• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/QR>
13 
qr()14 template<typename MatrixType> void qr()
15 {
16   typedef typename MatrixType::Index Index;
17 
18   Index rows = internal::random<Index>(20,200), cols = internal::random<int>(20,200), cols2 = internal::random<int>(20,200);
19   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
20 
21   typedef typename MatrixType::Scalar Scalar;
22   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
23   MatrixType m1;
24   createRandomPIMatrixOfRank(rank,rows,cols,m1);
25   FullPivHouseholderQR<MatrixType> qr(m1);
26   VERIFY(rank == qr.rank());
27   VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
28   VERIFY(!qr.isInjective());
29   VERIFY(!qr.isInvertible());
30   VERIFY(!qr.isSurjective());
31 
32   MatrixType r = qr.matrixQR();
33 
34   MatrixQType q = qr.matrixQ();
35   VERIFY_IS_UNITARY(q);
36 
37   // FIXME need better way to construct trapezoid
38   for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
39 
40   MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();
41 
42   VERIFY_IS_APPROX(m1, c);
43 
44   MatrixType m2 = MatrixType::Random(cols,cols2);
45   MatrixType m3 = m1*m2;
46   m2 = MatrixType::Random(cols,cols2);
47   m2 = qr.solve(m3);
48   VERIFY_IS_APPROX(m3, m1*m2);
49 }
50 
qr_invertible()51 template<typename MatrixType> void qr_invertible()
52 {
53   using std::log;
54   using std::abs;
55   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
56   typedef typename MatrixType::Scalar Scalar;
57 
58   int size = internal::random<int>(10,50);
59 
60   MatrixType m1(size, size), m2(size, size), m3(size, size);
61   m1 = MatrixType::Random(size,size);
62 
63   if (internal::is_same<RealScalar,float>::value)
64   {
65     // let's build a matrix more stable to inverse
66     MatrixType a = MatrixType::Random(size,size*2);
67     m1 += a * a.adjoint();
68   }
69 
70   FullPivHouseholderQR<MatrixType> qr(m1);
71   VERIFY(qr.isInjective());
72   VERIFY(qr.isInvertible());
73   VERIFY(qr.isSurjective());
74 
75   m3 = MatrixType::Random(size,size);
76   m2 = qr.solve(m3);
77   VERIFY_IS_APPROX(m3, m1*m2);
78 
79   // now construct a matrix with prescribed determinant
80   m1.setZero();
81   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
82   RealScalar absdet = abs(m1.diagonal().prod());
83   m3 = qr.matrixQ(); // get a unitary
84   m1 = m3 * m1 * m3;
85   qr.compute(m1);
86   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
87   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
88 }
89 
qr_verify_assert()90 template<typename MatrixType> void qr_verify_assert()
91 {
92   MatrixType tmp;
93 
94   FullPivHouseholderQR<MatrixType> qr;
95   VERIFY_RAISES_ASSERT(qr.matrixQR())
96   VERIFY_RAISES_ASSERT(qr.solve(tmp))
97   VERIFY_RAISES_ASSERT(qr.matrixQ())
98   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
99   VERIFY_RAISES_ASSERT(qr.isInjective())
100   VERIFY_RAISES_ASSERT(qr.isSurjective())
101   VERIFY_RAISES_ASSERT(qr.isInvertible())
102   VERIFY_RAISES_ASSERT(qr.inverse())
103   VERIFY_RAISES_ASSERT(qr.absDeterminant())
104   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
105 }
106 
test_qr_fullpivoting()107 void test_qr_fullpivoting()
108 {
109  for(int i = 0; i < 1; i++) {
110     // FIXME : very weird bug here
111 //     CALL_SUBTEST(qr(Matrix2f()) );
112     CALL_SUBTEST_1( qr<MatrixXf>() );
113     CALL_SUBTEST_2( qr<MatrixXd>() );
114     CALL_SUBTEST_3( qr<MatrixXcd>() );
115   }
116 
117   for(int i = 0; i < g_repeat; i++) {
118     CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
119     CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
120     CALL_SUBTEST_4( qr_invertible<MatrixXcf>() );
121     CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
122   }
123 
124   CALL_SUBTEST_5(qr_verify_assert<Matrix3f>());
125   CALL_SUBTEST_6(qr_verify_assert<Matrix3d>());
126   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
127   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
128   CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>());
129   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
130 
131   // Test problem size constructors
132   CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20));
133   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(10,20)));
134   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(Matrix<float,10,20>::Random())));
135   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(20,10)));
136   CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(Matrix<float,20,10>::Random())));
137 }
138