• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/Geometry>
12 #include <Eigen/LU>
13 #include <Eigen/SVD>
14 
non_projective_only()15 template<typename Scalar, int Mode, int Options> void non_projective_only()
16 {
17     /* this test covers the following files:
18      Cross.h Quaternion.h, Transform.cpp
19   */
20   typedef Matrix<Scalar,3,1> Vector3;
21   typedef Quaternion<Scalar> Quaternionx;
22   typedef AngleAxis<Scalar> AngleAxisx;
23   typedef Transform<Scalar,3,Mode,Options> Transform3;
24   typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
25   typedef Translation<Scalar,3> Translation3;
26 
27   Vector3 v0 = Vector3::Random(),
28           v1 = Vector3::Random();
29 
30   Transform3 t0, t1, t2;
31 
32   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
33 
34   Quaternionx q1, q2;
35 
36   q1 = AngleAxisx(a, v0.normalized());
37 
38   t0 = Transform3::Identity();
39   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
40 
41   t0.linear() = q1.toRotationMatrix();
42 
43   v0 << 50, 2, 1;
44   t0.scale(v0);
45 
46   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
47 
48   t0.setIdentity();
49   t1.setIdentity();
50   v1 << 1, 2, 3;
51   t0.linear() = q1.toRotationMatrix();
52   t0.pretranslate(v0);
53   t0.scale(v1);
54   t1.linear() = q1.conjugate().toRotationMatrix();
55   t1.prescale(v1.cwiseInverse());
56   t1.translate(-v0);
57 
58   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
59 
60   t1.fromPositionOrientationScale(v0, q1, v1);
61   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
62   VERIFY_IS_APPROX(t1*v1, t0*v1);
63 
64   // translation * vector
65   t0.setIdentity();
66   t0.translate(v0);
67   VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
68 
69   // AlignedScaling * vector
70   t0.setIdentity();
71   t0.scale(v0);
72   VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
73 }
74 
transformations()75 template<typename Scalar, int Mode, int Options> void transformations()
76 {
77   /* this test covers the following files:
78      Cross.h Quaternion.h, Transform.cpp
79   */
80   using std::cos;
81   using std::abs;
82   typedef Matrix<Scalar,3,3> Matrix3;
83   typedef Matrix<Scalar,4,4> Matrix4;
84   typedef Matrix<Scalar,2,1> Vector2;
85   typedef Matrix<Scalar,3,1> Vector3;
86   typedef Matrix<Scalar,4,1> Vector4;
87   typedef Quaternion<Scalar> Quaternionx;
88   typedef AngleAxis<Scalar> AngleAxisx;
89   typedef Transform<Scalar,2,Mode,Options> Transform2;
90   typedef Transform<Scalar,3,Mode,Options> Transform3;
91   typedef typename Transform3::MatrixType MatrixType;
92   typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
93   typedef Translation<Scalar,2> Translation2;
94   typedef Translation<Scalar,3> Translation3;
95 
96   Vector3 v0 = Vector3::Random(),
97           v1 = Vector3::Random();
98   Matrix3 matrot1, m;
99 
100   Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
101   Scalar s0 = internal::random<Scalar>(),
102          s1 = internal::random<Scalar>();
103 
104   while(v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random();
105   while(v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random();
106 
107 
108   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
109   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
110   if(abs(cos(a)) > test_precision<Scalar>())
111   {
112     VERIFY_IS_APPROX(cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
113   }
114   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
115   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
116   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
117 
118   Quaternionx q1, q2;
119   q1 = AngleAxisx(a, v0.normalized());
120   q2 = AngleAxisx(a, v1.normalized());
121 
122   // rotation matrix conversion
123   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
124           * AngleAxisx(Scalar(0.2), Vector3::UnitY())
125           * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
126   VERIFY_IS_APPROX(matrot1 * v1,
127        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
128     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
129     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
130 
131   // angle-axis conversion
132   AngleAxisx aa = AngleAxisx(q1);
133   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
134 
135   if(abs(aa.angle()) > NumTraits<Scalar>::dummy_precision())
136   {
137     VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
138   }
139 
140   aa.fromRotationMatrix(aa.toRotationMatrix());
141   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
142   if(abs(aa.angle()) > NumTraits<Scalar>::dummy_precision())
143   {
144     VERIFY( !(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1) );
145   }
146 
147   // AngleAxis
148   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
149     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
150 
151   AngleAxisx aa1;
152   m = q1.toRotationMatrix();
153   aa1 = m;
154   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
155     Quaternionx(m).toRotationMatrix());
156 
157   // Transform
158   // TODO complete the tests !
