1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <Eigen/QR>
12
13 template<typename Derived1, typename Derived2>
14 bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
15 {
16 return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
17 * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));
18 }
19
product(const MatrixType & m)20 template<typename MatrixType> void product(const MatrixType& m)
21 {
22 /* this test covers the following files:
23 Identity.h Product.h
24 */
25 typedef typename MatrixType::Index Index;
26 typedef typename MatrixType::Scalar Scalar;
27 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType;
28 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType;
29 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType;
30 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType;
31 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
32 MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType;
33
34 Index rows = m.rows();
35 Index cols = m.cols();
36
37 // this test relies a lot on Random.h, and there's not much more that we can do
38 // to test it, hence I consider that we will have tested Random.h
39 MatrixType m1 = MatrixType::Random(rows, cols),
40 m2 = MatrixType::Random(rows, cols),
41 m3(rows, cols);
42 RowSquareMatrixType
43 identity = RowSquareMatrixType::Identity(rows, rows),
44 square = RowSquareMatrixType::Random(rows, rows),
45 res = RowSquareMatrixType::Random(rows, rows);
46 ColSquareMatrixType
47 square2 = ColSquareMatrixType::Random(cols, cols),
48 res2 = ColSquareMatrixType::Random(cols, cols);
49 RowVectorType v1 = RowVectorType::Random(rows);
50 ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
51 OtherMajorMatrixType tm1 = m1;
52
53 Scalar s1 = internal::random<Scalar>();
54
55 Index r = internal::random<Index>(0, rows-1),
56 c = internal::random<Index>(0, cols-1),
57 c2 = internal::random<Index>(0, cols-1);
58
59 // begin testing Product.h: only associativity for now
60 // (we use Transpose.h but this doesn't count as a test for it)
61 VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
62 m3 = m1;
63 m3 *= m1.transpose() * m2;
64 VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
65 VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2));
66
67 // continue testing Product.h: distributivity
68 VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2);
69 VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2);
70
71 // continue testing Product.h: compatibility with ScalarMultiple.h
72 VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1);
73 VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1));
74
75 // test Product.h together with Identity.h
76 VERIFY_IS_APPROX(v1, identity*v1);
77 VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity);
78 // again, test operator() to check const-qualification
79 VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c));
80
81 if (rows!=cols)
82 VERIFY_RAISES_ASSERT(m3 = m1*m1);
83
84 // test the previous tests were not screwed up because operator* returns 0
85 // (we use the more accurate default epsilon)
86 if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
87 {
88 VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1));
89 }
90
91 // test optimized operator+= path
92 res = square;
93 res.noalias() += m1 * m2.transpose();
94 VERIFY_IS_APPROX(res, square + m1 * m2.transpose());
95 if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
96 {
97 VERIFY(areNotApprox(res,square + m2 * m1.transpose()));
98 }
99 vcres = vc2;
100 vcres.noalias() += m1.transpose() * v1;
101 VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1);
102
103 // test optimized operator-= path
104 res = square;
105 res.noalias() -= m1 * m2.transpose();
106 VERIFY_IS_APPROX(res, square - (m1 * m2.transpose()));
107 if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
108 {
109 VERIFY(areNotApprox(res,square - m2 * m1.transpose()));
110 }
111 vcres = vc2;
112 vcres.noalias() -= m1.transpose() * v1;
113 VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1);
114
115 tm1 = m1;
116 VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1);
117 VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1);
118
119 // test submatrix and matrix/vector product
120 for (int i=0; i<rows; ++i)
121 res.row(i) = m1.row(i) * m2.transpose();
122 VERIFY_IS_APPROX(res, m1 * m2.transpose());
123 // the other way round:
124 for (int i=0; i<rows; ++i)
125 res.col(i) = m1 * m2.transpose().col(i);
126 VERIFY_IS_APPROX(res, m1 * m2.transpose());
127
128 res2 = square2;
129 res2.noalias() += m1.transpose() * m2;
130 VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2);
131 if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1)
132 {
133 VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1));
134 }
135
136 VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
137 VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
138
139 // inner product
140 Scalar x = square2.row(c) * square2.col(c2);
141 VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
142
143 // outer product
144 VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
145 VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
146 VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
147 VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
148 VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
149 VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
150 }
151