• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/QR>
12 
13 template<typename Derived1, typename Derived2>
14 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
15 {
16   return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
17                           * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
18 }
19 
product(const MatrixType & m)20 template<typename MatrixType> void product(const MatrixType& m)
21 {
22   /* this test covers the following files:
23      Identity.h Product.h
24   */
25   typedef typename MatrixType::Index Index;
26   typedef typename MatrixType::Scalar Scalar;
27   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
28   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
29   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
30   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
31   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
32                          MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
33 
34   Index rows = m.rows();
35   Index cols = m.cols();
36 
37   // this test relies a lot on Random.h, and there's not much more that we can do
38   // to test it, hence I consider that we will have tested Random.h
39   MatrixType m1 = MatrixType::Random(rows, cols),
40              m2 = MatrixType::Random(rows, cols),
41              m3(rows, cols);
42   RowSquareMatrixType
43              identity = RowSquareMatrixType::Identity(rows, rows),
44              square = RowSquareMatrixType::Random(rows, rows),
45              res = RowSquareMatrixType::Random(rows, rows);
46   ColSquareMatrixType
47              square2 = ColSquareMatrixType::Random(cols, cols),
48              res2 = ColSquareMatrixType::Random(cols, cols);
49   RowVectorType v1 = RowVectorType::Random(rows);
50   ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
51   OtherMajorMatrixType tm1 = m1;
52 
53   Scalar s1 = internal::random<Scalar>();
54 
55   Index r  = internal::random<Index>(0, rows-1),
56         c  = internal::random<Index>(0, cols-1),
57         c2 = internal::random<Index>(0, cols-1);
58 
59   // begin testing Product.h: only associativity for now
60   // (we use Transpose.h but this doesn't count as a test for it)
61   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
62   m3 = m1;
63   m3 *= m1.transpose() * m2;
64   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
65   VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2));
66 
67   // continue testing Product.h: distributivity
68   VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2);
69   VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2);
70 
71   // continue testing Product.h: compatibility with ScalarMultiple.h
72   VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1);
73   VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1));
74 
75   // test Product.h together with Identity.h
76   VERIFY_IS_APPROX(v1,                      identity*v1);
77   VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity);
78   // again, test operator() to check const-qualification
79   VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
80 
81   if (rows!=cols)
82      VERIFY_RAISES_ASSERT(m3 = m1*m1);
83 
84   // test the previous tests were not screwed up because operator* returns 0
85   // (we use the more accurate default epsilon)
86   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
87   {
88     VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
89   }
90 
91   // test optimized operator+= path
92   res = square;
93   res.noalias() += m1 * m2.transpose();
94   VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
95   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
96   {
97     VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
98   }
99   vcres = vc2;
100   vcres.noalias() += m1.transpose() * v1;
101   VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
102 
103   // test optimized operator-= path
104   res = square;
105   res.noalias() -= m1 * m2.transpose();
106   VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
107   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
108   {
109     VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
110   }
111   vcres = vc2;
112   vcres.noalias() -= m1.transpose() * v1;
113   VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
114 
115   tm1 = m1;
116   VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
117   VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
118 
119   // test submatrix and matrix/vector product
120   for (int i=0; i<rows; ++i)
121     res.row(i) = m1.row(i) * m2.transpose();
122   VERIFY_IS_APPROX(res, m1 * m2.transpose());
123   // the other way round:
124   for (int i=0; i<rows; ++i)
125     res.col(i) = m1 * m2.transpose().col(i);
126   VERIFY_IS_APPROX(res, m1 * m2.transpose());
127 
128   res2 = square2;
129   res2.noalias() += m1.transpose() * m2;
130   VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
131   if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
132   {
133     VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
134   }
135 
136   VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
137   VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
138 
139   // inner product
140   Scalar x = square2.row(c) * square2.col(c2);
141   VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
142 
143   // outer product
144   VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
145   VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
146   VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
147   VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
148   VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
149   VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
150 }
151