1 //===--- PTHLexer.cpp - Lex from a token stream ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PTHLexer interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Lex/PTHLexer.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/FileSystemStatCache.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/TokenKinds.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/PTHManager.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/EndianStream.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include <memory>
28 #include <system_error>
29 using namespace clang;
30
31 static const unsigned StoredTokenSize = 1 + 1 + 2 + 4 + 4;
32
33 //===----------------------------------------------------------------------===//
34 // PTHLexer methods.
35 //===----------------------------------------------------------------------===//
36
PTHLexer(Preprocessor & PP,FileID FID,const unsigned char * D,const unsigned char * ppcond,PTHManager & PM)37 PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D,
38 const unsigned char *ppcond, PTHManager &PM)
39 : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(nullptr),
40 PPCond(ppcond), CurPPCondPtr(ppcond), PTHMgr(PM) {
41
42 FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID);
43 }
44
Lex(Token & Tok)45 bool PTHLexer::Lex(Token& Tok) {
46 //===--------------------------------------==//
47 // Read the raw token data.
48 //===--------------------------------------==//
49 using namespace llvm::support;
50
51 // Shadow CurPtr into an automatic variable.
52 const unsigned char *CurPtrShadow = CurPtr;
53
54 // Read in the data for the token.
55 unsigned Word0 = endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
56 uint32_t IdentifierID =
57 endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
58 uint32_t FileOffset =
59 endian::readNext<uint32_t, little, aligned>(CurPtrShadow);
60
61 tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF);
62 Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF);
63 uint32_t Len = Word0 >> 16;
64
65 CurPtr = CurPtrShadow;
66
67 //===--------------------------------------==//
68 // Construct the token itself.
69 //===--------------------------------------==//
70
71 Tok.startToken();
72 Tok.setKind(TKind);
73 Tok.setFlag(TFlags);
74 assert(!LexingRawMode);
75 Tok.setLocation(FileStartLoc.getLocWithOffset(FileOffset));
76 Tok.setLength(Len);
77
78 // Handle identifiers.
79 if (Tok.isLiteral()) {
80 Tok.setLiteralData((const char*) (PTHMgr.SpellingBase + IdentifierID));
81 }
82 else if (IdentifierID) {
83 MIOpt.ReadToken();
84 IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1);
85
86 Tok.setIdentifierInfo(II);
87
88 // Change the kind of this identifier to the appropriate token kind, e.g.
89 // turning "for" into a keyword.
90 Tok.setKind(II->getTokenID());
91
92 if (II->isHandleIdentifierCase())
93 return PP->HandleIdentifier(Tok);
94
95 return true;
96 }
97
98 //===--------------------------------------==//
99 // Process the token.
100 //===--------------------------------------==//
101 if (TKind == tok::eof) {
102 // Save the end-of-file token.
103 EofToken = Tok;
104
105 assert(!ParsingPreprocessorDirective);
106 assert(!LexingRawMode);
107
108 return LexEndOfFile(Tok);
109 }
110
111 if (TKind == tok::hash && Tok.isAtStartOfLine()) {
112 LastHashTokPtr = CurPtr - StoredTokenSize;
113 assert(!LexingRawMode);
114 PP->HandleDirective(Tok);
115
116 return false;
117 }
118
119 if (TKind == tok::eod) {
120 assert(ParsingPreprocessorDirective);
121 ParsingPreprocessorDirective = false;
122 return true;
123 }
124
125 MIOpt.ReadToken();
126 return true;
127 }
128
LexEndOfFile(Token & Result)129 bool PTHLexer::LexEndOfFile(Token &Result) {
130 // If we hit the end of the file while parsing a preprocessor directive,
131 // end the preprocessor directive first. The next token returned will
132 // then be the end of file.
133 if (ParsingPreprocessorDirective) {
134 ParsingPreprocessorDirective = false; // Done parsing the "line".
135 return true; // Have a token.
136 }
137
138 assert(!LexingRawMode);
139
140 // If we are in a #if directive, emit an error.
141 while (!ConditionalStack.empty()) {
142 if (PP->getCodeCompletionFileLoc() != FileStartLoc)
143 PP->Diag(ConditionalStack.back().IfLoc,
144 diag::err_pp_unterminated_conditional);
145 ConditionalStack.pop_back();
146 }
147
148 // Finally, let the preprocessor handle this.
