• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *****************************************************************************
3  * Copyright (C) 1996-2014, International Business Machines Corporation and
4  * others. All Rights Reserved.
5  *****************************************************************************
6  */
7 
8 #include "unicode/utypes.h"
9 
10 #if !UCONFIG_NO_NORMALIZATION
11 
12 #include "unicode/caniter.h"
13 #include "unicode/normalizer2.h"
14 #include "unicode/uchar.h"
15 #include "unicode/uniset.h"
16 #include "unicode/usetiter.h"
17 #include "unicode/ustring.h"
18 #include "unicode/utf16.h"
19 #include "cmemory.h"
20 #include "hash.h"
21 #include "normalizer2impl.h"
22 
23 /**
24  * This class allows one to iterate through all the strings that are canonically equivalent to a given
25  * string. For example, here are some sample results:
26 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
27 1: \u0041\u030A\u0064\u0307\u0327
28  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
29 2: \u0041\u030A\u0064\u0327\u0307
30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
31 3: \u0041\u030A\u1E0B\u0327
32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
33 4: \u0041\u030A\u1E11\u0307
34  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
35 5: \u00C5\u0064\u0307\u0327
36  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
37 6: \u00C5\u0064\u0327\u0307
38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
39 7: \u00C5\u1E0B\u0327
40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
41 8: \u00C5\u1E11\u0307
42  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
43 9: \u212B\u0064\u0307\u0327
44  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
45 10: \u212B\u0064\u0327\u0307
46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
47 11: \u212B\u1E0B\u0327
48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
49 12: \u212B\u1E11\u0307
50  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
51  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
52  * since it has not been optimized for that situation.
53  *@author M. Davis
54  *@draft
55  */
56 
57 // public
58 
59 U_NAMESPACE_BEGIN
60 
61 // TODO: add boilerplate methods.
62 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)63 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
64 
65 /**
66  *@param source string to get results for
67  */
68 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
69     pieces(NULL),
70     pieces_length(0),
71     pieces_lengths(NULL),
72     current(NULL),
73     current_length(0),
74     nfd(*Normalizer2::getNFDInstance(status)),
75     nfcImpl(*Normalizer2Factory::getNFCImpl(status))
76 {
77     if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
78       setSource(sourceStr, status);
79     }
80 }
81 
~CanonicalIterator()82 CanonicalIterator::~CanonicalIterator() {
83   cleanPieces();
84 }
85 
cleanPieces()86 void CanonicalIterator::cleanPieces() {
87     int32_t i = 0;
88     if(pieces != NULL) {
89         for(i = 0; i < pieces_length; i++) {
90             if(pieces[i] != NULL) {
91                 delete[] pieces[i];
92             }
93         }
94         uprv_free(pieces);
95         pieces = NULL;
96         pieces_length = 0;
97     }
98     if(pieces_lengths != NULL) {
99         uprv_free(pieces_lengths);
100         pieces_lengths = NULL;
101     }
102     if(current != NULL) {
103         uprv_free(current);
104         current = NULL;
105         current_length = 0;
106     }
107 }
108 
109 /**
110  *@return gets the source: NOTE: it is the NFD form of source
111  */
getSource()112 UnicodeString CanonicalIterator::getSource() {
113   return source;
114 }
115 
116 /**
117  * Resets the iterator so that one can start again from the beginning.
118  */
reset()119 void CanonicalIterator::reset() {
120     done = FALSE;
121     for (int i = 0; i < current_length; ++i) {
122         current[i] = 0;
123     }
124 }
125 
126 /**
127  *@return the next string that is canonically equivalent. The value null is returned when
128  * the iteration is done.
129  */
next()130 UnicodeString CanonicalIterator::next() {
131     int32_t i = 0;
132 
133     if (done) {
134       buffer.setToBogus();
135       return buffer;
136     }
137 
138     // delete old contents
139     buffer.remove();
140 
141     // construct return value
142 
143     for (i = 0; i < pieces_length; ++i) {
144         buffer.append(pieces[i][current[i]]);
145     }
146     //String result = buffer.toString(); // not needed
147 
148     // find next value for next time
149 
150     for (i = current_length - 1; ; --i) {
151         if (i < 0) {
152             done = TRUE;
153             break;
154         }
155         current[i]++;
156         if (current[i] < pieces_lengths[i]) break; // got sequence
157         current[i] = 0;
158     }
159     return buffer;
160 }
161 
162 /**
163  *@param set the source string to iterate against. This allows the same iterator to be used
164  * while changing the source string, saving object creation.
