• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_JACOBISVD_H
11 #define EIGEN_JACOBISVD_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 // forward declaration (needed by ICC)
17 // the empty body is required by MSVC
18 template<typename MatrixType, int QRPreconditioner,
19          bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
20 struct svd_precondition_2x2_block_to_be_real {};
21 
22 /*** QR preconditioners (R-SVD)
23  ***
24  *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
25  *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
26  *** JacobiSVD which by itself is only able to work on square matrices.
27  ***/
28 
29 enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
30 
31 template<typename MatrixType, int QRPreconditioner, int Case>
32 struct qr_preconditioner_should_do_anything
33 {
34   enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
35              MatrixType::ColsAtCompileTime != Dynamic &&
36              MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
37          b = MatrixType::RowsAtCompileTime != Dynamic &&
38              MatrixType::ColsAtCompileTime != Dynamic &&
39              MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
40          ret = !( (QRPreconditioner == NoQRPreconditioner) ||
41                   (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
42                   (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
43   };
44 };
45 
46 template<typename MatrixType, int QRPreconditioner, int Case,
47          bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
48 > struct qr_preconditioner_impl {};
49 
50 template<typename MatrixType, int QRPreconditioner, int Case>
51 class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
52 {
53 public:
54   typedef typename MatrixType::Index Index;
allocate(const JacobiSVD<MatrixType,QRPreconditioner> &)55   void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
run(JacobiSVD<MatrixType,QRPreconditioner> &,const MatrixType &)56   bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
57   {
58     return false;
59   }
60 };
61 
62 /*** preconditioner using FullPivHouseholderQR ***/
63 
64 template<typename MatrixType>
65 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
66 {
67 public:
68   typedef typename MatrixType::Index Index;
69   typedef typename MatrixType::Scalar Scalar;
70   enum
71   {
72     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
74   };
75   typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
76 
allocate(const JacobiSVD<MatrixType,FullPivHouseholderQRPreconditioner> & svd)77   void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
78   {
79     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
80     {
81       m_qr.~QRType();
82       ::new (&m_qr) QRType(svd.rows(), svd.cols());
83     }
84     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
85   }
86 
run(JacobiSVD<MatrixType,FullPivHouseholderQRPreconditioner> & svd,const MatrixType & matrix)87   bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
88   {
89     if(matrix.rows() > matrix.cols())
90     {
91       m_qr.compute(matrix);
92       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
93       if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
94       if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
95       return true;
96     }
97     return false;
98   }
99 private:
100   typedef FullPivHouseholderQR<MatrixType> QRType;
101   QRType m_qr;
102   WorkspaceType m_workspace;
103 };
104 
105 template<typename MatrixType>
106 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
107 {
108 public:
109   typedef typename MatrixType::Index Index;
110   typedef typename MatrixType::Scalar Scalar;
111   enum
112   {
113     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
114     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
115     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
116     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
117     Options = MatrixType::Options
118   };
119   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
120           TransposeTypeWithSameStorageOrder;
121 
allocate(const JacobiSVD<MatrixType,FullPivHouseholderQRPreconditioner> & svd)122   void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
123   {
124     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
125     {
126       m_qr.~QRType();
127       ::new (&m_qr) QRType(svd.cols(), svd.rows());
128     }
129     m_adjoint.resize(svd.cols(), svd.rows());
130     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
131   }
132 
run(JacobiSVD<MatrixType,FullPivHouseholderQRPreconditioner> & svd,const MatrixType & matrix)133   bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
134   {
135     if(matrix.cols() > matrix.rows())
136     {
137       m_adjoint = matrix.adjoint();
138       m_qr.compute(m_adjoint);
139       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
140       if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
141       if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
142       return true;
143     }
144     else return false;
145   }
146 private:
147   typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
148   QRType m_qr;
149   TransposeTypeWithSameStorageOrder m_adjoint;
150   typename internal::plain_row_type<MatrixType>::type m_workspace;
151 };
152 
153 /*** preconditioner using ColPivHouseholderQR ***/
154 
155 template<typename MatrixType>
156 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
157 {
158 public:
159   typedef typename MatrixType::Index Index;
160 
allocate(const JacobiSVD<MatrixType,ColPivHouseholderQRPreconditioner> & svd)161   void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
162   {
163     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
164     {
165       m_qr.~QRType();
166       ::new (&m_qr) QRType(svd.rows(), svd.cols());
167     }
168     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
169     else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
170   }
171 
run(JacobiSVD<MatrixType,ColPivHouseholderQRPreconditioner> & svd,const MatrixType & matrix)172   bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
173   {
174     if(matrix.rows() > matrix.cols())
175     {
176       m_qr.compute(matrix);
177       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
178       if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
179       else if(svd.m_computeThinU)
180       {
181         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
182         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
183       }
184       if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
185       return true;
186     }
187     return false;
188   }
189 
190 private:
191   typedef ColPivHouseholderQR<MatrixType> QRType;
192   QRType m_qr;
193   typename internal::plain_col_type<MatrixType>::type m_workspace;
194 };
195 
196 template<typename MatrixType>
197 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
198 {
199 public:
200   typedef typename MatrixType::Index Index;