159   a = 0;
160   while (abs(a)<Scalar(0.1))
161     a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
162   q1 = AngleAxisx(a, v0.normalized());
163   Transform3 t0, t1, t2;
164 
165   // first test setIdentity() and Identity()
166   t0.setIdentity();
167   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
168   t0.matrix().setZero();
169   t0 = Transform3::Identity();
170   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
171 
172   t0.setIdentity();
173   t1.setIdentity();
174   v1 << 1, 2, 3;
175   t0.linear() = q1.toRotationMatrix();
176   t0.pretranslate(v0);
177   t0.scale(v1);
178   t1.linear() = q1.conjugate().toRotationMatrix();
179   t1.prescale(v1.cwiseInverse());
180   t1.translate(-v0);
181 
182   VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
183 
184   t1.fromPositionOrientationScale(v0, q1, v1);
185   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
186 
187   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
188   t1.setIdentity(); t1.scale(v0).rotate(q1);
189   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
190 
191   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
192   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
193 
194   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
195   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
196 
197   // More transform constructors, operator=, operator*=
198 
199   Matrix3 mat3 = Matrix3::Random();
200   Matrix4 mat4;
201   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
202   Transform3 tmat3(mat3), tmat4(mat4);
203   if(Mode!=int(AffineCompact))
204     tmat4.matrix()(3,3) = Scalar(1);
205   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
206 
207   Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
208   Vector3 v3 = Vector3::Random().normalized();
209   AngleAxisx aa3(a3, v3);
210   Transform3 t3(aa3);
211   Transform3 t4;
212   t4 = aa3;
213   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
214   t4.rotate(AngleAxisx(-a3,v3));
215   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
216   t4 *= aa3;
217   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
218 
219   v3 = Vector3::Random();
220   Translation3 tv3(v3);
221   Transform3 t5(tv3);
222   t4 = tv3;
223   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
224   t4.translate(-v3);
225   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
226   t4 *= tv3;
227   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
228 
229   AlignedScaling3 sv3(v3);
230   Transform3 t6(sv3);
231   t4 = sv3;
232   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
233   t4.scale(v3.cwiseInverse());
234   VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
235   t4 *= sv3;
236   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
237 
238   // matrix * transform
239   VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
240 
241   // chained Transform product
242   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
243 
244   // check that Transform product doesn't have aliasing problems
245   t5 = t4;
246   t5 = t5*t5;
247   VERIFY_IS_APPROX(t5, t4*t4);
248 
249   // 2D transformation
250   Transform2 t20, t21;
251   Vector2 v20 = Vector2::Random();
252   Vector2 v21 = Vector2::Random();
253   for (int k=0; k<2; ++k)
254     if (abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
255   t21.setIdentity();
256   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
257   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
258     t21.pretranslate(v20).scale(v21).matrix());
259 
260   t21.setIdentity();
261   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
262   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
263         * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
264 
265   // Transform - new API
266   // 3D
267   t0.setIdentity();
268   t0.rotate(q1).scale(v0).translate(v0);
269   // mat * aligned scaling and mat * translation
270   t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
271   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
272   t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0);
273   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
274   t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0);
275   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
276   // mat * transformation and aligned scaling * translation
277   t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
278   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
279 
280 
281   t0.setIdentity();
282   t0.scale(s0).translate(v0);
283   t1 = Eigen::Scaling(s0) * Translation3(v0);
284   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
285   t0.prescale(s0);
286   t1 = Eigen::Scaling(s0) * t1;
287   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
288 
289   t0 = t3;
290   t0.scale(s0);
291   t1 = t3 * Eigen::Scaling(s0,s0,s0);
292   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
293   t0.prescale(s0);
294   t1 = Eigen::Scaling(s0,s0,s0) * t1;
295   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
296 
297   t0 = t3;
298   t0.scale(s0);
299   t1 = t3 * Eigen::Scaling(s0);
300   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
301   t0.prescale(s0);
302   t1 = Eigen::Scaling(s0) * t1;
303   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
304 
305   t0.setIdentity();
306   t0.prerotate(q1).prescale(v0).pretranslate(v0);
307   // translation * aligned scaling and transformation * mat
308   t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
309   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
310   // scaling * mat and translation * mat
311   t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
312   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
313 
314   t0.setIdentity();
315   t0.scale(v0).translate(v0).rotate(q1);
316   // translation * mat and aligned scaling * transformation
317   t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
318   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
319   // transformation * aligned scaling
320   t0.scale(v0);
321   t1 *= AlignedScaling3(v0);
322   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
323   // transformation * translation
324   t0.translate(v0);
325   t1 = t1 * Translation3(v0);
326   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
327   // translation * transformation
328   t0.pretranslate(v0);
329   t1 = Translation3(v0) * t1;
330   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
331 
332   // transform * quaternion
333   t0.rotate(q1);
334   t1 = t1 * q1;
335   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
336 
337   // translation * quaternion
338   t0.translate(v1).rotate(q1);
339   t1 = t1 * (Translation3(v1) * q1);
340   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
341 
342   // aligned scaling * quaternion
343   t0.scale(v1).rotate(q1);
344   t1 = t1 * (AlignedScaling3(v1) * q1);
345   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
346 
347   // quaternion * transform
348   t0.prerotate(q1);
349   t1 = q1 * t1;
350   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