165  */
setSource(const UnicodeString & newSource,UErrorCode & status)166 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
167     int32_t list_length = 0;
168     UChar32 cp = 0;
169     int32_t start = 0;
170     int32_t i = 0;
171     UnicodeString *list = NULL;
172 
173     nfd.normalize(newSource, source, status);
174     if(U_FAILURE(status)) {
175       return;
176     }
177     done = FALSE;
178 
179     cleanPieces();
180 
181     // catch degenerate case
182     if (newSource.length() == 0) {
183         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
184         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
185         pieces_length = 1;
186         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
187         current_length = 1;
188         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
189             status = U_MEMORY_ALLOCATION_ERROR;
190             goto CleanPartialInitialization;
191         }
192         current[0] = 0;
193         pieces[0] = new UnicodeString[1];
194         pieces_lengths[0] = 1;
195         if (pieces[0] == 0) {
196             status = U_MEMORY_ALLOCATION_ERROR;
197             goto CleanPartialInitialization;
198         }
199         return;
200     }
201 
202 
203     list = new UnicodeString[source.length()];
204     if (list == 0) {
205         status = U_MEMORY_ALLOCATION_ERROR;
206         goto CleanPartialInitialization;
207     }
208 
209     // i should initialy be the number of code units at the
210     // start of the string
211     i = U16_LENGTH(source.char32At(0));
212     //int32_t i = 1;
213     // find the segments
214     // This code iterates through the source string and
215     // extracts segments that end up on a codepoint that
216     // doesn't start any decompositions. (Analysis is done
217     // on the NFD form - see above).
218     for (; i < source.length(); i += U16_LENGTH(cp)) {
219         cp = source.char32At(i);
220         if (nfcImpl.isCanonSegmentStarter(cp)) {
221             source.extract(start, i-start, list[list_length++]); // add up to i
222             start = i;
223         }
224     }
225     source.extract(start, i-start, list[list_length++]); // add last one
226 
227 
228     // allocate the arrays, and find the strings that are CE to each segment
229     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
230     pieces_length = list_length;
231     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
232     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
233     current_length = list_length;
234     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
235         status = U_MEMORY_ALLOCATION_ERROR;
236         goto CleanPartialInitialization;
237     }
238 
239     for (i = 0; i < current_length; i++) {
240         current[i] = 0;
241     }
242     // for each segment, get all the combinations that can produce
243     // it after NFD normalization
244     for (i = 0; i < pieces_length; ++i) {
245         //if (PROGRESS) printf("SEGMENT\n");
246         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
247     }
248 
249     delete[] list;
250     return;
251 // Common section to cleanup all local variables and reset object variables.
252 CleanPartialInitialization:
253     if (list != NULL) {
254         delete[] list;
255     }
256     cleanPieces();
257 }
258 
259 /**
260  * Dumb recursive implementation of permutation.
261  * TODO: optimize
262  * @param source the string to find permutations for
263  * @return the results in a set.
264  */
permute(UnicodeString & source,UBool skipZeros,Hashtable * result,UErrorCode & status)265 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
266     if(U_FAILURE(status)) {
267         return;
268     }
269     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
270     int32_t i = 0;
271 
272     // optimization:
273     // if zero or one character, just return a set with it
274     // we check for length < 2 to keep from counting code points all the time
275     if (source.length() <= 2 && source.countChar32() <= 1) {
276         UnicodeString *toPut = new UnicodeString(source);
277         /* test for NULL */
278         if (toPut == 0) {
279             status = U_MEMORY_ALLOCATION_ERROR;
280             return;
281         }
282         result->put(source, toPut, status);
283         return;
284     }
285 
286     // otherwise iterate through the string, and recursively permute all the other characters
287     UChar32 cp;
288     Hashtable subpermute(status);
289     if(U_FAILURE(status)) {
290         return;
291     }
292     subpermute.setValueDeleter(uprv_deleteUObject);
293 
294     for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
295         cp = source.char32At(i);
296         const UHashElement *ne = NULL;
297         int32_t el = UHASH_FIRST;
298         UnicodeString subPermuteString = source;
299 
300         // optimization:
301         // if the character is canonical combining class zero,
302         // don't permute it
303         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
304             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
305             continue;
306         }
307 
308         subpermute.removeAll();
309 
310         // see what the permutations of the characters before and after this one are
311         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
312         permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
313         /* Test for buffer overflows */
314         if(U_FAILURE(status)) {
315             return;
316         }
317         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
318         // of source at this point.