201   typedef typename MatrixType::Scalar Scalar;
202   enum
203   {
204     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
205     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
206     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
207     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
208     Options = MatrixType::Options
209   };
210 
211   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
212           TransposeTypeWithSameStorageOrder;
213 
allocate(const JacobiSVD<MatrixType,ColPivHouseholderQRPreconditioner> & svd)214   void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
215   {
216     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
217     {
218       m_qr.~QRType();
219       ::new (&m_qr) QRType(svd.cols(), svd.rows());
220     }
221     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
222     else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
223     m_adjoint.resize(svd.cols(), svd.rows());
224   }
225 
run(JacobiSVD<MatrixType,ColPivHouseholderQRPreconditioner> & svd,const MatrixType & matrix)226   bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
227   {
228     if(matrix.cols() > matrix.rows())
229     {
230       m_adjoint = matrix.adjoint();
231       m_qr.compute(m_adjoint);
232 
233       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
234       if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
235       else if(svd.m_computeThinV)
236       {
237         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
238         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
239       }
240       if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
241       return true;
242     }
243     else return false;
244   }
245 
246 private:
247   typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
248   QRType m_qr;
249   TransposeTypeWithSameStorageOrder m_adjoint;
250   typename internal::plain_row_type<MatrixType>::type m_workspace;
251 };
252 
253 /*** preconditioner using HouseholderQR ***/
254 
255 template<typename MatrixType>
256 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
257 {
258 public:
259   typedef typename MatrixType::Index Index;
260 
allocate(const JacobiSVD<MatrixType,HouseholderQRPreconditioner> & svd)261   void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
262   {
263     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
264     {
265       m_qr.~QRType();
266       ::new (&m_qr) QRType(svd.rows(), svd.cols());
267     }
268     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
269     else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
270   }
271 
run(JacobiSVD<MatrixType,HouseholderQRPreconditioner> & svd,const MatrixType & matrix)272   bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
273   {
274     if(matrix.rows() > matrix.cols())
275     {
276       m_qr.compute(matrix);
277       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
278       if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
279       else if(svd.m_computeThinU)
280       {
281         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
282         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
283       }
284       if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
285       return true;
286     }
287     return false;
288   }
289 private:
290   typedef HouseholderQR<MatrixType> QRType;
291   QRType m_qr;
292   typename internal::plain_col_type<MatrixType>::type m_workspace;
293 };
294 
295 template<typename MatrixType>
296 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
297 {
298 public:
299   typedef typename MatrixType::Index Index;
300   typedef typename MatrixType::Scalar Scalar;
301   enum
302   {
303     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
304     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
305     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
306     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
307     Options = MatrixType::Options
308   };
309 
310   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
311           TransposeTypeWithSameStorageOrder;
312 
allocate(const JacobiSVD<MatrixType,HouseholderQRPreconditioner> & svd)313   void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
314   {
315     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
316     {
317       m_qr.~QRType();
318       ::new (&m_qr) QRType(svd.cols(), svd.rows());
319     }
320     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
321     else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
322     m_adjoint.resize(svd.cols(), svd.rows());
323   }
324 
run(JacobiSVD<MatrixType,HouseholderQRPreconditioner> & svd,const MatrixType & matrix)325   bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
326   {
327     if(matrix.cols() > matrix.rows())
328     {
329       m_adjoint = matrix.adjoint();
330       m_qr.compute(m_adjoint);
331 
332       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
333       if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
334       else if(svd.m_computeThinV)
335       {
336         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
337         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
338       }
339       if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
340       return true;
341     }
342     else return false;
343   }
344 
345 private:
346   typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
347   QRType m_qr;
348   TransposeTypeWithSameStorageOrder m_adjoint;
349   typename internal::plain_row_type<MatrixType>::type m_workspace;
350 };
351 
352 /*** 2x2 SVD implementation
353  ***
354  *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
355  ***/
356 
357 template<typename MatrixType, int QRPreconditioner>
358 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
359 {
360   typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
361   typedef typename SVD::Index Index;
362   static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
363 };
364 
365 template<typename MatrixType, int QRPreconditioner>
366 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
367 {
368   typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
369   typedef typename MatrixType::Scalar Scalar;
370   typedef typename MatrixType::RealScalar RealScalar;
371   typedef typename SVD::Index Index;
372   static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
373   {
374     using std::sqrt;
375     Scalar z;
376     JacobiRotation<Scalar> rot;
377     RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
378 
379     if(n==0)
380     {
381       z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
382       work_matrix.row(p) *= z;
383       if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
384       if(work_matrix.coeff(q,q)!=Scalar(0))
385       {
386         z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
387         work_matrix.row(q) *= z;
388         if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
389       }
390       // otherwise the second row is already zero, so we have nothing to do.