351 
352   // quaternion * translation
353   t0.rotate(q1).translate(v1);
354   t1 = t1 * (q1 * Translation3(v1));
355   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
356 
357   // quaternion * aligned scaling
358   t0.rotate(q1).scale(v1);
359   t1 = t1 * (q1 * AlignedScaling3(v1));
360   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
361 
362   // test transform inversion
363   t0.setIdentity();
364   t0.translate(v0);
365   do {
366     t0.linear().setRandom();
367   } while(t0.linear().jacobiSvd().singularValues()(2)<test_precision<Scalar>());
368   Matrix4 t044 = Matrix4::Zero();
369   t044(3,3) = 1;
370   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
371   VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
372   t0.setIdentity();
373   t0.translate(v0).rotate(q1);
374   t044 = Matrix4::Zero();
375   t044(3,3) = 1;
376   t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
377   VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
378 
379   Matrix3 mat_rotation, mat_scaling;
380   t0.setIdentity();
381   t0.translate(v0).rotate(q1).scale(v1);
382   t0.computeRotationScaling(&mat_rotation, &mat_scaling);
383   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
384   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
385   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
386   t0.computeScalingRotation(&mat_scaling, &mat_rotation);
387   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
388   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
389   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
390 
391   // test casting
392   Transform<float,3,Mode> t1f = t1.template cast<float>();
393   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
394   Transform<double,3,Mode> t1d = t1.template cast<double>();
395   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
396 
397   Translation3 tr1(v0);
398   Translation<float,3> tr1f = tr1.template cast<float>();
399   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
400   Translation<double,3> tr1d = tr1.template cast<double>();
401   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
402 
403   AngleAxis<float> aa1f = aa1.template cast<float>();
404   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
405   AngleAxis<double> aa1d = aa1.template cast<double>();
406   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
407 
408   Rotation2D<Scalar> r2d1(internal::random<Scalar>());
409   Rotation2D<float> r2d1f = r2d1.template cast<float>();
410   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
411   Rotation2D<double> r2d1d = r2d1.template cast<double>();
412   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
413 
414   t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Eigen::Scaling(s0));
415   t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Eigen::Scaling(s0);
416   VERIFY_IS_APPROX(t20,t21);
417 
418   Rotation2D<Scalar> R0(s0), R1(s1);
419   t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0));
420   t21 = Translation2(v20) * R0 * Eigen::Scaling(s0);
421   VERIFY_IS_APPROX(t20,t21);
422 
423   t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0));
424   t21 = Translation2(v20) * Eigen::Scaling(s0);
425   VERIFY_IS_APPROX(t20,t21);
426 
427   VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle());
428   VERIFY_IS_APPROX(s1, (R0.slerp(1, R1)).angle());
429   VERIFY_IS_APPROX(s0, (R0.slerp(0.5, R0)).angle());
430   VERIFY_IS_APPROX(Scalar(0), (R0.slerp(0.5, R0.inverse())).angle());
431 
432   // check basic features
433   {
434     Rotation2D<Scalar> r1;           // default ctor
435     r1 = Rotation2D<Scalar>(s0);     // copy assignment
436     VERIFY_IS_APPROX(r1.angle(),s0);
437     Rotation2D<Scalar> r2(r1);       // copy ctor
438     VERIFY_IS_APPROX(r2.angle(),s0);
439   }
440 }
441 
transform_alignment()442 template<typename Scalar> void transform_alignment()
443 {
444   typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
445   typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
446 
447   EIGEN_ALIGN16 Scalar array1[16];
448   EIGEN_ALIGN16 Scalar array2[16];
449   EIGEN_ALIGN16 Scalar array3[16+1];
450   Scalar* array3u = array3+1;
451 
452   Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
453   Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
454   Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
455 
456   p1->matrix().setRandom();
457   *p2 = *p1;
458   *p3 = *p1;
459 
460   VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
461   VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
462 
463   VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
464 
465   #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY
466   if(internal::packet_traits<Scalar>::Vectorizable)
467     VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
468   #endif
469 }
470 
transform_products()471 template<typename Scalar, int Dim, int Options> void transform_products()
472 {
473   typedef Matrix<Scalar,Dim+1,Dim+1> Mat;
474   typedef Transform<Scalar,Dim,Projective,Options> Proj;
475   typedef Transform<Scalar,Dim,Affine,Options> Aff;
476   typedef Transform<Scalar,Dim,AffineCompact,Options> AffC;
477 
478   Proj p; p.matrix().setRandom();
479   Aff a; a.linear().setRandom(); a.translation().setRandom();
480   AffC ac = a;
481 
482   Mat p_m(p.matrix()), a_m(a.matrix());
483 
484   VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m);
485   VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m);
486   VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m);
487   VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m);
488   VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m);
489   VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m);
490   VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m);
491   VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
492 }
493 
test_geo_transformations()494 void test_geo_transformations()
495 {
496   for(int i = 0; i < g_repeat; i++) {
497     CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
498     CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
499 
500     CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
501     CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
502     CALL_SUBTEST_2(( transform_alignment<float>() ));
503 
504     CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
505     CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
506     CALL_SUBTEST_3(( transform_alignment<double>() ));
507 
508     CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
509     CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
510 
511     CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() ));
512     CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() ));
513 
514     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() ));
515     CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() ));
516 
517 
518     CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() ));
519     CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() ));
520   }
521 }
522