319 
320         // prefix this character to all of them
321         ne = subpermute.nextElement(el);
322         while (ne != NULL) {
323             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
324             UnicodeString *chStr = new UnicodeString(cp);
325             //test for  NULL
326             if (chStr == NULL) {
327                 status = U_MEMORY_ALLOCATION_ERROR;
328                 return;
329             }
330             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
331             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
332             result->put(*chStr, chStr, status);
333             ne = subpermute.nextElement(el);
334         }
335     }
336     //return result;
337 }
338 
339 // privates
340 
341 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
getEquivalents(const UnicodeString & segment,int32_t & result_len,UErrorCode & status)342 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
343     Hashtable result(status);
344     Hashtable permutations(status);
345     Hashtable basic(status);
346     if (U_FAILURE(status)) {
347         return 0;
348     }
349     result.setValueDeleter(uprv_deleteUObject);
350     permutations.setValueDeleter(uprv_deleteUObject);
351     basic.setValueDeleter(uprv_deleteUObject);
352 
353     UChar USeg[256];
354     int32_t segLen = segment.extract(USeg, 256, status);
355     getEquivalents2(&basic, USeg, segLen, status);
356 
357     // now get all the permutations
358     // add only the ones that are canonically equivalent
359     // TODO: optimize by not permuting any class zero.
360 
361     const UHashElement *ne = NULL;
362     int32_t el = UHASH_FIRST;
363     //Iterator it = basic.iterator();
364     ne = basic.nextElement(el);
365     //while (it.hasNext())
366     while (ne != NULL) {
367         //String item = (String) it.next();
368         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
369 
370         permutations.removeAll();
371         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
372         const UHashElement *ne2 = NULL;
373         int32_t el2 = UHASH_FIRST;
374         //Iterator it2 = permutations.iterator();
375         ne2 = permutations.nextElement(el2);
376         //while (it2.hasNext())
377         while (ne2 != NULL) {
378             //String possible = (String) it2.next();
379             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
380             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
381             UnicodeString attempt;
382             nfd.normalize(possible, attempt, status);
383 
384             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
385             if (attempt==segment) {
386                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
387                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
388                 result.put(possible, new UnicodeString(possible), status); //add(possible);
389             } else {
390                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
391             }
392 
393             ne2 = permutations.nextElement(el2);
394         }
395         ne = basic.nextElement(el);
396     }
397 
398     /* Test for buffer overflows */
399     if(U_FAILURE(status)) {
400         return 0;
401     }
402     // convert into a String[] to clean up storage
403     //String[] finalResult = new String[result.size()];
404     UnicodeString *finalResult = NULL;
405     int32_t resultCount;
406     if((resultCount = result.count())) {
407         finalResult = new UnicodeString[resultCount];
408         if (finalResult == 0) {
409             status = U_MEMORY_ALLOCATION_ERROR;
410             return NULL;
411         }
412     }
413     else {
414         status = U_ILLEGAL_ARGUMENT_ERROR;
415         return NULL;
416     }
417     //result.toArray(finalResult);
418     result_len = 0;
419     el = UHASH_FIRST;
420     ne = result.nextElement(el);
421     while(ne != NULL) {
422         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
423         ne = result.nextElement(el);
424     }
425 
426 
427     return finalResult;
428 }
429 
getEquivalents2(Hashtable * fillinResult,const UChar * segment,int32_t segLen,UErrorCode & status)430 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
431 
432     if (U_FAILURE(status)) {
433         return NULL;
434     }
435 
436     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
437 
438     UnicodeString toPut(segment, segLen);
439 
440     fillinResult->put(toPut, new UnicodeString(toPut), status);
441 
442     UnicodeSet starts;
443 
444     // cycle through all the characters
445     UChar32 cp;
446     for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
447         // see if any character is at the start of some decomposition
448         U16_GET(segment, 0, i, segLen, cp);
449         if (!nfcImpl.getCanonStartSet(cp, starts)) {
450             continue;
451         }
452         // if so, see which decompositions match
453         UnicodeSetIterator iter(starts);
454         while (iter.next()) {
455             UChar32 cp2 = iter.getCodepoint();
456             Hashtable remainder(status);
457             remainder.setValueDeleter(uprv_deleteUObject);
458             if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
459                 continue;
460             }
461 
462             // there were some matches, so add all the possibilities to the set.