391     }
392     else
393     {
394       rot.c() = conj(work_matrix.coeff(p,p)) / n;
395       rot.s() = work_matrix.coeff(q,p) / n;
396       work_matrix.applyOnTheLeft(p,q,rot);
397       if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
398       if(work_matrix.coeff(p,q) != Scalar(0))
399       {
400         Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
401         work_matrix.col(q) *= z;
402         if(svd.computeV()) svd.m_matrixV.col(q) *= z;
403       }
404       if(work_matrix.coeff(q,q) != Scalar(0))
405       {
406         z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
407         work_matrix.row(q) *= z;
408         if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
409       }
410     }
411   }
412 };
413 
414 template<typename MatrixType, typename RealScalar, typename Index>
415 void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
416                             JacobiRotation<RealScalar> *j_left,
417                             JacobiRotation<RealScalar> *j_right)
418 {
419   using std::sqrt;
420   using std::abs;
421   Matrix<RealScalar,2,2> m;
422   m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
423        numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
424   JacobiRotation<RealScalar> rot1;
425   RealScalar t = m.coeff(0,0) + m.coeff(1,1);
426   RealScalar d = m.coeff(1,0) - m.coeff(0,1);
427   if(t == RealScalar(0))
428   {
429     rot1.c() = RealScalar(0);
430     rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
431   }
432   else
433   {
434     RealScalar t2d2 = numext::hypot(t,d);
435     rot1.c() = abs(t)/t2d2;
436     rot1.s() = d/t2d2;
437     if(t<RealScalar(0))
438       rot1.s() = -rot1.s();
439   }
440   m.applyOnTheLeft(0,1,rot1);
441   j_right->makeJacobi(m,0,1);
442   *j_left  = rot1 * j_right->transpose();
443 }
444 
445 } // end namespace internal
446 
447 /** \ingroup SVD_Module
448   *
449   *
450   * \class JacobiSVD
451   *
452   * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
453   *
454   * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
455   * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
456   *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
457   *
458   * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
459   *   \f[ A = U S V^* \f]
460   * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
461   * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
462   * and right \em singular \em vectors of \a A respectively.
463   *
464   * Singular values are always sorted in decreasing order.
465   *
466   * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
467   *
468   * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
469   * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
470   * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
471   * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
472   *
473   * Here's an example demonstrating basic usage:
474   * \include JacobiSVD_basic.cpp
475   * Output: \verbinclude JacobiSVD_basic.out
476   *
477   * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
478   * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
479   * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
480   * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
481   *
482   * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
483   * terminate in finite (and reasonable) time.
484   *
485   * The possible values for QRPreconditioner are:
486   * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
487   * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
488   *     Contrary to other QRs, it doesn't allow computing thin unitaries.
489   * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
490   *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
491   *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
492   *     process is more reliable than the optimized bidiagonal SVD iterations.
493   * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
494   *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
495   *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
496   *     if QR preconditioning is needed before applying it anyway.