149 return PP->HandleEndOfFile(Result);
150 }
151
152 // FIXME: We can just grab the last token instead of storing a copy
153 // into EofToken.
getEOF(Token & Tok)154 void PTHLexer::getEOF(Token& Tok) {
155 assert(EofToken.is(tok::eof));
156 Tok = EofToken;
157 }
158
DiscardToEndOfLine()159 void PTHLexer::DiscardToEndOfLine() {
160 assert(ParsingPreprocessorDirective && ParsingFilename == false &&
161 "Must be in a preprocessing directive!");
162
163 // We assume that if the preprocessor wishes to discard to the end of
164 // the line that it also means to end the current preprocessor directive.
165 ParsingPreprocessorDirective = false;
166
167 // Skip tokens by only peeking at their token kind and the flags.
168 // We don't need to actually reconstruct full tokens from the token buffer.
169 // This saves some copies and it also reduces IdentifierInfo* lookup.
170 const unsigned char* p = CurPtr;
171 while (1) {
172 // Read the token kind. Are we at the end of the file?
173 tok::TokenKind x = (tok::TokenKind) (uint8_t) *p;
174 if (x == tok::eof) break;
175
176 // Read the token flags. Are we at the start of the next line?
177 Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1];
178 if (y & Token::StartOfLine) break;
179
180 // Skip to the next token.
181 p += StoredTokenSize;
182 }
183
184 CurPtr = p;
185 }
186
187 /// SkipBlock - Used by Preprocessor to skip the current conditional block.
SkipBlock()188 bool PTHLexer::SkipBlock() {
189 using namespace llvm::support;
190 assert(CurPPCondPtr && "No cached PP conditional information.");
191 assert(LastHashTokPtr && "No known '#' token.");
192
193 const unsigned char *HashEntryI = nullptr;
194 uint32_t TableIdx;
195
196 do {
197 // Read the token offset from the side-table.
198 uint32_t Offset = endian::readNext<uint32_t, little, aligned>(CurPPCondPtr);
199
200 // Read the target table index from the side-table.
201 TableIdx = endian::readNext<uint32_t, little, aligned>(CurPPCondPtr);
202
203 // Compute the actual memory address of the '#' token data for this entry.
204 HashEntryI = TokBuf + Offset;
205
206 // Optmization: "Sibling jumping". #if...#else...#endif blocks can
207 // contain nested blocks. In the side-table we can jump over these
208 // nested blocks instead of doing a linear search if the next "sibling"
209 // entry is not at a location greater than LastHashTokPtr.
210 if (HashEntryI < LastHashTokPtr && TableIdx) {
211 // In the side-table we are still at an entry for a '#' token that
212 // is earlier than the last one we saw. Check if the location we would
213 // stride gets us closer.
214 const unsigned char* NextPPCondPtr =
215 PPCond + TableIdx*(sizeof(uint32_t)*2);
216 assert(NextPPCondPtr >= CurPPCondPtr);
217 // Read where we should jump to.
218 const unsigned char *HashEntryJ =
219 TokBuf + endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
220
221 if (HashEntryJ <= LastHashTokPtr) {
222 // Jump directly to the next entry in the side table.
223 HashEntryI = HashEntryJ;
224 TableIdx = endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
225 CurPPCondPtr = NextPPCondPtr;
226 }
227 }
228 }
229 while (HashEntryI < LastHashTokPtr);
230 assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'");
231 assert(TableIdx && "No jumping from #endifs.");
232
233 // Update our side-table iterator.
234 const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2);
235 assert(NextPPCondPtr >= CurPPCondPtr);
236 CurPPCondPtr = NextPPCondPtr;
237
238 // Read where we should jump to.
239 HashEntryI =
240 TokBuf + endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
241 uint32_t NextIdx = endian::readNext<uint32_t, little, aligned>(NextPPCondPtr);
242
243 // By construction NextIdx will be zero if this is a #endif. This is useful
244 // to know to obviate lexing another token.
245 bool isEndif = NextIdx == 0;
246
247 // This case can occur when we see something like this:
248 //
249 // #if ...
250 // /* a comment or nothing */
251 // #elif
252 //
253 // If we are skipping the first #if block it will be the case that CurPtr
254 // already points 'elif'. Just return.