463             UnicodeString prefix(segment, i);
464             prefix += cp2;
465 
466             int32_t el = UHASH_FIRST;
467             const UHashElement *ne = remainder.nextElement(el);
468             while (ne != NULL) {
469                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
470                 UnicodeString *toAdd = new UnicodeString(prefix);
471                 /* test for NULL */
472                 if (toAdd == 0) {
473                     status = U_MEMORY_ALLOCATION_ERROR;
474                     return NULL;
475                 }
476                 *toAdd += item;
477                 fillinResult->put(*toAdd, toAdd, status);
478 
479                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
480 
481                 ne = remainder.nextElement(el);
482             }
483         }
484     }
485 
486     /* Test for buffer overflows */
487     if(U_FAILURE(status)) {
488         return NULL;
489     }
490     return fillinResult;
491 }
492 
493 /**
494  * See if the decomposition of cp2 is at segment starting at segmentPos
495  * (with canonical rearrangment!)
496  * If so, take the remainder, and return the equivalents
497  */
extract(Hashtable * fillinResult,UChar32 comp,const UChar * segment,int32_t segLen,int32_t segmentPos,UErrorCode & status)498 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
499 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
500     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
501     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
502 
503     if (U_FAILURE(status)) {
504         return NULL;
505     }
506 
507     UnicodeString temp(comp);
508     int32_t inputLen=temp.length();
509     UnicodeString decompString;
510     nfd.normalize(temp, decompString, status);
511     const UChar *decomp=decompString.getBuffer();
512     int32_t decompLen=decompString.length();
513 
514     // See if it matches the start of segment (at segmentPos)
515     UBool ok = FALSE;
516     UChar32 cp;
517     int32_t decompPos = 0;
518     UChar32 decompCp;
519     U16_NEXT(decomp, decompPos, decompLen, decompCp);
520 
521     int32_t i = segmentPos;
522     while(i < segLen) {
523         U16_NEXT(segment, i, segLen, cp);
524 
525         if (cp == decompCp) { // if equal, eat another cp from decomp
526 
527             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
528 
529             if (decompPos == decompLen) { // done, have all decomp characters!
530                 temp.append(segment+i, segLen-i);
531                 ok = TRUE;
532                 break;
533             }
534             U16_NEXT(decomp, decompPos, decompLen, decompCp);
535         } else {
536             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
537 
538             // brute force approach
539             temp.append(cp);
540 
541             /* TODO: optimize
542             // since we know that the classes are monotonically increasing, after zero
543             // e.g. 0 5 7 9 0 3
544             // we can do an optimization
545             // there are only a few cases that work: zero, less, same, greater
546             // if both classes are the same, we fail
547             // if the decomp class < the segment class, we fail
548 
549             segClass = getClass(cp);
550             if (decompClass <= segClass) return null;
551             */
552         }
553     }
554     if (!ok)
555         return NULL; // we failed, characters left over
556 
557     //if (PROGRESS) printf("Matches\n");
558 
559     if (inputLen == temp.length()) {
560         fillinResult->put(UnicodeString(), new UnicodeString(), status);
561         return fillinResult; // succeed, but no remainder
562     }
563 
564     // brute force approach
565     // check to make sure result is canonically equivalent
566     UnicodeString trial;
567     nfd.normalize(temp, trial, status);
568     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
569         return NULL;
570     }
571 
572     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
573 }
574 
575 U_NAMESPACE_END
576 
577 #endif /* #if !UCONFIG_NO_NORMALIZATION */
578