• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- dfsan.cc ----------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of DataFlowSanitizer.
11 //
12 // DataFlowSanitizer runtime.  This file defines the public interface to
13 // DataFlowSanitizer as well as the definition of certain runtime functions
14 // called automatically by the compiler (specifically the instrumentation pass
15 // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
16 //
17 // The public interface is defined in include/sanitizer/dfsan_interface.h whose
18 // functions are prefixed dfsan_ while the compiler interface functions are
19 // prefixed __dfsan_.
20 //===----------------------------------------------------------------------===//
21 
22 #include "sanitizer_common/sanitizer_atomic.h"
23 #include "sanitizer_common/sanitizer_common.h"
24 #include "sanitizer_common/sanitizer_flags.h"
25 #include "sanitizer_common/sanitizer_flag_parser.h"
26 #include "sanitizer_common/sanitizer_libc.h"
27 
28 #include "dfsan/dfsan.h"
29 
30 using namespace __dfsan;
31 
32 typedef atomic_uint16_t atomic_dfsan_label;
33 static const dfsan_label kInitializingLabel = -1;
34 
35 static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);
36 
37 static atomic_dfsan_label __dfsan_last_label;
38 static dfsan_label_info __dfsan_label_info[kNumLabels];
39 
40 Flags __dfsan::flags_data;
41 
42 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
43 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];
44 
45 // On Linux/x86_64, memory is laid out as follows:
46 //
47 // +--------------------+ 0x800000000000 (top of memory)
48 // | application memory |
49 // +--------------------+ 0x700000008000 (kAppAddr)
50 // |                    |
51 // |       unused       |
52 // |                    |
53 // +--------------------+ 0x200200000000 (kUnusedAddr)
54 // |    union table     |
55 // +--------------------+ 0x200000000000 (kUnionTableAddr)
56 // |   shadow memory    |
57 // +--------------------+ 0x000000010000 (kShadowAddr)
58 // | reserved by kernel |
59 // +--------------------+ 0x000000000000
60 //
61 // To derive a shadow memory address from an application memory address,
62 // bits 44-46 are cleared to bring the address into the range
63 // [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
64 // account for the double byte representation of shadow labels and move the
65 // address into the shadow memory range.  See the function shadow_for below.
66 
67 // On Linux/MIPS64, memory is laid out as follows:
68 //
69 // +--------------------+ 0x10000000000 (top of memory)
70 // | application memory |
71 // +--------------------+ 0xF000008000 (kAppAddr)
72 // |                    |
73 // |       unused       |
74 // |                    |
75 // +--------------------+ 0x2200000000 (kUnusedAddr)
76 // |    union table     |
77 // +--------------------+ 0x2000000000 (kUnionTableAddr)
78 // |   shadow memory    |
79 // +--------------------+ 0x0000010000 (kShadowAddr)
80 // | reserved by kernel |
81 // +--------------------+ 0x0000000000
82 
83 typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];
84 
85 #if defined(__x86_64__)
86 static const uptr kShadowAddr = 0x10000;
87 static const uptr kUnionTableAddr = 0x200000000000;
88 static const uptr kUnusedAddr = kUnionTableAddr + sizeof(dfsan_union_table_t);
89 static const uptr kAppAddr = 0x700000008000;
90 #elif defined(__mips64)
91 static const uptr kShadowAddr = 0x10000;
92 static const uptr kUnionTableAddr = 0x2000000000;
93 static const uptr kUnusedAddr = kUnionTableAddr + sizeof(dfsan_union_table_t);
94 static const uptr kAppAddr = 0xF000008000;
95 #else
96 # error "DFSan not supported for this platform!"
97 #endif
98 
union_table(dfsan_label l1,dfsan_label l2)99 static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
100   return &(*(dfsan_union_table_t *) kUnionTableAddr)[l1][l2];
101 }
102 
103 // Checks we do not run out of labels.
dfsan_check_label(dfsan_label label)104 static void dfsan_check_label(dfsan_label label) {
105   if (label == kInitializingLabel) {
106     Report("FATAL: DataFlowSanitizer: out of labels\n");
107     Die();
108   }
109 }
110 
111 // Resolves the union of two unequal labels.  Nonequality is a precondition for
112 // this function (the instrumentation pass inlines the equality test).