497   *
498   * \sa MatrixBase::jacobiSvd()
499   */
500 template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
501 {
502   public:
503 
504     typedef _MatrixType MatrixType;
505     typedef typename MatrixType::Scalar Scalar;
506     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
507     typedef typename MatrixType::Index Index;
508     enum {
509       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
510       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
511       DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
512       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
513       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
514       MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
515       MatrixOptions = MatrixType::Options
516     };
517 
518     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
519                    MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
520             MatrixUType;
521     typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
522                    MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
523             MatrixVType;
524     typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
525     typedef typename internal::plain_row_type<MatrixType>::type RowType;
526     typedef typename internal::plain_col_type<MatrixType>::type ColType;
527     typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
528                    MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
529             WorkMatrixType;
530 
531     /** \brief Default Constructor.
532       *
533       * The default constructor is useful in cases in which the user intends to
534       * perform decompositions via JacobiSVD::compute(const MatrixType&).
535       */
536     JacobiSVD()
537       : m_isInitialized(false),
538         m_isAllocated(false),
539         m_usePrescribedThreshold(false),
540         m_computationOptions(0),
541         m_rows(-1), m_cols(-1), m_diagSize(0)
542     {}
543 
544 
545     /** \brief Default Constructor with memory preallocation
546       *
547       * Like the default constructor but with preallocation of the internal data
548       * according to the specified problem size.
549       * \sa JacobiSVD()
550       */
551     JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
552       : m_isInitialized(false),
553         m_isAllocated(false),
554         m_usePrescribedThreshold(false),
555         m_computationOptions(0),
556         m_rows(-1), m_cols(-1)
557     {
558       allocate(rows, cols, computationOptions);
559     }
560 
561     /** \brief Constructor performing the decomposition of given matrix.
562      *
563      * \param matrix the matrix to decompose
564      * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
565      *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
566      *                           #ComputeFullV, #ComputeThinV.
567      *
568      * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
569      * available with the (non-default) FullPivHouseholderQR preconditioner.
570      */
571     JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
572       : m_isInitialized(false),
573         m_isAllocated(false),
574         m_usePrescribedThreshold(false),
575         m_computationOptions(0),
576         m_rows(-1), m_cols(-1)
577     {
578       compute(matrix, computationOptions);
579     }
580 
581     /** \brief Method performing the decomposition of given matrix using custom options.
582      *
583      * \param matrix the matrix to decompose
584      * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
585      *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
586      *                           #ComputeFullV, #ComputeThinV.
587      *
588      * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
589      * available with the (non-default) FullPivHouseholderQR preconditioner.
590      */
591     JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
592 
593     /** \brief Method performing the decomposition of given matrix using current options.
594      *
595      * \param matrix the matrix to decompose
596      *
597      * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
598      */
599     JacobiSVD& compute(const MatrixType& matrix)
600     {
601       return compute(matrix, m_computationOptions);
602     }
603 
604     /** \returns the \a U matrix.
605      *
606      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
607      * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
608      *
609      * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
610      *
611      * This method asserts that you asked for \a U to be computed.
612      */
613     const MatrixUType& matrixU() const
614     {
615       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
616       eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
617       return m_matrixU;
618     }
619 
620     /** \returns the \a V matrix.
621      *
622      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
623      * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
624      *
625      * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
626      *
627      * This method asserts that you asked for \a V to be computed.
628      */
629     const MatrixVType& matrixV() const
630     {
631       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
632       eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
633       return m_matrixV;
634     }
635 
636     /** \returns the vector of singular values.
637      *
638      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
639      * returned vector has size \a m.  Singular values are always sorted in decreasing order.
640      */
641     const SingularValuesType& singularValues() const
642     {
643       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
644       return m_singularValues;
645     }
646 
647     /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
648     inline bool computeU() const { return m_computeFullU || m_computeThinU; }
649     /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
650     inline bool computeV() const { return m_computeFullV || m_computeThinV; }
651 
652     /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
653       *
654       * \param b the right-hand-side of the equation to solve.
655       *
656       * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
657       *
658       * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
659       * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
660       */
661     template<typename Rhs>
662     inline const internal::solve_retval<JacobiSVD, Rhs>
663     solve(const MatrixBase<Rhs>& b) const
664     {
665       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
666       eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
667       return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
668     }
669 
670     /** \returns the number of singular values that are not exactly 0 */
671     Index nonzeroSingularValues() const
672     {
673       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
674       return m_nonzeroSingularValues;
675     }
676 
677     /** \returns the rank of the matrix of which \c *this is the SVD.