255
256 if (CurPtr > HashEntryI) {
257 assert(CurPtr == HashEntryI + StoredTokenSize);
258 // Did we reach a #endif? If so, go ahead and consume that token as well.
259 if (isEndif)
260 CurPtr += StoredTokenSize * 2;
261 else
262 LastHashTokPtr = HashEntryI;
263
264 return isEndif;
265 }
266
267 // Otherwise, we need to advance. Update CurPtr to point to the '#' token.
268 CurPtr = HashEntryI;
269
270 // Update the location of the last observed '#'. This is useful if we
271 // are skipping multiple blocks.
272 LastHashTokPtr = CurPtr;
273
274 // Skip the '#' token.
275 assert(((tok::TokenKind)*CurPtr) == tok::hash);
276 CurPtr += StoredTokenSize;
277
278 // Did we reach a #endif? If so, go ahead and consume that token as well.
279 if (isEndif) {
280 CurPtr += StoredTokenSize * 2;
281 }
282
283 return isEndif;
284 }
285
getSourceLocation()286 SourceLocation PTHLexer::getSourceLocation() {
287 // getSourceLocation is not on the hot path. It is used to get the location
288 // of the next token when transitioning back to this lexer when done
289 // handling a #included file. Just read the necessary data from the token
290 // data buffer to construct the SourceLocation object.
291 // NOTE: This is a virtual function; hence it is defined out-of-line.
292 using namespace llvm::support;
293
294 const unsigned char *OffsetPtr = CurPtr + (StoredTokenSize - 4);
295 uint32_t Offset = endian::readNext<uint32_t, little, aligned>(OffsetPtr);
296 return FileStartLoc.getLocWithOffset(Offset);
297 }
298
299 //===----------------------------------------------------------------------===//
300 // PTH file lookup: map from strings to file data.
301 //===----------------------------------------------------------------------===//
302
303 /// PTHFileLookup - This internal data structure is used by the PTHManager
304 /// to map from FileEntry objects managed by FileManager to offsets within
305 /// the PTH file.
306 namespace {
307 class PTHFileData {
308 const uint32_t TokenOff;
309 const uint32_t PPCondOff;
310 public:
PTHFileData(uint32_t tokenOff,uint32_t ppCondOff)311 PTHFileData(uint32_t tokenOff, uint32_t ppCondOff)
312 : TokenOff(tokenOff), PPCondOff(ppCondOff) {}
313
getTokenOffset() const314 uint32_t getTokenOffset() const { return TokenOff; }
getPPCondOffset() const315 uint32_t getPPCondOffset() const { return PPCondOff; }
316 };
317
318
319 class PTHFileLookupCommonTrait {
320 public:
321 typedef std::pair<unsigned char, const char*> internal_key_type;
322 typedef unsigned hash_value_type;
323 typedef unsigned offset_type;
324
ComputeHash(internal_key_type x)325 static hash_value_type ComputeHash(internal_key_type x) {
326 return llvm::HashString(x.second);
327 }
328
329 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)330 ReadKeyDataLength(const unsigned char*& d) {
331 using namespace llvm::support;
332 unsigned keyLen =
333 (unsigned)endian::readNext<uint16_t, little, unaligned>(d);
334 unsigned dataLen = (unsigned) *(d++);
335 return std::make_pair(keyLen, dataLen);
336 }
337
ReadKey(const unsigned char * d,unsigned)338 static internal_key_type ReadKey(const unsigned char* d, unsigned) {
339 unsigned char k = *(d++); // Read the entry kind.