113 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_union(dfsan_label l1,dfsan_label l2)114 dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
115   DCHECK_NE(l1, l2);
116 
117   if (l1 == 0)
118     return l2;
119   if (l2 == 0)
120     return l1;
121 
122   if (l1 > l2)
123     Swap(l1, l2);
124 
125   atomic_dfsan_label *table_ent = union_table(l1, l2);
126   // We need to deal with the case where two threads concurrently request
127   // a union of the same pair of labels.  If the table entry is uninitialized,
128   // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
129   // (i.e. -1) to mark that we are initializing it.
130   dfsan_label label = 0;
131   if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
132                                      memory_order_acquire)) {
133     // Check whether l2 subsumes l1.  We don't need to check whether l1
134     // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
135     // in the cases we are interested in) a label may only subsume labels
136     // created earlier (i.e. with a lower numerical value).
137     if (__dfsan_label_info[l2].l1 == l1 ||
138         __dfsan_label_info[l2].l2 == l1) {
139       label = l2;
140     } else {
141       label =
142         atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
143       dfsan_check_label(label);
144       __dfsan_label_info[label].l1 = l1;
145       __dfsan_label_info[label].l2 = l2;
146     }
147     atomic_store(table_ent, label, memory_order_release);
148   } else if (label == kInitializingLabel) {
149     // Another thread is initializing the entry.  Wait until it is finished.
150     do {
151       internal_sched_yield();
152       label = atomic_load(table_ent, memory_order_acquire);
153     } while (label == kInitializingLabel);
154   }
155   return label;
156 }
157 
158 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_union_load(const dfsan_label * ls,uptr n)159 dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
160   dfsan_label label = ls[0];
161   for (uptr i = 1; i != n; ++i) {
162     dfsan_label next_label = ls[i];
163     if (label != next_label)
164       label = __dfsan_union(label, next_label);
165   }
166   return label;
167 }
168 
169 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_unimplemented(char * fname)170 void __dfsan_unimplemented(char *fname) {
171   if (flags().warn_unimplemented)
172     Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
173            fname);
174 }
175 
176 // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
177 // to try to figure out where labels are being introduced in a nominally
178 // label-free program.
__dfsan_nonzero_label()179 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
180   if (flags().warn_nonzero_labels)
181     Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
182 }
183 
184 // Indirect call to an uninstrumented vararg function. We don't have a way of
185 // handling these at the moment.
186 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_vararg_wrapper(const char * fname)187 __dfsan_vararg_wrapper(const char *fname) {
188   Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
189          "function %s\n", fname);
190   Die();
191 }
192 
193 // Like __dfsan_union, but for use from the client or custom functions.  Hence
194 // the equality comparison is done here before calling __dfsan_union.
195 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_union(dfsan_label l1,dfsan_label l2)196 dfsan_union(dfsan_label l1, dfsan_label l2) {
197   if (l1 == l2)
198     return l1;
199   return __dfsan_union(l1, l2);
200 }
201 
202 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_create_label(const char * desc,void * userdata)203 dfsan_label dfsan_create_label(const char *desc, void *userdata) {
204   dfsan_label label =
205     atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
206   dfsan_check_label(label);
207   __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
208   __dfsan_label_info[label].desc = desc;
209   __dfsan_label_info[label].userdata = userdata;
210   return label;
211 }
212 
213 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_set_label(dfsan_label label,void * addr,uptr size)214 void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
215   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
216     // Don't write the label if it is already the value we need it to be.
217     // In a program where most addresses are not labeled, it is common that
218     // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
219     // implementation will share all of the zeroed pages, making a copy of a
220     // page when any value is written.  The un-sharing will happen even if
221     // the value written does not change the value in memory.  Avoiding the
222     // write when both |label| and |*labelp| are zero dramatically reduces
223     // the amount of real memory used by large programs.
224     if (label == *labelp)
225       continue;
226 
227     *labelp = label;
228   }
229 }
230 
231 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_set_label(dfsan_label label,void * addr,uptr size)232 void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
233   __dfsan_set_label(label, addr, size);
234 }
235 
236 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_add_label(dfsan_label label,void * addr,uptr size)237 void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
238   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
239     if (*labelp != label)
240       *labelp = __dfsan_union(*labelp, label);
241 }
242 
243 // Unlike the other dfsan interface functions the behavior of this function
244 // depends on the label of one of its arguments.  Hence it is implemented as a
245 // custom function.
