICE)
8993 return CondResult;
8994
8995 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
8996 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
8997
8998 if (TrueResult.Kind == IK_NotICE)
8999 return TrueResult;
9000 if (FalseResult.Kind == IK_NotICE)
9001 return FalseResult;
9002 if (CondResult.Kind == IK_ICEIfUnevaluated)
9003 return CondResult;
9004 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9005 return NoDiag();
9006 // Rare case where the diagnostics depend on which side is evaluated
9007 // Note that if we get here, CondResult is 0, and at least one of
9008 // TrueResult and FalseResult is non-zero.
9009 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9010 return FalseResult;
9011 return TrueResult;
9012 }
9013 case Expr::CXXDefaultArgExprClass:
9014 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9015 case Expr::CXXDefaultInitExprClass:
9016 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9017 case Expr::ChooseExprClass: {
9018 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9019 }
9020 }
9021
9022 llvm_unreachable("Invalid StmtClass!");
9023 }
9024
9025 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)9026 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9027 const Expr *E,
9028 llvm::APSInt *Value,
9029 SourceLocation *Loc) {
9030 if (!E->getType()->isIntegralOrEnumerationType()) {
9031 if (Loc) *Loc = E->getExprLoc();
9032 return false;
9033 }
9034
9035 APValue Result;
9036 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9037 return false;
9038
9039 if (!Result.isInt()) {
9040 if (Loc) *Loc = E->getExprLoc();
9041 return false;
9042 }
9043
9044 if (Value) *Value = Result.getInt();
9045 return true;
9046 }
9047
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const9048 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9049 SourceLocation *Loc) const {
9050 if (Ctx.getLangOpts().CPlusPlus11)
9051 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9052
9053 ICEDiag D = CheckICE(this, Ctx);
9054 if (D.Kind != IK_ICE) {
9055 if (Loc) *Loc = D.Loc;
9056 return false;
9057 }
9058 return true;
9059 }
9060
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const9061 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9062 SourceLocation *Loc, bool isEvaluated) const {
9063 if (Ctx.getLangOpts().CPlusPlus11)
9064 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9065
9066 if (!isIntegerConstantExpr(Ctx, Loc))
9067 return false;
9068 if (!EvaluateAsInt(Value, Ctx))
9069 llvm_unreachable("ICE cannot be evaluated!");
9070 return true;
9071 }
9072
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const9073 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9074 return CheckICE(this, Ctx).Kind == IK_ICE;
9075 }
9076
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const9077 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9078 SourceLocation *Loc) const {
9079 // We support this checking in C++98 mode in order to diagnose compatibility
9080 // issues.
9081 assert(Ctx.getLangOpts().CPlusPlus);
9082
9083 // Build evaluation settings.
9084 Expr::EvalStatus Status;
9085 SmallVector<PartialDiagnosticAt, 8> Diags;
9086 Status.Diag = &Diags;
9087 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9088
9089 APValue Scratch;
9090 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9091
9092 if (!Diags.empty()) {
9093 IsConstExpr = false;
9094 if (Loc) *Loc = Diags[0].first;
9095 } else if (!IsConstExpr) {
9096 // FIXME: This shouldn't happen.
9097 if (Loc) *Loc = getExprLoc();
9098 }
9099
9100 return IsConstExpr;
9101 }
9102
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const9103 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9104 const FunctionDecl *Callee,
9105 ArrayRef<const Expr*> Args) const {
9106 Expr::EvalStatus Status;
9107 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9108
9109 ArgVector ArgValues(Args.size());
9110 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9111 I != E; ++I) {
9112 if ((*I)->isValueDependent() ||
9113 !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9114 // If evaluation fails, throw away the argument entirely.
9115 ArgValues[I - Args.begin()] = APValue();
9116 if (Info.EvalStatus.HasSideEffects)
9117 return false;
9118 }
9119
9120 // Build fake call to Callee.
9121 CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9122 ArgValues.data());
9123 return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9124 }
9125
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9126 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9127 SmallVectorImpl<
9128 PartialDiagnosticAt> &Diags) {
9129 // FIXME: It would be useful to check constexpr function templates, but at the
9130 // moment the constant expression evaluator cannot cope with the non-rigorous
9131 // ASTs which we build for dependent expressions.
9132 if (FD->isDependentContext())
9133 return true;
9134
9135 Expr::EvalStatus Status;
9136 Status.Diag = &Diags;
9137
9138 EvalInfo Info(FD->getASTContext(), Status,
9139 EvalInfo::EM_PotentialConstantExpression);
9140
9141 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9142 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9143
9144 // Fabricate an arbitrary expression on the stack and pretend that it
9145 // is a temporary being used as the 'this' pointer.
9146 LValue This;
9147 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9148 This.set(&VIE, Info.CurrentCall->Index);
9149
9150 ArrayRef<const Expr*> Args;
9151
9152 SourceLocation Loc = FD->getLocation();
9153
9154 APValue Scratch;
9155 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9156 // Evaluate the call as a constant initializer, to allow the construction
9157 // of objects of non-literal types.
9158 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9159 HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
9160 } else
9161 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9162 Args, FD->getBody(), Info, Scratch);
9163
9164 return Diags.empty();
9165 }
9166
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9167 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9168 const FunctionDecl *FD,
9169 SmallVectorImpl<
9170 PartialDiagnosticAt> &Diags) {
9171 Expr::EvalStatus Status;
9172 Status.Diag = &Diags;
9173
9174 EvalInfo Info(FD->getASTContext(), Status,
9175 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9176
9177 // Fabricate a call stack frame to give the arguments a plausible cover story.
9178 ArrayRef<const Expr*> Args;
9179 ArgVector ArgValues(0);
9180 bool Success = EvaluateArgs(Args, ArgValues, Info);
9181 (void)Success;
9182 assert(Success &&
9183 "Failed to set up arguments for potential constant evaluation");
9184 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9185
9186 APValue ResultScratch;
9187 Evaluate(ResultScratch, Info, E);
9188 return Diags.empty();
9189 }
9190