340 return std::make_pair(k, (const char*) d);
341 }
342 };
343
344 } // end anonymous namespace
345
346 class PTHManager::PTHFileLookupTrait : public PTHFileLookupCommonTrait {
347 public:
348 typedef const FileEntry* external_key_type;
349 typedef PTHFileData data_type;
350
GetInternalKey(const FileEntry * FE)351 static internal_key_type GetInternalKey(const FileEntry* FE) {
352 return std::make_pair((unsigned char) 0x1, FE->getName());
353 }
354
EqualKey(internal_key_type a,internal_key_type b)355 static bool EqualKey(internal_key_type a, internal_key_type b) {
356 return a.first == b.first && strcmp(a.second, b.second) == 0;
357 }
358
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)359 static PTHFileData ReadData(const internal_key_type& k,
360 const unsigned char* d, unsigned) {
361 assert(k.first == 0x1 && "Only file lookups can match!");
362 using namespace llvm::support;
363 uint32_t x = endian::readNext<uint32_t, little, unaligned>(d);
364 uint32_t y = endian::readNext<uint32_t, little, unaligned>(d);
365 return PTHFileData(x, y);
366 }
367 };
368
369 class PTHManager::PTHStringLookupTrait {
370 public:
371 typedef uint32_t data_type;
372 typedef const std::pair<const char*, unsigned> external_key_type;
373 typedef external_key_type internal_key_type;
374 typedef uint32_t hash_value_type;
375 typedef unsigned offset_type;
376
EqualKey(const internal_key_type & a,const internal_key_type & b)377 static bool EqualKey(const internal_key_type& a,
378 const internal_key_type& b) {
379 return (a.second == b.second) ? memcmp(a.first, b.first, a.second) == 0
380 : false;
381 }
382
ComputeHash(const internal_key_type & a)383 static hash_value_type ComputeHash(const internal_key_type& a) {
384 return llvm::HashString(StringRef(a.first, a.second));
385 }
386
387 // This hopefully will just get inlined and removed by the optimizer.
388 static const internal_key_type&
GetInternalKey(const external_key_type & x)389 GetInternalKey(const external_key_type& x) { return x; }
390
391 static std::pair<unsigned, unsigned>
ReadKeyDataLength(const unsigned char * & d)392 ReadKeyDataLength(const unsigned char*& d) {
393 using namespace llvm::support;
394 return std::make_pair(
395 (unsigned)endian::readNext<uint16_t, little, unaligned>(d),
396 sizeof(uint32_t));
397 }
398
399 static std::pair<const char*, unsigned>
ReadKey(const unsigned char * d,unsigned n)400 ReadKey(const unsigned char* d, unsigned n) {
401 assert(n >= 2 && d[n-1] == '\0');
402 return std::make_pair((const char*) d, n-1);
403 }
404
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)405 static uint32_t ReadData(const internal_key_type& k, const unsigned char* d,
406 unsigned) {
407 using namespace llvm::support;
408 return endian::readNext<uint32_t, little, unaligned>(d);
409 }
410 };
411
412 //===----------------------------------------------------------------------===//
413 // PTHManager methods.
414 //===----------------------------------------------------------------------===//
415
PTHManager(std::unique_ptr<const llvm::MemoryBuffer> buf,std::unique_ptr<PTHFileLookup> fileLookup,const unsigned char * idDataTable,std::unique_ptr<IdentifierInfo * [],llvm::FreeDeleter> perIDCache,std::unique_ptr<PTHStringIdLookup> stringIdLookup,unsigned numIds,const unsigned char * spellingBase,const char * originalSourceFile)416 PTHManager::PTHManager(
417 std::unique_ptr<const llvm::MemoryBuffer> buf,
418 std::unique_ptr<PTHFileLookup> fileLookup, const unsigned char *idDataTable,
419 std::unique_ptr<IdentifierInfo *[], llvm::FreeDeleter> perIDCache,
420 std::unique_ptr<PTHStringIdLookup> stringIdLookup, unsigned numIds,
421 const unsigned char *spellingBase, const char *originalSourceFile)
422 : Buf(std::move(buf)), PerIDCache(std::move(perIDCache)),
423 FileLookup(std::move(fileLookup)), IdDataTable(idDataTable),
424 StringIdLookup(std::move(stringIdLookup)), NumIds(numIds), PP(nullptr),
425 SpellingBase(spellingBase), OriginalSourceFile(originalSourceFile) {}
426
~PTHManager()427 PTHManager::~PTHManager() {
428 }
429
InvalidPTH(DiagnosticsEngine & Diags,const char * Msg)430 static void InvalidPTH(DiagnosticsEngine &Diags, const char *Msg) {
431 Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0")) << Msg;
432 }
433
Create(const std::string & file,DiagnosticsEngine & Diags)434 PTHManager *PTHManager::Create(const std::string &file,
435 DiagnosticsEngine &Diags) {
436 // Memory map the PTH file.