246 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
__dfsw_dfsan_get_label(long data,dfsan_label data_label,dfsan_label * ret_label)247 __dfsw_dfsan_get_label(long data, dfsan_label data_label,
248                        dfsan_label *ret_label) {
249   *ret_label = 0;
250   return data_label;
251 }
252 
253 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_read_label(const void * addr,uptr size)254 dfsan_read_label(const void *addr, uptr size) {
255   if (size == 0)
256     return 0;
257   return __dfsan_union_load(shadow_for(addr), size);
258 }
259 
260 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
dfsan_get_label_info(dfsan_label label)261 const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
262   return &__dfsan_label_info[label];
263 }
264 
265 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
dfsan_has_label(dfsan_label label,dfsan_label elem)266 dfsan_has_label(dfsan_label label, dfsan_label elem) {
267   if (label == elem)
268     return true;
269   const dfsan_label_info *info = dfsan_get_label_info(label);
270   if (info->l1 != 0) {
271     return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
272   } else {
273     return false;
274   }
275 }
276 
277 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_has_label_with_desc(dfsan_label label,const char * desc)278 dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
279   const dfsan_label_info *info = dfsan_get_label_info(label);
280   if (info->l1 != 0) {
281     return dfsan_has_label_with_desc(info->l1, desc) ||
282            dfsan_has_label_with_desc(info->l2, desc);
283   } else {
284     return internal_strcmp(desc, info->desc) == 0;
285   }
286 }
287 
288 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_get_label_count(void)289 dfsan_get_label_count(void) {
290   dfsan_label max_label_allocated =
291       atomic_load(&__dfsan_last_label, memory_order_relaxed);
292 
293   return static_cast<uptr>(max_label_allocated);
294 }
295 
296 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
dfsan_dump_labels(int fd)297 dfsan_dump_labels(int fd) {
298   dfsan_label last_label =
299       atomic_load(&__dfsan_last_label, memory_order_relaxed);
300 
301   for (uptr l = 1; l <= last_label; ++l) {
302     char buf[64];
303     internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
304                       __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
305     WriteToFile(fd, buf, internal_strlen(buf));
306     if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
307       WriteToFile(fd, __dfsan_label_info[l].desc,
308                   internal_strlen(__dfsan_label_info[l].desc));
309     }
310     WriteToFile(fd, "\n", 1);
311   }
312 }
313 
SetDefaults()314 void Flags::SetDefaults() {
315 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
316 #include "dfsan_flags.inc"
317 #undef DFSAN_FLAG
318 }
319 
RegisterDfsanFlags(FlagParser * parser,Flags * f)320 static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
321 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
322   RegisterFlag(parser, #Name, Description, &f->Name);
323 #include "dfsan_flags.inc"
324 #undef DFSAN_FLAG
325 }
326 
InitializeFlags()327 static void InitializeFlags() {
328   FlagParser parser;
329   RegisterDfsanFlags(&parser, &flags());
330   flags().SetDefaults();
331   parser.ParseString(GetEnv("DFSAN_OPTIONS"));
332 }
333 
dfsan_fini()334 static void dfsan_fini() {
335   if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
336     fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
337     if (fd == kInvalidFd) {
338       Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
339              flags().dump_labels_at_exit);
340       return;
341     }
342 
343     Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
344            flags().dump_labels_at_exit);
345     dfsan_dump_labels(fd);
346     CloseFile(fd);
347   }
348 }
349 
350 #ifdef DFSAN_NOLIBC
dfsan_init()351 extern "C" void dfsan_init() {
352 #else
353 static void dfsan_init(int argc, char **argv, char **envp) {
354 #endif
355   MmapFixedNoReserve(kShadowAddr, kUnusedAddr - kShadowAddr);
356 
357   // Protect the region of memory we don't use, to preserve the one-to-one
358   // mapping from application to shadow memory. But if ASLR is disabled, Linux
359   // will load our executable in the middle of our unused region. This mostly
360   // works so long as the program doesn't use too much memory. We support this
361   // case by disabling memory protection when ASLR is disabled.
362   uptr init_addr = (uptr)&dfsan_init;
363   if (!(init_addr >= kUnusedAddr && init_addr < kAppAddr))
364     MmapNoAccess(kUnusedAddr, kAppAddr - kUnusedAddr);
365 
366   InitializeFlags();
367   InitializeInterceptors();
368 
369   // Register the fini callback to run when the program terminates successfully
370   // or it is killed by the runtime.
371   Atexit(dfsan_fini);
372   SetDieCallback(dfsan_fini);
373 
374   __dfsan_label_info[kInitializingLabel].desc = "<init label>";
375 }
376 
377 #if !defined(DFSAN_NOLIBC) && SANITIZER_CAN_USE_PREINIT_ARRAY
378 __attribute__((section(".preinit_array"), used))
379 static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
380 #endif
381