678       *
679       * \note This method has to determine which singular values should be considered nonzero.
680       *       For that, it uses the threshold value that you can control by calling
681       *       setThreshold(const RealScalar&).
682       */
683     inline Index rank() const
684     {
685       using std::abs;
686       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
687       if(m_singularValues.size()==0) return 0;
688       RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
689       Index i = m_nonzeroSingularValues-1;
690       while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
691       return i+1;
692     }
693 
694     /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
695       * which need to determine when singular values are to be considered nonzero.
696       * This is not used for the SVD decomposition itself.
697       *
698       * When it needs to get the threshold value, Eigen calls threshold().
699       * The default is \c NumTraits<Scalar>::epsilon()
700       *
701       * \param threshold The new value to use as the threshold.
702       *
703       * A singular value will be considered nonzero if its value is strictly greater than
704       *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
705       *
706       * If you want to come back to the default behavior, call setThreshold(Default_t)
707       */
708     JacobiSVD& setThreshold(const RealScalar& threshold)
709     {
710       m_usePrescribedThreshold = true;
711       m_prescribedThreshold = threshold;
712       return *this;
713     }
714 
715     /** Allows to come back to the default behavior, letting Eigen use its default formula for
716       * determining the threshold.
717       *
718       * You should pass the special object Eigen::Default as parameter here.
719       * \code svd.setThreshold(Eigen::Default); \endcode
720       *
721       * See the documentation of setThreshold(const RealScalar&).
722       */
723     JacobiSVD& setThreshold(Default_t)
724     {
725       m_usePrescribedThreshold = false;
726       return *this;
727     }
728 
729     /** Returns the threshold that will be used by certain methods such as rank().
730       *
731       * See the documentation of setThreshold(const RealScalar&).
732       */
733     RealScalar threshold() const
734     {
735       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
736       return m_usePrescribedThreshold ? m_prescribedThreshold
737                                       : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
738     }
739 
740     inline Index rows() const { return m_rows; }
741     inline Index cols() const { return m_cols; }
742 
743   private:
744     void allocate(Index rows, Index cols, unsigned int computationOptions);
745 
746   protected:
747     MatrixUType m_matrixU;
748     MatrixVType m_matrixV;
749     SingularValuesType m_singularValues;
750     WorkMatrixType m_workMatrix;
751     bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
752     bool m_computeFullU, m_computeThinU;
753     bool m_computeFullV, m_computeThinV;
754     unsigned int m_computationOptions;
755     Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
756     RealScalar m_prescribedThreshold;
757 
758     template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
759     friend struct internal::svd_precondition_2x2_block_to_be_real;
760     template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
761     friend struct internal::qr_preconditioner_impl;
762 
763     internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
764     internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
765     MatrixType m_scaledMatrix;
766 };
767 
768 template<typename MatrixType, int QRPreconditioner>
769 void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
770 {
771   eigen_assert(rows >= 0 && cols >= 0);
772 
773   if (m_isAllocated &&
774       rows == m_rows &&
775       cols == m_cols &&
776       computationOptions == m_computationOptions)
777   {
778     return;
779   }
780 
781   m_rows = rows;
782   m_cols = cols;
783   m_isInitialized = false;
784   m_isAllocated = true;
785   m_computationOptions = computationOptions;
786   m_computeFullU = (computationOptions & ComputeFullU) != 0;
787   m_computeThinU = (computationOptions & ComputeThinU) != 0;
788   m_computeFullV = (computationOptions & ComputeFullV) != 0;
789   m_computeThinV = (computationOptions & ComputeThinV) != 0;
790   eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
791   eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
792   eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
793               "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
794   if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
795   {
796       eigen_assert(!(m_computeThinU || m_computeThinV) &&
797               "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
798               "Use the ColPivHouseholderQR preconditioner instead.");
799   }
800   m_diagSize = (std::min)(m_rows, m_cols);
801   m_singularValues.resize(m_diagSize);
802   if(RowsAtCompileTime==Dynamic)
803     m_matrixU.resize(m_rows, m_computeFullU ? m_rows
804                             : m_computeThinU ? m_diagSize
805                             : 0);
806   if(ColsAtCompileTime==Dynamic)
807     m_matrixV.resize(m_cols, m_computeFullV ? m_cols
808                             : m_computeThinV ? m_diagSize
809                             : 0);
810   m_workMatrix.resize(m_diagSize, m_diagSize);
811 