437 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileOrErr =
438 llvm::MemoryBuffer::getFile(file);
439
440 if (!FileOrErr) {
441 // FIXME: Add ec.message() to this diag.
442 Diags.Report(diag::err_invalid_pth_file) << file;
443 return nullptr;
444 }
445 std::unique_ptr<llvm::MemoryBuffer> File = std::move(FileOrErr.get());
446
447 using namespace llvm::support;
448
449 // Get the buffer ranges and check if there are at least three 32-bit
450 // words at the end of the file.
451 const unsigned char *BufBeg = (const unsigned char*)File->getBufferStart();
452 const unsigned char *BufEnd = (const unsigned char*)File->getBufferEnd();
453
454 // Check the prologue of the file.
455 if ((BufEnd - BufBeg) < (signed)(sizeof("cfe-pth") + 4 + 4) ||
456 memcmp(BufBeg, "cfe-pth", sizeof("cfe-pth")) != 0) {
457 Diags.Report(diag::err_invalid_pth_file) << file;
458 return nullptr;
459 }
460
461 // Read the PTH version.
462 const unsigned char *p = BufBeg + (sizeof("cfe-pth"));
463 unsigned Version = endian::readNext<uint32_t, little, aligned>(p);
464
465 if (Version < PTHManager::Version) {
466 InvalidPTH(Diags,
467 Version < PTHManager::Version
468 ? "PTH file uses an older PTH format that is no longer supported"
469 : "PTH file uses a newer PTH format that cannot be read");
470 return nullptr;
471 }
472
473 // Compute the address of the index table at the end of the PTH file.
474 const unsigned char *PrologueOffset = p;
475
476 if (PrologueOffset >= BufEnd) {
477 Diags.Report(diag::err_invalid_pth_file) << file;
478 return nullptr;
479 }
480
481 // Construct the file lookup table. This will be used for mapping from
482 // FileEntry*'s to cached tokens.
483 const unsigned char* FileTableOffset = PrologueOffset + sizeof(uint32_t)*2;
484 const unsigned char *FileTable =
485 BufBeg + endian::readNext<uint32_t, little, aligned>(FileTableOffset);
486
487 if (!(FileTable > BufBeg && FileTable < BufEnd)) {
488 Diags.Report(diag::err_invalid_pth_file) << file;
489 return nullptr; // FIXME: Proper error diagnostic?
490 }
491
492 std::unique_ptr<PTHFileLookup> FL(PTHFileLookup::Create(FileTable, BufBeg));
493
494 // Warn if the PTH file is empty. We still want to create a PTHManager
495 // as the PTH could be used with -include-pth.
496 if (FL->isEmpty())
497 InvalidPTH(Diags, "PTH file contains no cached source data");
498
499 // Get the location of the table mapping from persistent ids to the
500 // data needed to reconstruct identifiers.
501 const unsigned char* IDTableOffset = PrologueOffset + sizeof(uint32_t)*0;
502 const unsigned char *IData =
503 BufBeg + endian::readNext<uint32_t, little, aligned>(IDTableOffset);
504
505 if (!(IData >= BufBeg && IData < BufEnd)) {
506 Diags.Report(diag::err_invalid_pth_file) << file;
507 return nullptr;
508 }
509
510 // Get the location of the hashtable mapping between strings and
511 // persistent IDs.
512 const unsigned char* StringIdTableOffset = PrologueOffset + sizeof(uint32_t)*1;
513 const unsigned char *StringIdTable =
514 BufBeg + endian::readNext<uint32_t, little, aligned>(StringIdTableOffset);
515 if (!(StringIdTable >= BufBeg && StringIdTable < BufEnd)) {
516 Diags.Report(diag::err_invalid_pth_file) << file;
517 return nullptr;
518 }
519
520 std::unique_ptr<PTHStringIdLookup> SL(
521 PTHStringIdLookup::Create(StringIdTable, BufBeg));
522
523 // Get the location of the spelling cache.
524 const unsigned char* spellingBaseOffset = PrologueOffset + sizeof(uint32_t)*3;
525 const unsigned char *spellingBase =
526 BufBeg + endian::readNext<uint32_t, little, aligned>(spellingBaseOffset);
527 if (!(spellingBase >= BufBeg && spellingBase < BufEnd)) {
528 Diags.Report(diag::err_invalid_pth_file) << file;
529 return nullptr;
530 }
531
532 // Get the number of IdentifierInfos and pre-allocate the identifier cache.
533 uint32_t NumIds = endian::readNext<uint32_t, little, aligned>(IData);
534
535 // Pre-allocate the persistent ID -> IdentifierInfo* cache. We use calloc()
536 // so that we in the best case only zero out memory once when the OS returns
537 // us new pages.
538 std::unique_ptr<IdentifierInfo *[], llvm::FreeDeleter> PerIDCache;
539
540 if (NumIds) {
541 PerIDCache.reset((IdentifierInfo **)calloc(NumIds, sizeof(PerIDCache[0])));
542 if (!PerIDCache) {
543 InvalidPTH(Diags, "Could not allocate memory for processing PTH file");
544 return nullptr;
545 }
546 }
547
548 // Compute the address of the original source file.
549 const unsigned char* originalSourceBase = PrologueOffset + sizeof(uint32_t)*4;
550 unsigned len =
551 endian::readNext<uint16_t, little, unaligned>(originalSourceBase);
552 if (!len) originalSourceBase = nullptr;
553
554 // Create the new PTHManager.
555 return new PTHManager(std::move(File), std::move(FL), IData,
556 std::move(PerIDCache), std::move(SL), NumIds,
557 spellingBase, (const char *)originalSourceBase);
558 }
559
LazilyCreateIdentifierInfo(unsigned PersistentID)560 IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) {
561 using namespace llvm::support;
562 // Look in the PTH file for the string data for the IdentifierInfo object.
563 const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID;
564 const unsigned char *IDData =
565 (const unsigned char *)Buf->getBufferStart() +
566 endian::readNext<uint32_t, little, aligned>(TableEntry);
567 assert(IDData < (const unsigned char*)Buf->getBufferEnd());
568
569 // Allocate the object.
570 std::pair<IdentifierInfo,const unsigned char*> *Mem =
571 Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >();
572
573 Mem->second = IDData;
574 assert(IDData[0] != '\0');
575 IdentifierInfo *II = new ((void*) Mem) IdentifierInfo();
576
577 // Store the new IdentifierInfo in the cache.
578 PerIDCache[PersistentID] = II;
579 assert(II->getNameStart() && II->getNameStart()[0] != '\0');
580 return II;
581 }
582
get(StringRef Name)583 IdentifierInfo* PTHManager::get(StringRef Name) {
584 // Double check our assumption that the last character isn't '\0'.
585 assert(Name.empty() || Name.back() != '\0');
586 PTHStringIdLookup::iterator I =
587 StringIdLookup->find(std::make_pair(Name.data(), Name.size()));
588 if (I == StringIdLookup->end()) // No identifier found?
589 return nullptr;
590
591 // Match found. Return the identifier!
592 assert(*I > 0);
593 return GetIdentifierInfo(*I-1);
594 }
595
CreateLexer(FileID FID)596 PTHLexer *PTHManager::CreateLexer(FileID FID) {
597 const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID);
598 if (!FE)
599 return nullptr;
600
601 using namespace llvm::support;
602
603 // Lookup the FileEntry object in our file lookup data structure. It will
604 // return a variant that indicates whether or not there is an offset within
605 // the PTH file that contains cached tokens.
606 PTHFileLookup::iterator I = FileLookup->find(FE);
607
608 if (I == FileLookup->end()) // No tokens available?
609 return nullptr;
610
611 const PTHFileData& FileData = *I;
612
613 const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart();
614 // Compute the offset of the token data within the buffer.
615 const unsigned char* data = BufStart + FileData.getTokenOffset();
616
617 // Get the location of pp-conditional table.
618 const unsigned char* ppcond = BufStart + FileData.getPPCondOffset();
619 uint32_t Len = endian::readNext<uint32_t, little, aligned>(ppcond);
620 if (Len == 0) ppcond = nullptr;
621
622 assert(PP && "No preprocessor set yet!");
623 return new PTHLexer(*PP, FID, data, ppcond, *this);
624 }
625
626 //===----------------------------------------------------------------------===//
627 // 'stat' caching.