812   if(m_cols>m_rows)   m_qr_precond_morecols.allocate(*this);
813   if(m_rows>m_cols)   m_qr_precond_morerows.allocate(*this);
814   if(m_cols!=m_cols)  m_scaledMatrix.resize(rows,cols);
815 }
816 
817 template<typename MatrixType, int QRPreconditioner>
818 JacobiSVD<MatrixType, QRPreconditioner>&
819 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
820 {
821   using std::abs;
822   allocate(matrix.rows(), matrix.cols(), computationOptions);
823 
824   // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
825   // only worsening the precision of U and V as we accumulate more rotations
826   const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
827 
828   // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
829   const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
830 
831   // Scaling factor to reduce over/under-flows
832   RealScalar scale = matrix.cwiseAbs().maxCoeff();
833   if(scale==RealScalar(0)) scale = RealScalar(1);
834 
835   /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
836 
837   if(m_rows!=m_cols)
838   {
839     m_scaledMatrix = matrix / scale;
840     m_qr_precond_morecols.run(*this, m_scaledMatrix);
841     m_qr_precond_morerows.run(*this, m_scaledMatrix);
842   }
843   else
844   {
845     m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale;
846     if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
847     if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
848     if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
849     if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
850   }
851 
852   /*** step 2. The main Jacobi SVD iteration. ***/
853 
854   bool finished = false;
855   while(!finished)
856   {
857     finished = true;
858 
859     // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
860 
861     for(Index p = 1; p < m_diagSize; ++p)
862     {
863       for(Index q = 0; q < p; ++q)
864       {
865         // if this 2x2 sub-matrix is not diagonal already...
866         // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
867         // keep us iterating forever. Similarly, small denormal numbers are considered zero.
868         using std::max;
869         RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
870                                                                        abs(m_workMatrix.coeff(q,q))));
871         // We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
872         if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
873         {
874           finished = false;
875 
876           // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
877           internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
878           JacobiRotation<RealScalar> j_left, j_right;
879           internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
880 
881           // accumulate resulting Jacobi rotations
882           m_workMatrix.applyOnTheLeft(p,q,j_left);
883           if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
884 
885           m_workMatrix.applyOnTheRight(p,q,j_right);
886           if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
887         }
888       }
889     }
890   }
891 
892   /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
893 
894   for(Index i = 0; i < m_diagSize; ++i)
895   {
896     RealScalar a = abs(m_workMatrix.coeff(i,i));
897     m_singularValues.coeffRef(i) = a;
898     if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
899   }
900 
901   /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
902 
903   m_nonzeroSingularValues = m_diagSize;
904   for(Index i = 0; i < m_diagSize; i++)
905   {
906     Index pos;
907     RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
908     if(maxRemainingSingularValue == RealScalar(0))
909     {
910       m_nonzeroSingularValues = i;
911       break;
912     }
913     if(pos)
914     {
915       pos += i;
916       std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
917       if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
918       if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
919     }
920   }
921 
922   m_singularValues *= scale;
923 
924   m_isInitialized = true;
925   return *this;
926 }
927 
928 namespace internal {
929 template<typename _MatrixType, int QRPreconditioner, typename Rhs>
930 struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
931   : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
932 {
933   typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
934   EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
935 
936   template<typename Dest> void evalTo(Dest& dst) const
937   {
938     eigen_assert(rhs().rows() == dec().rows());
939 
940     // A = U S V^*
941     // So A^{-1} = V S^{-1} U^*
942 
943     Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
944     Index rank = dec().rank();
945 
946     tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
947     tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
948     dst = dec().matrixV().leftCols(rank) * tmp;
949   }
950 };
951 } // end namespace internal
952 
953 /** \svd_module
954   *
955   * \return the singular value decomposition of \c *this computed by two-sided
956   * Jacobi transformations.
957   *
958   * \sa class JacobiSVD
959   */
960 template<typename Derived>
961 JacobiSVD<typename MatrixBase<Derived>::PlainObject>
962 MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
963 {
964   return JacobiSVD<PlainObject>(*this, computationOptions);
965 }
966 
967 } // end namespace Eigen
968 
969 #endif // EIGEN_JACOBISVD_H
970