628 //===----------------------------------------------------------------------===//
629
630 namespace {
631 class PTHStatData {
632 public:
633 const bool HasData;
634 uint64_t Size;
635 time_t ModTime;
636 llvm::sys::fs::UniqueID UniqueID;
637 bool IsDirectory;
638
PTHStatData(uint64_t Size,time_t ModTime,llvm::sys::fs::UniqueID UniqueID,bool IsDirectory)639 PTHStatData(uint64_t Size, time_t ModTime, llvm::sys::fs::UniqueID UniqueID,
640 bool IsDirectory)
641 : HasData(true), Size(Size), ModTime(ModTime), UniqueID(UniqueID),
642 IsDirectory(IsDirectory) {}
643
PTHStatData()644 PTHStatData() : HasData(false) {}
645 };
646
647 class PTHStatLookupTrait : public PTHFileLookupCommonTrait {
648 public:
649 typedef const char* external_key_type; // const char*
650 typedef PTHStatData data_type;
651
GetInternalKey(const char * path)652 static internal_key_type GetInternalKey(const char *path) {
653 // The key 'kind' doesn't matter here because it is ignored in EqualKey.
654 return std::make_pair((unsigned char) 0x0, path);
655 }
656
EqualKey(internal_key_type a,internal_key_type b)657 static bool EqualKey(internal_key_type a, internal_key_type b) {
658 // When doing 'stat' lookups we don't care about the kind of 'a' and 'b',
659 // just the paths.
660 return strcmp(a.second, b.second) == 0;
661 }
662
ReadData(const internal_key_type & k,const unsigned char * d,unsigned)663 static data_type ReadData(const internal_key_type& k, const unsigned char* d,
664 unsigned) {
665
666 if (k.first /* File or Directory */) {
667 bool IsDirectory = true;
668 if (k.first == 0x1 /* File */) {
669 IsDirectory = false;
670 d += 4 * 2; // Skip the first 2 words.
671 }
672
673 using namespace llvm::support;
674
675 uint64_t File = endian::readNext<uint64_t, little, unaligned>(d);
676 uint64_t Device = endian::readNext<uint64_t, little, unaligned>(d);
677 llvm::sys::fs::UniqueID UniqueID(Device, File);
678 time_t ModTime = endian::readNext<uint64_t, little, unaligned>(d);
679 uint64_t Size = endian::readNext<uint64_t, little, unaligned>(d);
680 return data_type(Size, ModTime, UniqueID, IsDirectory);
681 }
682
683 // Negative stat. Don't read anything.
684 return data_type();
685 }
686 };
687 } // end anonymous namespace
688
689 namespace clang {
690 class PTHStatCache : public FileSystemStatCache {
691 typedef llvm::OnDiskChainedHashTable<PTHStatLookupTrait> CacheTy;
692 CacheTy Cache;
693
694 public:
PTHStatCache(PTHManager::PTHFileLookup & FL)695 PTHStatCache(PTHManager::PTHFileLookup &FL)
696 : Cache(FL.getNumBuckets(), FL.getNumEntries(), FL.getBuckets(),
697 FL.getBase()) {}
698
getStat(const char * Path,FileData & Data,bool isFile,std::unique_ptr<vfs::File> * F,vfs::FileSystem & FS)699 LookupResult getStat(const char *Path, FileData &Data, bool isFile,
700 std::unique_ptr<vfs::File> *F,
701 vfs::FileSystem &FS) override {
702 // Do the lookup for the file's data in the PTH file.
703 CacheTy::iterator I = Cache.find(Path);
704
705 // If we don't get a hit in the PTH file just forward to 'stat'.
706 if (I == Cache.end())
707 return statChained(Path, Data, isFile, F, FS);
708
709 const PTHStatData &D = *I;
710
711 if (!D.HasData)
712 return CacheMissing;
713
714 Data.Name = Path;
715 Data.Size = D.Size;
716 Data.ModTime = D.ModTime;
717 Data.UniqueID = D.UniqueID;
718 Data.IsDirectory = D.IsDirectory;
719 Data.IsNamedPipe = false;
720 Data.InPCH = true;
721
722 return CacheExists;
723 }
724 };
725 }
726
createStatCache()727 std::unique_ptr<FileSystemStatCache> PTHManager::createStatCache() {
728 return llvm::make_unique<PTHStatCache>(*FileLookup);
729 }
730